/***************************************************************************** * ratecontrol.c: ratecontrol ***************************************************************************** * Copyright (C) 2005-2022 x264 project * * Authors: Loren Merritt * Michael Niedermayer * Gabriel Bouvigne * Fiona Glaser * Måns Rullgård * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #undef NDEBUG // always check asserts, the speed effect is far too small to disable them #include "common/common.h" #include "ratecontrol.h" #include "me.h" typedef struct { int pict_type; int frame_type; int kept_as_ref; double qscale; int mv_bits; int tex_bits; int misc_bits; double expected_bits; /* total expected bits up to the current frame (current one excluded) */ double expected_vbv; double new_qscale; float new_qp; int i_count; int p_count; int s_count; float blurred_complexity; char direct_mode; int16_t weight[3][2]; int16_t i_weight_denom[2]; int refcount[16]; int refs; int64_t i_duration; int64_t i_cpb_duration; int out_num; } ratecontrol_entry_t; typedef struct { float coeff_min; float coeff; float count; float decay; float offset; } predictor_t; struct x264_ratecontrol_t { /* constants */ int b_abr; int b_2pass; int b_vbv; int b_vbv_min_rate; double fps; double bitrate; double rate_tolerance; double qcompress; int nmb; /* number of macroblocks in a frame */ int qp_constant[3]; /* current frame */ ratecontrol_entry_t *rce; float qpm; /* qp for current macroblock: precise float for AQ */ float qpa_rc; /* average of macroblocks' qp before aq */ float qpa_rc_prev; int qpa_aq; /* average of macroblocks' qp after aq */ int qpa_aq_prev; float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */ /* VBV stuff */ double buffer_size; int64_t buffer_fill_final; int64_t buffer_fill_final_min; double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */ double buffer_rate; /* # of bits added to buffer_fill after each frame */ double vbv_max_rate; /* # of bits added to buffer_fill per second */ predictor_t *pred; /* predict frame size from satd */ int single_frame_vbv; float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */ /* ABR stuff */ int last_satd; double last_rceq; double cplxr_sum; /* sum of bits*qscale/rceq */ double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */ int64_t filler_bits_sum; /* sum in bits of finished frames' filler data */ double wanted_bits_window; /* target bitrate * window */ double cbr_decay; double short_term_cplxsum; double short_term_cplxcount; double rate_factor_constant; double ip_offset; double pb_offset; /* 2pass stuff */ FILE *p_stat_file_out; char *psz_stat_file_tmpname; FILE *p_mbtree_stat_file_out; char *psz_mbtree_stat_file_tmpname; char *psz_mbtree_stat_file_name; FILE *p_mbtree_stat_file_in; int num_entries; /* number of ratecontrol_entry_ts */ ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */ ratecontrol_entry_t **entry_out; double last_qscale; double last_qscale_for[3]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */ int last_non_b_pict_type; double accum_p_qp; /* for determining I-frame quant */ double accum_p_norm; double last_accum_p_norm; double lmin[3]; /* min qscale by frame type */ double lmax[3]; double lstep; /* max change (multiply) in qscale per frame */ struct { uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */ int qpbuf_pos; /* In order to handle pyramid reordering, QP buffer acts as a stack. * This value is the current position (0 or 1). */ int src_mb_count; /* For rescaling */ int rescale_enabled; float *scale_buffer[2]; /* Intermediate buffers */ int filtersize[2]; /* filter size (H/V) */ float *coeffs[2]; int *pos[2]; int srcdim[2]; /* Source dimensions (W/H) */ } mbtree; /* MBRC stuff */ volatile float frame_size_estimated; /* Access to this variable must be atomic: double is * not atomic on all arches we care about */ double frame_size_maximum; /* Maximum frame size due to MinCR */ double frame_size_planned; double slice_size_planned; predictor_t *row_pred; predictor_t row_preds[3][2]; predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */ int bframes; /* # consecutive B-frames before this P-frame */ int bframe_bits; /* total cost of those frames */ int i_zones; x264_zone_t *zones; x264_zone_t *prev_zone; /* hrd stuff */ int initial_cpb_removal_delay; int initial_cpb_removal_delay_offset; double nrt_first_access_unit; /* nominal removal time */ double previous_cpb_final_arrival_time; uint64_t hrd_multiply_denom; }; static int parse_zones( x264_t *h ); static int init_pass2(x264_t *); static float rate_estimate_qscale( x264_t *h ); static int update_vbv( x264_t *h, int bits ); static void update_vbv_plan( x264_t *h, int overhead ); static float predict_size( predictor_t *p, float q, float var ); static void update_predictor( predictor_t *p, float q, float var, float bits ); #define CMP_OPT_FIRST_PASS( opt, param_val )\ {\ if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\ {\ x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\ return -1;\ }\ } /* Terminology: * qp = h.264's quantizer * qscale = linearized quantizer = Lagrange multiplier */ static inline float qp2qscale( float qp ) { return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f ); } static inline float qscale2qp( float qscale ) { return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f ); } /* Texture bitrate is not quite inversely proportional to qscale, * probably due the the changing number of SKIP blocks. * MV bits level off at about qp<=12, because the lambda used * for motion estimation is constant there. */ static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale ) { if( qscale<0.1 ) qscale = 0.1; return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 ) + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 ) + rce->misc_bits; } static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store ) { uint32_t sum = sum_ssd; uint32_t ssd = sum_ssd >> 32; if( b_store ) { frame->i_pixel_sum[i] += sum; frame->i_pixel_ssd[i] += ssd; } return ssd - ((uint64_t)sum * sum >> shift); } static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store ) { int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16; int stride = frame->i_stride[i]; int offset = b_field ? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride : 16 * mb_x + height * mb_y * stride; stride <<= b_field; if( b_chroma ) { ALIGNED_ARRAY_64( pixel, pix,[FENC_STRIDE*16] ); int chromapix = h->luma2chroma_pixel[PIXEL_16x16]; int shift = 7 - CHROMA_V_SHIFT; h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height ); return ac_energy_var( h->pixf.var[chromapix]( pix, FENC_STRIDE ), shift, frame, 1, b_store ) + ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store ); } else return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store ); } // Find the total AC energy of the block in all planes. static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame ) { /* This function contains annoying hacks because GCC has a habit of reordering emms * and putting it after floating point ops. As a result, we put the emms at the end of the * function and make sure that its always called before the float math. Noinline makes * sure no reordering goes on. */ uint32_t var; x264_prefetch_fenc( h, frame, mb_x, mb_y ); if( h->mb.b_adaptive_mbaff ) { /* We don't know the super-MB mode we're going to pick yet, so * simply try both and pick the lower of the two. */ uint32_t var_interlaced, var_progressive; var_interlaced = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 ); var_progressive = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 ); if( CHROMA444 ) { var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 ); var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 ); var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 ); var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 ); } else if( CHROMA_FORMAT ) { var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 ); var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 ); } var = X264_MIN( var_interlaced, var_progressive ); } else { var = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 ); if( CHROMA444 ) { var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 ); var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 ); } else if( CHROMA_FORMAT ) var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 ); } x264_emms(); return var; } void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets ) { /* Initialize frame stats */ for( int i = 0; i < 3; i++ ) { frame->i_pixel_sum[i] = 0; frame->i_pixel_ssd[i] = 0; } /* Degenerate cases */ if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 ) { /* Need to init it anyways for MB tree */ if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 ) { if( quant_offsets ) { for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy]; if( h->frames.b_have_lowres ) for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] ); } else { memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) ); memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) ); if( h->frames.b_have_lowres ) for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) frame->i_inv_qscale_factor[mb_xy] = 256; } } /* Need variance data for weighted prediction */ if( h->param.analyse.i_weighted_pred ) { for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) ac_energy_mb( h, mb_x, mb_y, frame ); } else return; } /* Actual adaptive quantization */ else { /* constants chosen to result in approximately the same overall bitrate as without AQ. * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */ float strength; float avg_adj = 0.f; float bias_strength = 0.f; if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED ) { float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8))); float avg_adj_pow2 = 0.f; for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) { uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f ); frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; avg_adj += qp_adj; avg_adj_pow2 += qp_adj * qp_adj; } avg_adj /= h->mb.i_mb_count; avg_adj_pow2 /= h->mb.i_mb_count; strength = h->param.rc.f_aq_strength * avg_adj; avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj; bias_strength = h->param.rc.f_aq_strength; } else strength = h->param.rc.f_aq_strength * 1.0397f; for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) { float qp_adj; int mb_xy = mb_x + mb_y*h->mb.i_mb_stride; if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED ) { qp_adj = frame->f_qp_offset[mb_xy]; qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj)); } else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) { qp_adj = frame->f_qp_offset[mb_xy]; qp_adj = strength * (qp_adj - avg_adj); } else { uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8))); } if( quant_offsets ) qp_adj += quant_offsets[mb_xy]; frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = qp_adj; if( h->frames.b_have_lowres ) frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj); } } /* Remove mean from SSD calculation */ for( int i = 0; i < 3; i++ ) { uint64_t ssd = frame->i_pixel_ssd[i]; uint64_t sum = frame->i_pixel_sum[i]; int width = 16*h->mb.i_mb_width >> (i && CHROMA_H_SHIFT); int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT); frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height); } } static int macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc ) { /* Use fractional QP array dimensions to compensate for edge padding */ float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f}; float dstdim[2] = { h->param.i_width / 16.f, h->param.i_height / 16.f}; int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])}; int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])}; if( h->param.b_interlaced || h->param.b_fake_interlaced ) { srcdimi[1] = (srcdimi[1]+1)&~1; dstdimi[1] = (dstdimi[1]+1)&~1; } rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1]; CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) ); if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read ) CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) ); rc->mbtree.qpbuf_pos = -1; /* No rescaling to do */ if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] ) return 0; rc->mbtree.rescale_enabled = 1; /* Allocate intermediate scaling buffers */ CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) ); CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) ); /* Allocate and calculate resize filter parameters and coefficients */ for( int i = 0; i < 2; i++ ) { if( srcdim[i] > dstdim[i] ) // downscale rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i]; else // upscale rc->mbtree.filtersize[i] = 3; CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) ); CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) ); /* Initialize filter coefficients */ float inc = srcdim[i] / dstdim[i]; float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f; float dstinsrc = 0.5f * inc - 0.5f; int filtersize = rc->mbtree.filtersize[i]; for( int j = 0; j < dstdimi[i]; j++ ) { int pos = dstinsrc - (filtersize - 2.f) * 0.5f; float sum = 0.0; rc->mbtree.pos[i][j] = pos; for( int k = 0; k < filtersize; k++ ) { float d = fabs( pos + k - dstinsrc ) * dmul; float coeff = X264_MAX( 1.f - d, 0 ); rc->mbtree.coeffs[i][j * filtersize + k] = coeff; sum += coeff; } sum = 1.0f / sum; for( int k = 0; k < filtersize; k++ ) rc->mbtree.coeffs[i][j * filtersize + k] *= sum; dstinsrc += inc; } } /* Write back actual qp array dimensions */ rc->mbtree.srcdim[0] = srcdimi[0]; rc->mbtree.srcdim[1] = srcdimi[1]; return 0; fail: return -1; } static void macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc ) { for( int i = 0; i < 2; i++ ) { x264_free( rc->mbtree.qp_buffer[i] ); x264_free( rc->mbtree.scale_buffer[i] ); x264_free( rc->mbtree.coeffs[i] ); x264_free( rc->mbtree.pos[i] ); } } static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize ) { float sum = 0.f; for( int i = 0; i < filtersize; i++, pos++ ) sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i]; return sum; } static void macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst ) { float *input, *output; int filtersize, stride, height; /* H scale first */ input = rc->mbtree.scale_buffer[0]; output = rc->mbtree.scale_buffer[1]; filtersize = rc->mbtree.filtersize[0]; stride = rc->mbtree.srcdim[0]; height = rc->mbtree.srcdim[1]; for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width ) { float *coeff = rc->mbtree.coeffs[0]; for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize ) output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize ); } /* V scale next */ input = rc->mbtree.scale_buffer[1]; output = dst; filtersize = rc->mbtree.filtersize[1]; stride = h->mb.i_mb_width; height = rc->mbtree.srcdim[1]; for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ ) { float *coeff = rc->mbtree.coeffs[1]; for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize ) output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize ); } } int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets ) { x264_ratecontrol_t *rc = h->rc; uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type; if( rc->entry[frame->i_frame].kept_as_ref ) { uint8_t i_type; if( rc->mbtree.qpbuf_pos < 0 ) { do { rc->mbtree.qpbuf_pos++; if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) ) goto fail; if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != (unsigned)rc->mbtree.src_mb_count ) goto fail; if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 ) { x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual ); return -1; } } while( i_type != i_type_actual ); } float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset; h->mc.mbtree_fix8_unpack( dst, rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], rc->mbtree.src_mb_count ); if( rc->mbtree.rescale_enabled ) macroblock_tree_rescale( h, rc, frame->f_qp_offset ); if( h->frames.b_have_lowres ) for( int i = 0; i < h->mb.i_mb_count; i++ ) frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] ); rc->mbtree.qpbuf_pos--; } else x264_adaptive_quant_frame( h, frame, quant_offsets ); return 0; fail: x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" ); return -1; } int x264_reference_build_list_optimal( x264_t *h ) { ratecontrol_entry_t *rce = h->rc->rce; x264_frame_t *frames[16]; x264_weight_t weights[16][3]; int refcount[16]; if( rce->refs != h->i_ref[0] ) return -1; memcpy( frames, h->fref[0], sizeof(frames) ); memcpy( refcount, rce->refcount, sizeof(refcount) ); memcpy( weights, h->fenc->weight, sizeof(weights) ); memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) ); /* For now don't reorder ref 0; it seems to lower quality in most cases due to skips. */ for( int ref = 1; ref < h->i_ref[0]; ref++ ) { int max = -1; int bestref = 1; for( int i = 1; i < h->i_ref[0]; i++ ) /* Favor lower POC as a tiebreaker. */ COPY2_IF_GT( max, refcount[i], bestref, i ); /* FIXME: If there are duplicates from frames other than ref0 then it is possible * that the optimal ordering doesn't place every duplicate. */ refcount[bestref] = -1; h->fref[0][ref] = frames[bestref]; memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) ); } return 0; } static char *strcat_filename( char *input, char *suffix ) { char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 ); if( !output ) return NULL; strcpy( output, input ); strcat( output, suffix ); return output; } void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init ) { x264_ratecontrol_t *rc = h->rc; if( !b_init && rc->b_2pass ) return; if( h->param.rc.i_rc_method == X264_RC_CRF ) { /* Arbitrary rescaling to make CRF somewhat similar to QP. * Try to compensate for MB-tree's effects as well. */ double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress ) / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET ); } if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 ) { /* We don't support changing the ABR bitrate right now, so if the stream starts as CBR, keep it CBR. */ if( rc->b_vbv_min_rate ) h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate; if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) ) { h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps; x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n", h->param.rc.i_vbv_buffer_size ); } int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000; int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size; int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size; /* Init HRD */ if( h->param.i_nal_hrd && b_init ) { h->sps->vui.hrd.i_cpb_cnt = 1; h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR; h->sps->vui.hrd.i_time_offset_length = 0; #define BR_SHIFT 6 #define CPB_SHIFT 4 // normalize HRD size and rate to the value / scale notation h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 ); h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT ); h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT ); h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 ); h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT ); h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT ); #undef CPB_SHIFT #undef BR_SHIFT // arbitrary #define MAX_DURATION 0.5 int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX ); int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick; int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5); h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 ); h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 ); h->sps->vui.hrd.i_dpb_output_delay_length = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 ); #undef MAX_DURATION vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled; vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled; } else if( h->param.i_nal_hrd && !b_init ) { x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" ); return; } h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate; h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size; if( rc->b_vbv_min_rate ) rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size; rc->buffer_rate = vbv_max_bitrate / rc->fps; rc->vbv_max_rate = vbv_max_bitrate; rc->buffer_size = vbv_buffer_size; rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size; if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR ) rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate); if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max ) { rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant; if( rc->rate_factor_max_increment <= 0 ) { x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" ); rc->rate_factor_max_increment = 0; } } if( b_init ) { if( h->param.rc.f_vbv_buffer_init > 1. ) h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 ); h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1); rc->buffer_fill_final = rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale; rc->b_vbv = 1; rc->b_vbv_min_rate = !rc->b_2pass && h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate; } } } int x264_ratecontrol_new( x264_t *h ) { x264_ratecontrol_t *rc; x264_emms(); CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) ); rc = h->rc; rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read; rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read; /* FIXME: use integers */ if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 ) rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den; else rc->fps = 25.0; if( h->param.rc.b_mb_tree ) { h->param.rc.f_pb_factor = 1; rc->qcompress = 1; } else rc->qcompress = h->param.rc.f_qcompress; rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.); rc->rate_tolerance = h->param.rc.f_rate_tolerance; rc->nmb = h->mb.i_mb_count; rc->last_non_b_pict_type = -1; rc->cbr_decay = 1.0; if( h->param.rc.i_rc_method != X264_RC_ABR && h->param.rc.b_stat_read ) { x264_log( h, X264_LOG_ERROR, "CRF/CQP is incompatible with 2pass.\n" ); return -1; } x264_ratecontrol_init_reconfigurable( h, 1 ); if( h->param.i_nal_hrd ) { uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale; uint64_t num = 90000; x264_reduce_fraction64( &num, &denom ); rc->hrd_multiply_denom = 90000 / num; double bits_required = log2( num ) + log2( h->sps->vui.i_time_scale ) + log2( h->sps->vui.hrd.i_cpb_size_unscaled ); if( bits_required >= 63 ) { x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" ); return -1; } } if( rc->rate_tolerance < 0.01 ) { x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" ); rc->rate_tolerance = 0.01; } h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode; if( rc->b_abr ) { /* FIXME ABR_INIT_QP is actually used only in CRF */ #define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET) rc->accum_p_norm = .01; rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm; /* estimated ratio that produces a reasonable QP for the first I-frame */ rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 ); rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps; rc->last_non_b_pict_type = SLICE_TYPE_I; } rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor ); rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor ); rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant; rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX ); rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX ); h->mb.ip_offset = rc->ip_offset + 0.5; rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 ); rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET ); int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1; CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds ); CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) ); static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 }; for( int i = 0; i < 3; i++ ) { rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP ); rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min ); rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max ); for( int j = 0; j < num_preds; j++ ) { rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2; rc->pred[i+j*5].coeff = pred_coeff_table[i]; rc->pred[i+j*5].count = 1.0; rc->pred[i+j*5].decay = 0.5; rc->pred[i+j*5].offset = 0.0; } for( int j = 0; j < 2; j++ ) { rc->row_preds[i][j].coeff_min = .25 / 4; rc->row_preds[i][j].coeff = .25; rc->row_preds[i][j].count = 1.0; rc->row_preds[i][j].decay = 0.5; rc->row_preds[i][j].offset = 0.0; } } rc->pred_b_from_p->coeff_min = 0.5 / 2; rc->pred_b_from_p->coeff = 0.5; rc->pred_b_from_p->count = 1.0; rc->pred_b_from_p->decay = 0.5; rc->pred_b_from_p->offset = 0.0; if( parse_zones( h ) < 0 ) { x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" ); return -1; } /* Load stat file and init 2pass algo */ if( h->param.rc.b_stat_read ) { char *p, *stats_in, *stats_buf; /* read 1st pass stats */ assert( h->param.rc.psz_stat_in ); stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in ); if( !stats_buf ) { x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" ); return -1; } if( h->param.rc.b_mb_tree ) { char *mbtree_stats_in = strcat_filename( h->param.rc.psz_stat_in, ".mbtree" ); if( !mbtree_stats_in ) return -1; rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" ); x264_free( mbtree_stats_in ); if( !rc->p_mbtree_stat_file_in ) { x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" ); return -1; } } /* check whether 1st pass options were compatible with current options */ if( strncmp( stats_buf, "#options:", 9 ) ) { x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" ); return -1; } float res_factor, res_factor_bits; { int i, j; uint32_t k, l; char *opts = stats_buf; stats_in = strchr( stats_buf, '\n' ); if( !stats_in ) return -1; *stats_in = '\0'; stats_in++; if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 ) { x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" ); return -1; } else if( h->param.rc.b_mb_tree ) { rc->mbtree.srcdim[0] = i; rc->mbtree.srcdim[1] = j; } res_factor = (float)h->param.i_width * h->param.i_height / (i*j); /* Change in bits relative to resolution isn't quite linear on typical sources, * so we'll at least try to roughly approximate this effect. */ res_factor_bits = powf( res_factor, 0.7 ); if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 ) { x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" ); return -1; } if( k != h->param.i_timebase_num || l != h->param.i_timebase_den ) { x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n", h->param.i_timebase_num, h->param.i_timebase_den, k, l ); return -1; } CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH ); CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) ); CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe ); CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid ); CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh ); CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop ); CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat ); CMP_OPT_FIRST_PASS( "mbtree", h->param.rc.b_mb_tree ); if( (p = strstr( opts, "interlaced=" )) ) { char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0"; char buf[5]; sscanf( p, "interlaced=%4s", buf ); if( strcmp( current, buf ) ) { x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf ); return -1; } } if( (p = strstr( opts, "keyint=" )) ) { p += 7; char buf[13] = "infinite "; if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE ) sprintf( buf, "%d ", h->param.i_keyint_max ); if( strncmp( p, buf, strlen(buf) ) ) { x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n", strlen(buf)-1, buf, strcspn(p, " "), p ); return -1; } } if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR ) x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" ); if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO ) { x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" ); h->mb.b_direct_auto_write = 1; } if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS ) h->param.i_bframe_adaptive = i; else if( h->param.i_bframe ) { x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" ); return -1; } if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) ) h->param.rc.i_lookahead = i; } /* find number of pics */ p = stats_in; int num_entries; for( num_entries = -1; p; num_entries++ ) p = strchr( p + 1, ';' ); if( !num_entries ) { x264_log( h, X264_LOG_ERROR, "empty stats file\n" ); return -1; } rc->num_entries = num_entries; if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 ) { x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n", h->param.i_frame_total, rc->num_entries ); } if( h->param.i_frame_total > rc->num_entries ) { x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n", h->param.i_frame_total, rc->num_entries ); return -1; } CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) ); CHECKED_MALLOC( rc->entry_out, rc->num_entries * sizeof(ratecontrol_entry_t*) ); /* init all to skipped p frames */ for( int i = 0; i < rc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rc->entry[i]; rce->pict_type = SLICE_TYPE_P; rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET ); rce->misc_bits = rc->nmb + 10; rce->new_qp = 0; rc->entry_out[i] = rce; } /* read stats */ p = stats_in; double total_qp_aq = 0; for( int i = 0; i < rc->num_entries; i++ ) { ratecontrol_entry_t *rce; int frame_number = 0; int frame_out_number = 0; char pict_type = 0; int e; char *next; float qp_rc, qp_aq; int ref; next= strchr(p, ';'); if( next ) *next++ = 0; //sscanf is unbelievably slow on long strings e = sscanf( p, " in:%d out:%d ", &frame_number, &frame_out_number ); if( frame_number < 0 || frame_number >= rc->num_entries ) { x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i ); return -1; } if( frame_out_number < 0 || frame_out_number >= rc->num_entries ) { x264_log( h, X264_LOG_ERROR, "bad frame output number (%d) at stats line %d\n", frame_out_number, i ); return -1; } rce = &rc->entry[frame_number]; rc->entry_out[frame_out_number] = rce; rce->direct_mode = 0; e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c", &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits, &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count, &rce->s_count, &rce->direct_mode ); rce->tex_bits *= res_factor_bits; rce->mv_bits *= res_factor_bits; rce->misc_bits *= res_factor_bits; rce->i_count *= res_factor; rce->p_count *= res_factor; rce->s_count *= res_factor; p = strstr( p, "ref:" ); if( !p ) goto parse_error; p += 4; for( ref = 0; ref < 16; ref++ ) { if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 ) break; p = strchr( p+1, ' ' ); if( !p ) goto parse_error; } rce->refs = ref; /* find weights */ rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1; char *w = strchr( p, 'w' ); if( w ) { int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd", &rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1], &rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1], &rce->weight[2][0], &rce->weight[2][1] ); if( count == 3 ) rce->i_weight_denom[1] = -1; else if( count != 8 ) rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1; } if( pict_type != 'b' ) rce->kept_as_ref = 1; switch( pict_type ) { case 'I': rce->frame_type = X264_TYPE_IDR; rce->pict_type = SLICE_TYPE_I; break; case 'i': rce->frame_type = X264_TYPE_I; rce->pict_type = SLICE_TYPE_I; break; case 'P': rce->frame_type = X264_TYPE_P; rce->pict_type = SLICE_TYPE_P; break; case 'B': rce->frame_type = X264_TYPE_BREF; rce->pict_type = SLICE_TYPE_B; break; case 'b': rce->frame_type = X264_TYPE_B; rce->pict_type = SLICE_TYPE_B; break; default: e = -1; break; } if( e < 14 ) { parse_error: x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e ); return -1; } rce->qscale = qp2qscale( qp_rc ); total_qp_aq += qp_aq; p = next; } if( !h->param.b_stitchable ) h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) ); x264_free( stats_buf ); if( h->param.rc.i_rc_method == X264_RC_ABR ) { if( init_pass2( h ) < 0 ) return -1; } /* else we're using constant quant, so no need to run the bitrate allocation */ } /* Open output file */ /* If input and output files are the same, output to a temp file * and move it to the real name only when it's complete */ if( h->param.rc.b_stat_write ) { char *p; rc->psz_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".temp" ); if( !rc->psz_stat_file_tmpname ) return -1; rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" ); if( rc->p_stat_file_out == NULL ) { x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" ); return -1; } p = x264_param2string( &h->param, 1 ); if( p ) fprintf( rc->p_stat_file_out, "#options: %s\n", p ); x264_free( p ); if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read ) { rc->psz_mbtree_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" ); rc->psz_mbtree_stat_file_name = strcat_filename( h->param.rc.psz_stat_out, ".mbtree" ); if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name ) return -1; rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" ); if( rc->p_mbtree_stat_file_out == NULL ) { x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" ); return -1; } } } if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) ) { if( !h->param.rc.b_stat_read ) { rc->mbtree.srcdim[0] = h->param.i_width; rc->mbtree.srcdim[1] = h->param.i_height; } if( macroblock_tree_rescale_init( h, rc ) < 0 ) return -1; } for( int i = 0; iparam.i_threads; i++ ) { h->thread[i]->rc = rc+i; if( i ) { rc[i] = rc[0]; h->thread[i]->param = h->param; h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp; h->thread[i]->mb.ip_offset = h->mb.ip_offset; } } return 0; fail: return -1; } static int parse_zone( x264_t *h, x264_zone_t *z, char *p ) { int len = 0; char *tok, UNUSED *saveptr=NULL; z->param = NULL; z->f_bitrate_factor = 1; if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) ) z->b_force_qp = 1; else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) ) z->b_force_qp = 0; else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) ) z->b_force_qp = 0; else { x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p ); return -1; } p += len; if( !*p ) return 0; CHECKED_MALLOC( z->param, sizeof(x264_param_t) ); memcpy( z->param, &h->param, sizeof(x264_param_t) ); z->param->opaque = NULL; z->param->param_free = x264_free; while( (tok = strtok_r( p, ",", &saveptr )) ) { char *val = strchr( tok, '=' ); if( val ) { *val = '\0'; val++; } if( x264_param_parse( z->param, tok, val ) ) { x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val ); return -1; } p = NULL; } return 0; fail: return -1; } static int parse_zones( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; if( h->param.rc.psz_zones && !h->param.rc.i_zones ) { char *psz_zones, *p; CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 ); strcpy( psz_zones, h->param.rc.psz_zones ); h->param.rc.i_zones = 1; for( p = psz_zones; *p; p++ ) h->param.rc.i_zones += (*p == '/'); CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) ); p = psz_zones; for( int i = 0; i < h->param.rc.i_zones; i++ ) { int i_tok = strcspn( p, "/" ); p[i_tok] = 0; if( parse_zone( h, &h->param.rc.zones[i], p ) ) { x264_free( psz_zones ); return -1; } p += i_tok + 1; } x264_free( psz_zones ); } if( h->param.rc.i_zones > 0 ) { for( int i = 0; i < h->param.rc.i_zones; i++ ) { x264_zone_t z = h->param.rc.zones[i]; if( z.i_start < 0 || z.i_start > z.i_end ) { x264_log( h, X264_LOG_ERROR, "invalid zone: start=%d end=%d\n", z.i_start, z.i_end ); return -1; } else if( !z.b_force_qp && z.f_bitrate_factor <= 0 ) { x264_log( h, X264_LOG_ERROR, "invalid zone: bitrate_factor=%f\n", z.f_bitrate_factor ); return -1; } } rc->i_zones = h->param.rc.i_zones + 1; CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) ); memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) ); // default zone to fall back to if none of the others match rc->zones[0].i_start = 0; rc->zones[0].i_end = INT_MAX; rc->zones[0].b_force_qp = 0; rc->zones[0].f_bitrate_factor = 1; CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) ); memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) ); rc->zones[0].param->opaque = NULL; for( int i = 1; i < rc->i_zones; i++ ) { if( !rc->zones[i].param ) rc->zones[i].param = rc->zones[0].param; } } return 0; fail: return -1; } static x264_zone_t *get_zone( x264_t *h, int frame_num ) { x264_ratecontrol_t *rc = h->rc; for( int i = rc->i_zones - 1; i >= 0; i-- ) { x264_zone_t *z = &rc->zones[i]; if( frame_num >= z->i_start && frame_num <= z->i_end ) return z; } return NULL; } void x264_ratecontrol_summary( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 ) { double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n", qscale2qp( pow( base_cplx, 1 - rc->qcompress ) * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET ); } } void x264_ratecontrol_delete( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; int b_regular_file; if( rc->p_stat_file_out ) { b_regular_file = x264_is_regular_file( rc->p_stat_file_out ); fclose( rc->p_stat_file_out ); if( h->i_frame >= rc->num_entries && b_regular_file ) if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 ) { x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ); } x264_free( rc->psz_stat_file_tmpname ); } if( rc->p_mbtree_stat_file_out ) { b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out ); fclose( rc->p_mbtree_stat_file_out ); if( h->i_frame >= rc->num_entries && b_regular_file ) if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 ) { x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ); } x264_free( rc->psz_mbtree_stat_file_tmpname ); x264_free( rc->psz_mbtree_stat_file_name ); } if( rc->p_mbtree_stat_file_in ) fclose( rc->p_mbtree_stat_file_in ); x264_free( rc->pred ); x264_free( rc->pred_b_from_p ); x264_free( rc->entry ); x264_free( rc->entry_out ); macroblock_tree_rescale_destroy( rc ); if( rc->zones ) { x264_param_cleanup( rc->zones[0].param ); x264_free( rc->zones[0].param ); for( int i = 1; i < rc->i_zones; i++ ) if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free ) { x264_param_cleanup( rc->zones[i].param ); rc->zones[i].param->param_free( rc->zones[i].param ); } x264_free( rc->zones ); } x264_free( rc ); } static void accum_p_qp_update( x264_t *h, float qp ) { x264_ratecontrol_t *rc = h->rc; rc->accum_p_qp *= .95; rc->accum_p_norm *= .95; rc->accum_p_norm += 1; if( h->sh.i_type == SLICE_TYPE_I ) rc->accum_p_qp += qp + rc->ip_offset; else rc->accum_p_qp += qp; } void x264_ratecontrol_zone_init( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; x264_zone_t *zone = get_zone( h, h->fenc->i_frame ); if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) ) x264_encoder_reconfig_apply( h, zone->param ); rc->prev_zone = zone; } /* Before encoding a frame, choose a QP for it */ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead ) { x264_ratecontrol_t *rc = h->rc; ratecontrol_entry_t *rce = NULL; x264_zone_t *zone = get_zone( h, h->fenc->i_frame ); float q; x264_emms(); if( h->param.rc.b_stat_read ) { int frame = h->fenc->i_frame; assert( frame >= 0 && frame < rc->num_entries ); rce = rc->rce = &rc->entry[frame]; if( h->sh.i_type == SLICE_TYPE_B && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO ) { h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' ); h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' ); } } if( rc->b_vbv ) { memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) ); memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) ); memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) ); rc->row_pred = rc->row_preds[h->sh.i_type]; rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; update_vbv_plan( h, overhead ); const x264_level_t *l = x264_levels; while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc ) l++; int mincr = l->mincr; if( h->param.b_bluray_compat ) mincr = 4; /* Profiles above High don't require minCR, so just set the maximum to a large value. */ if( h->sps->i_profile_idc > PROFILE_HIGH ) rc->frame_size_maximum = 1e9; else { /* The spec has a bizarre special case for the first frame. */ if( h->i_frame == 0 ) { //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR double fr = 1. / (h->param.i_level_idc >= 60 ? 300 : 172); int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height; rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr; } else { //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr; } } } if( h->sh.i_type != SLICE_TYPE_B ) rc->bframes = h->fenc->i_bframes; if( rc->b_abr ) { q = qscale2qp( rate_estimate_qscale( h ) ); } else if( rc->b_2pass ) { rce->new_qscale = rate_estimate_qscale( h ); q = qscale2qp( rce->new_qscale ); } else /* CQP */ { if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref ) q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2; else q = rc->qp_constant[ h->sh.i_type ]; if( zone ) { if( zone->b_force_qp ) q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P]; else q -= 6*log2f( zone->f_bitrate_factor ); } } if( i_force_qp != X264_QP_AUTO ) q = i_force_qp - 1; q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); rc->qpa_rc = rc->qpa_rc_prev = rc->qpa_aq = rc->qpa_aq_prev = 0; h->fdec->f_qp_avg_rc = h->fdec->f_qp_avg_aq = rc->qpm = q; if( rce ) rce->new_qp = q; accum_p_qp_update( h, rc->qpm ); if( h->sh.i_type != SLICE_TYPE_B ) rc->last_non_b_pict_type = h->sh.i_type; } static float predict_row_size( x264_t *h, int y, float qscale ) { /* average between two predictors: * absolute SATD, and scaled bit cost of the colocated row in the previous frame */ x264_ratecontrol_t *rc = h->rc; float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] ); if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] ) { if( h->sh.i_type == SLICE_TYPE_P && h->fref[0][0]->i_type == h->fdec->i_type && h->fref[0][0]->f_row_qscale[y] > 0 && h->fref[0][0]->i_row_satd[y] > 0 && (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2)) { float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y] * h->fref[0][0]->f_row_qscale[y] / qscale; return (pred_s + pred_t) * 0.5f; } return pred_s; } /* Our QP is lower than the reference! */ else { float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] ); /* Sum: better to overestimate than underestimate by using only one of the two predictors. */ return pred_intra + pred_s; } } static int row_bits_so_far( x264_t *h, int y ) { int bits = 0; for( int i = h->i_threadslice_start; i <= y; i++ ) bits += h->fdec->i_row_bits[i]; return bits; } static float predict_row_size_to_end( x264_t *h, int y, float qp ) { float qscale = qp2qscale( qp ); float bits = 0; for( int i = y+1; i < h->i_threadslice_end; i++ ) bits += predict_row_size( h, i, qscale ); return bits; } /* TODO: * eliminate all use of qp in row ratecontrol: make it entirely qscale-based. * make this function stop being needlessly O(N^2) * update more often than once per row? */ int x264_ratecontrol_mb( x264_t *h, int bits ) { x264_ratecontrol_t *rc = h->rc; const int y = h->mb.i_mb_y; h->fdec->i_row_bits[y] += bits; rc->qpa_aq += h->mb.i_qp; if( h->mb.i_mb_x != h->mb.i_mb_width - 1 ) return 0; x264_emms(); rc->qpa_rc += rc->qpm * h->mb.i_mb_width; if( !rc->b_vbv ) return 0; float qscale = qp2qscale( rc->qpm ); h->fdec->f_row_qp[y] = rc->qpm; h->fdec->f_row_qscale[y] = qscale; update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] ); if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] ) update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] ); /* update ratecontrol per-mbpair in MBAFF */ if( SLICE_MBAFF && !(y&1) ) return 0; /* FIXME: We don't currently support the case where there's a slice * boundary in between. */ int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride); /* tweak quality based on difference from predicted size */ float prev_row_qp = h->fdec->f_row_qp[y]; float qp_absolute_max = h->param.rc.i_qp_max; if( rc->rate_factor_max_increment ) qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment ); float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max ); float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min ); float step_size = 0.5f; float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned; float bits_so_far = row_bits_so_far( h, y ); float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 ); float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error; max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error ); float size_of_other_slices = 0; if( h->param.b_sliced_threads ) { float size_of_other_slices_planned = 0; for( int i = 0; i < h->param.i_threads; i++ ) if( h != h->thread[i] ) { size_of_other_slices += h->thread[i]->rc->frame_size_estimated; size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned; } float weight = rc->slice_size_planned / rc->frame_size_planned; size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned; } if( y < h->i_threadslice_end-1 ) { /* B-frames shouldn't use lower QP than their reference frames. */ if( h->sh.i_type == SLICE_TYPE_B ) { qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) ); rc->qpm = X264_MAX( rc->qpm, qp_min ); } float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned; buffer_left_planned = X264_MAX( buffer_left_planned, 0.f ); /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */ float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance; float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 ); /* Don't increase the row QPs until a sufficient amount of the bits of the frame have been processed, in case a flat */ /* area at the top of the frame was measured inaccurately. */ if( trust_coeff < 0.05f ) qp_max = qp_absolute_max = prev_row_qp; if( h->sh.i_type != SLICE_TYPE_I ) rc_tol *= 0.5f; if( !rc->b_vbv_min_rate ) qp_min = X264_MAX( qp_min, rc->qp_novbv ); while( rc->qpm < qp_max && ((b1 > rc->frame_size_planned + rc_tol) || (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) || (b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) ) { rc->qpm += step_size; b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 0.90f - b1) * trust_coeff; rc->qpm -= step_size; float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; while( rc->qpm > qp_min && rc->qpm < prev_row_qp && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv) && (b2 < max_frame_size) && ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) ) { b1 = b2; rc->qpm -= step_size; b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } rc->qpm += step_size; /* avoid VBV underflow or MinCR violation */ while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) ) { rc->qpm += step_size; b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } rc->frame_size_estimated = b1 - size_of_other_slices; /* If the current row was large enough to cause a large QP jump, try re-encoding it. */ if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row ) { /* Bump QP to halfway in between... close enough. */ rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max ); rc->qpa_rc = rc->qpa_rc_prev; rc->qpa_aq = rc->qpa_aq_prev; h->fdec->i_row_bits[y] = 0; h->fdec->i_row_bits[y-SLICE_MBAFF] = 0; return -1; } } else { rc->frame_size_estimated = bits_so_far; /* Last-ditch attempt: if the last row of the frame underflowed the VBV, * try again. */ if( rc->qpm < qp_max && can_reencode_row && (bits_so_far + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) ) { rc->qpm = qp_max; rc->qpa_rc = rc->qpa_rc_prev; rc->qpa_aq = rc->qpa_aq_prev; h->fdec->i_row_bits[y] = 0; h->fdec->i_row_bits[y-SLICE_MBAFF] = 0; return -1; } } rc->qpa_rc_prev = rc->qpa_rc; rc->qpa_aq_prev = rc->qpa_aq; return 0; } int x264_ratecontrol_qp( x264_t *h ) { x264_emms(); return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); } int x264_ratecontrol_mb_qp( x264_t *h ) { x264_emms(); float qp = h->rc->qpm; if( h->param.rc.i_aq_mode ) { /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */ float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy]; /* Scale AQ's effect towards zero in emergency mode. */ if( qp > QP_MAX_SPEC ) qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC); qp += qp_offset; } return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); } /* In 2pass, force the same frame types as in the 1st pass */ int x264_ratecontrol_slice_type( x264_t *h, int frame_num ) { x264_ratecontrol_t *rc = h->rc; if( h->param.rc.b_stat_read ) { if( frame_num >= rc->num_entries ) { /* We could try to initialize everything required for ABR and * adaptive B-frames, but that would be complicated. * So just calculate the average QP used so far. */ h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P]; rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX ); rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / h->param.rc.f_ip_factor ) + 0.5 ), 0, QP_MAX ); rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * h->param.rc.f_pb_factor ) + 0.5 ), 0, QP_MAX ); x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries ); x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant ); if( h->param.i_bframe_adaptive ) x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" ); for( int i = 0; i < h->param.i_threads; i++ ) { h->thread[i]->rc->b_abr = 0; h->thread[i]->rc->b_2pass = 0; h->thread[i]->param.rc.i_rc_method = X264_RC_CQP; h->thread[i]->param.rc.b_stat_read = 0; h->thread[i]->param.i_bframe_adaptive = 0; h->thread[i]->param.i_scenecut_threshold = 0; h->thread[i]->param.rc.b_mb_tree = 0; if( h->thread[i]->param.i_bframe > 1 ) h->thread[i]->param.i_bframe = 1; } return X264_TYPE_AUTO; } return rc->entry[frame_num].frame_type; } else return X264_TYPE_AUTO; } void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm ) { ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame]; if( h->param.analyse.i_weighted_pred <= 0 ) return; if( rce->i_weight_denom[0] >= 0 ) SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] ); if( rce->i_weight_denom[1] >= 0 ) { SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] ); SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] ); } } /* After encoding one frame, save stats and update ratecontrol state */ int x264_ratecontrol_end( x264_t *h, int bits, int *filler ) { x264_ratecontrol_t *rc = h->rc; const int *mbs = h->stat.frame.i_mb_count; x264_emms(); h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP]; h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4] + mbs[I_PCM]; h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8]; for( int i = B_DIRECT; i <= B_8x8; i++ ) h->stat.frame.i_mb_count_p += mbs[i]; h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count; h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count; h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv; if( h->param.rc.b_stat_write ) { char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i') : h->sh.i_type==SLICE_TYPE_P ? 'P' : h->fenc->b_kept_as_ref ? 'B' : 'b'; int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0]; int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0]; char c_direct = h->mb.b_direct_auto_write ? ( dir_frame>0 ? 's' : dir_frame<0 ? 't' : dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' ) : '-'; if( fprintf( rc->p_stat_file_out, "in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:", h->fenc->i_frame, h->i_frame, c_type, h->fenc->i_duration, h->fenc->i_cpb_duration, rc->qpa_rc, h->fdec->f_qp_avg_aq, h->stat.frame.i_tex_bits, h->stat.frame.i_mv_bits, h->stat.frame.i_misc_bits, h->stat.frame.i_mb_count_i, h->stat.frame.i_mb_count_p, h->stat.frame.i_mb_count_skip, c_direct) < 0 ) goto fail; /* Only write information for reference reordering once. */ int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1; for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ ) { int refcount = use_old_stats ? rc->rce->refcount[i] : PARAM_INTERLACED ? h->stat.frame.i_mb_count_ref[0][i*2] + h->stat.frame.i_mb_count_ref[0][i*2+1] : h->stat.frame.i_mb_count_ref[0][i]; if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 ) goto fail; } if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn ) { if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d", h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 ) goto fail; if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn ) { if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ", h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset, h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 ) goto fail; } else if( fprintf( rc->p_stat_file_out, " " ) < 0 ) goto fail; } if( fprintf( rc->p_stat_file_out, ";\n") < 0 ) goto fail; /* Don't re-write the data in multi-pass mode. */ if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read ) { uint8_t i_type = h->sh.i_type; h->mc.mbtree_fix8_pack( rc->mbtree.qp_buffer[0], h->fenc->f_qp_offset, h->mb.i_mb_count ); if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 ) goto fail; if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < (unsigned)h->mb.i_mb_count ) goto fail; } } if( rc->b_abr ) { if( h->sh.i_type != SLICE_TYPE_B ) rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq; else { /* Depends on the fact that B-frame's QP is an offset from the following P-frame's. * Not perfectly accurate with B-refs, but good enough. */ rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * h->param.rc.f_pb_factor); } rc->cplxr_sum *= rc->cbr_decay; rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate; rc->wanted_bits_window *= rc->cbr_decay; } if( rc->b_2pass ) rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) ); if( h->mb.b_variable_qp ) { if( h->sh.i_type == SLICE_TYPE_B ) { rc->bframe_bits += bits; if( h->fenc->b_last_minigop_bframe ) { update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ), h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes ); rc->bframe_bits = 0; } } } *filler = update_vbv( h, bits ); rc->filler_bits_sum += *filler * 8; if( h->sps->vui.b_nal_hrd_parameters_present ) { if( h->fenc->i_frame == 0 ) { // access unit initialises the HRD h->fenc->hrd_timing.cpb_initial_arrival_time = 0; rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay; rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset; h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000; } else { h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; if( h->fenc->b_keyframe ) { rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time; rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay; rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset; } double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000; if( !h->fenc->b_keyframe ) cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000; if( h->sps->vui.hrd.b_cbr_hrd ) h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time; else h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time ); } int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0; // Equation C-6 h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time + (double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled; h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale + h->fenc->hrd_timing.cpb_removal_time; } return 0; fail: x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" ); return -1; } /**************************************************************************** * 2 pass functions ***************************************************************************/ /** * modify the bitrate curve from pass1 for one frame */ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num) { x264_ratecontrol_t *rcc= h->rc; x264_zone_t *zone = get_zone( h, frame_num ); double q; if( h->param.rc.b_mb_tree ) { double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress ); } else q = pow( rce->blurred_complexity, 1 - rcc->qcompress ); // avoid NaN's in the rc_eq if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 ) q = rcc->last_qscale_for[rce->pict_type]; else { rcc->last_rceq = q; q /= rate_factor; rcc->last_qscale = q; } if( zone ) { if( zone->b_force_qp ) q = qp2qscale( zone->i_qp ); else q /= zone->f_bitrate_factor; } return q; } static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num) { x264_ratecontrol_t *rcc = h->rc; const int pict_type = rce->pict_type; x264_zone_t *zone = get_zone( h, frame_num ); // force I/B quants as a function of P quants if( pict_type == SLICE_TYPE_I ) { double iq = q; double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm ); double ip_factor = h->param.rc.f_ip_factor; /* don't apply ip_factor if the following frame is also I */ if( rcc->accum_p_norm <= 0 ) q = iq; else if( rcc->accum_p_norm >= 1 ) q = pq / ip_factor; else q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq; } else if( pict_type == SLICE_TYPE_B ) { q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; if( !rce->kept_as_ref ) q *= h->param.rc.f_pb_factor; } else if( pict_type == SLICE_TYPE_P && rcc->last_non_b_pict_type == SLICE_TYPE_P && rce->tex_bits == 0 ) { q = rcc->last_qscale_for[SLICE_TYPE_P]; } /* last qscale / qdiff stuff */ if( rcc->last_non_b_pict_type == pict_type && (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) ) { double last_q = rcc->last_qscale_for[pict_type]; double max_qscale = last_q * rcc->lstep; double min_qscale = last_q / rcc->lstep; if ( q > max_qscale ) q = max_qscale; else if( q < min_qscale ) q = min_qscale; } rcc->last_qscale_for[pict_type] = q; if( pict_type != SLICE_TYPE_B ) rcc->last_non_b_pict_type = pict_type; if( pict_type == SLICE_TYPE_I ) { rcc->last_accum_p_norm = rcc->accum_p_norm; rcc->accum_p_norm = 0; rcc->accum_p_qp = 0; } if( pict_type == SLICE_TYPE_P ) { float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 ); rcc->accum_p_qp = mask * (qscale2qp( q ) + rcc->accum_p_qp); rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm); } if( zone ) { if( zone->b_force_qp ) q = qp2qscale( zone->i_qp ); else q /= zone->f_bitrate_factor; } return q; } static float predict_size( predictor_t *p, float q, float var ) { return (p->coeff*var + p->offset) / (q*p->count); } static void update_predictor( predictor_t *p, float q, float var, float bits ) { float range = 1.5; if( var < 10 ) return; float old_coeff = p->coeff / p->count; float old_offset = p->offset / p->count; float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min ); float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range ); float new_offset = bits*q - new_coeff_clipped * var; if( new_offset >= 0 ) new_coeff = new_coeff_clipped; else new_offset = 0; p->count *= p->decay; p->coeff *= p->decay; p->offset *= p->decay; p->count ++; p->coeff += new_coeff; p->offset += new_offset; } // update VBV after encoding a frame static int update_vbv( x264_t *h, int bits ) { int filler = 0; int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled; x264_ratecontrol_t *rcc = h->rc; x264_ratecontrol_t *rct = h->thread[0]->rc; int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale; if( rcc->last_satd >= h->mb.i_mb_count ) update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits ); if( !rcc->b_vbv ) return filler; uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale; rct->buffer_fill_final -= buffer_diff; rct->buffer_fill_final_min -= buffer_diff; if( rct->buffer_fill_final_min < 0 ) { double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale; if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment ) x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow ); else x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow ); rct->buffer_fill_final = rct->buffer_fill_final_min = 0; } if( h->param.i_avcintra_class ) buffer_diff = buffer_size; else buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration; rct->buffer_fill_final += buffer_diff; rct->buffer_fill_final_min += buffer_diff; if( rct->buffer_fill_final > buffer_size ) { if( h->param.rc.b_filler ) { int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8; filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale; bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8; buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale; rct->buffer_fill_final -= buffer_diff; rct->buffer_fill_final_min -= buffer_diff; } else { rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size ); rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size ); } } return filler; } void x264_hrd_fullness( x264_t *h ) { x264_ratecontrol_t *rct = h->thread[0]->rc; uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom; uint64_t cpb_state = rct->buffer_fill_final; uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale; uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom; if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size ) { x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n", rct->buffer_fill_final < 0 ? "underflow" : "overflow", (double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale ); } h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom; h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay; int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor; rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill ); } // provisionally update VBV according to the planned size of all frames currently in progress static void update_vbv_plan( x264_t *h, int overhead ) { x264_ratecontrol_t *rcc = h->rc; rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale; if( h->i_thread_frames > 1 ) { int j = rcc - h->thread[0]->rc; for( int i = 1; i < h->i_thread_frames; i++ ) { x264_t *t = h->thread[ (j+i)%h->i_thread_frames ]; double bits = t->rc->frame_size_planned; if( !t->b_thread_active ) continue; bits = X264_MAX(bits, t->rc->frame_size_estimated); rcc->buffer_fill -= bits; rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 ); rcc->buffer_fill += t->rc->buffer_rate; rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size ); } } rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size ); rcc->buffer_fill -= overhead; } // apply VBV constraints and clip qscale to between lmin and lmax static double clip_qscale( x264_t *h, int pict_type, double q ) { x264_ratecontrol_t *rcc = h->rc; double lmin = rcc->lmin[pict_type]; double lmax = rcc->lmax[pict_type]; if( rcc->rate_factor_max_increment ) lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) ); double q0 = q; /* B-frames are not directly subject to VBV, * since they are controlled by the P-frames' QPs. */ if( rcc->b_vbv && rcc->last_satd > 0 ) { double fenc_cpb_duration = (double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; /* Lookahead VBV: raise the quantizer as necessary such that no frames in * the lookahead overflow and such that the buffer is in a reasonable state * by the end of the lookahead. */ if( h->param.rc.i_lookahead ) { int terminate = 0; /* Avoid an infinite loop. */ for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ ) { double frame_q[3]; double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); double buffer_fill_cur = rcc->buffer_fill - cur_bits; double target_fill; double total_duration = 0; double last_duration = fenc_cpb_duration; frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q; frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor; frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor; /* Loop over the planned future frames. */ for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ ) { total_duration += last_duration; buffer_fill_cur += rcc->vbv_max_rate * last_duration; int i_type = h->fenc->i_planned_type[j]; int i_satd = h->fenc->i_planned_satd[j]; if( i_type == X264_TYPE_AUTO ) break; i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P; cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd ); buffer_fill_cur -= cur_bits; last_duration = h->fenc->f_planned_cpb_duration[j]; } /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */ target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 ); if( buffer_fill_cur < target_fill ) { q *= 1.01; terminate |= 1; continue; } /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */ target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size ); if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill ) { q /= 1.01; terminate |= 2; continue; } break; } } /* Fallback to old purely-reactive algorithm: no lookahead. */ else { if( ( pict_type == SLICE_TYPE_P || ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) && rcc->buffer_fill/rcc->buffer_size < 0.5 ) { q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 ); } /* Now a hard threshold to make sure the frame fits in VBV. * This one is mostly for I-frames. */ double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); /* For small VBVs, allow the frame to use up the entire VBV. */ double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1; /* For single-frame VBVs, request that the frame use up the entire VBV. */ double min_fill_factor = rcc->single_frame_vbv ? 1 : 2; if( bits > rcc->buffer_fill/max_fill_factor ) { double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 ); q /= qf; bits *= qf; } if( bits < rcc->buffer_rate/min_fill_factor ) { double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 ); q *= qf; } q = X264_MAX( q0, q ); } /* Check B-frame complexity, and use up any bits that would * overflow before the next P-frame. */ if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv ) { int nb = rcc->bframes; double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); double pbbits = bits; double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd ); double space; double bframe_cpb_duration = 0; double minigop_cpb_duration; for( int i = 0; i < nb; i++ ) bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i]; if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate ) { nb = 0; bframe_cpb_duration = 0; } pbbits += nb * bbits; minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration; space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size; if( pbbits < space ) { q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) ); } q = X264_MAX( q0/2, q ); } /* Apply MinCR and buffer fill restrictions */ double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) ); if( bits > frame_size_maximum ) q *= bits / frame_size_maximum; if( !rcc->b_vbv_min_rate ) q = X264_MAX( q0, q ); } if( lmin==lmax ) return lmin; else if( rcc->b_2pass ) { double min2 = log( lmin ); double max2 = log( lmax ); q = (log(q) - min2)/(max2-min2) - 0.5; q = 1.0/(1.0 + exp( -4*q )); q = q*(max2-min2) + min2; return exp( q ); } else return x264_clip3f( q, lmin, lmax ); } // update qscale for 1 frame based on actual bits used so far static float rate_estimate_qscale( x264_t *h ) { float q; x264_ratecontrol_t *rcc = h->rc; ratecontrol_entry_t rce = {0}; int pict_type = h->sh.i_type; int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I] + h->stat.i_frame_size[SLICE_TYPE_P] + h->stat.i_frame_size[SLICE_TYPE_B]) - rcc->filler_bits_sum; if( rcc->b_2pass ) { rce = *rcc->rce; if( pict_type != rce.pict_type ) { x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n", slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] ); } } if( pict_type == SLICE_TYPE_B ) { /* B-frames don't have independent ratecontrol, but rather get the * average QP of the two adjacent P-frames + an offset */ int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type); int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type); int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc); int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc); float q0 = h->fref_nearest[0]->f_qp_avg_rc; float q1 = h->fref_nearest[1]->f_qp_avg_rc; if( h->fref_nearest[0]->i_type == X264_TYPE_BREF ) q0 -= rcc->pb_offset/2; if( h->fref_nearest[1]->i_type == X264_TYPE_BREF ) q1 -= rcc->pb_offset/2; if( i0 && i1 ) q = (q0 + q1) / 2 + rcc->ip_offset; else if( i0 ) q = q1; else if( i1 ) q = q0; else q = (q0*dt1 + q1*dt0) / (dt0 + dt1); if( h->fenc->b_kept_as_ref ) q += rcc->pb_offset/2; else q += rcc->pb_offset; rcc->qp_novbv = q; q = qp2qscale( q ); if( rcc->b_2pass ) rcc->frame_size_planned = qscale2bits( &rce, q ); else rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd ); /* Limit planned size by MinCR */ if( rcc->b_vbv ) rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum ); rcc->frame_size_estimated = rcc->frame_size_planned; /* For row SATDs */ if( rcc->b_vbv ) rcc->last_satd = x264_rc_analyse_slice( h ); return q; } else { double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate; double predicted_bits = total_bits; if( h->i_thread_frames > 1 ) { int j = rcc - h->thread[0]->rc; for( int i = 1; i < h->i_thread_frames; i++ ) { x264_t *t = h->thread[(j+i) % h->i_thread_frames]; double bits = t->rc->frame_size_planned; if( !t->b_thread_active ) continue; bits = X264_MAX(bits, t->rc->frame_size_estimated); predicted_bits += bits; } } if( rcc->b_2pass ) { double lmin = rcc->lmin[pict_type]; double lmax = rcc->lmax[pict_type]; double diff; /* Adjust ABR buffer based on distance to the end of the video. */ if( rcc->num_entries > h->i_frame ) { double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits; double video_pos = rce.expected_bits / final_bits; double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries ); abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 ); } diff = predicted_bits - rce.expected_bits; q = rce.new_qscale; q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2); if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 ) { /* Adjust quant based on the difference between * achieved and expected bitrate so far */ double cur_time = (double)h->i_frame / rcc->num_entries; double w = x264_clip3f( cur_time*100, 0.0, 1.0 ); q *= pow( (double)total_bits / rcc->expected_bits_sum, w ); } rcc->qp_novbv = qscale2qp( q ); if( rcc->b_vbv ) { /* Do not overflow vbv */ double expected_size = qscale2bits( &rce, q ); double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size; double expected_fullness = rce.expected_vbv / rcc->buffer_size; double qmax = q*(2 - expected_fullness); double size_constraint = 1 + expected_fullness; qmax = X264_MAX( qmax, rce.new_qscale ); if( expected_fullness < .05 ) qmax = lmax; qmax = X264_MIN(qmax, lmax); while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) || ((expected_vbv < 0) && (q < lmax))) { q *= 1.05; expected_size = qscale2bits(&rce, q); expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size; } rcc->last_satd = x264_rc_analyse_slice( h ); } q = x264_clip3f( q, lmin, lmax ); } else /* 1pass ABR */ { /* Calculate the quantizer which would have produced the desired * average bitrate if it had been applied to all frames so far. * Then modulate that quant based on the current frame's complexity * relative to the average complexity so far (using the 2pass RCEQ). * Then bias the quant up or down if total size so far was far from * the target. * Result: Depending on the value of rate_tolerance, there is a * tradeoff between quality and bitrate precision. But at large * tolerances, the bit distribution approaches that of 2pass. */ double wanted_bits, overflow = 1; rcc->last_satd = x264_rc_analyse_slice( h ); rcc->short_term_cplxsum *= 0.5; rcc->short_term_cplxcount *= 0.5; rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION); rcc->short_term_cplxcount ++; rce.tex_bits = rcc->last_satd; rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount; rce.mv_bits = 0; rce.p_count = rcc->nmb; rce.i_count = 0; rce.s_count = 0; rce.qscale = 1; rce.pict_type = pict_type; rce.i_duration = h->fenc->i_duration; if( h->param.rc.i_rc_method == X264_RC_CRF ) { q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame ); } else { q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame ); /* ABR code can potentially be counterproductive in CBR, so just don't bother. * Don't run it if the frame complexity is zero either. */ if( !rcc->b_vbv_min_rate && rcc->last_satd ) { // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end? int i_frame_done = h->i_frame; double time_done = i_frame_done / rcc->fps; if( h->param.b_vfr_input && i_frame_done > 0 ) time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den; wanted_bits = time_done * rcc->bitrate; if( wanted_bits > 0 ) { abr_buffer *= X264_MAX( 1, sqrt( time_done ) ); overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 ); q *= overflow; } } } if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1 /* should test _next_ pict type, but that isn't decided yet */ && rcc->last_non_b_pict_type != SLICE_TYPE_I ) { q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm ); q /= h->param.rc.f_ip_factor; } else if( h->i_frame > 0 ) { if( h->param.rc.i_rc_method != X264_RC_CRF ) { /* Asymmetric clipping, because symmetric would prevent * overflow control in areas of rapidly oscillating complexity */ double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep; double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep; if( overflow > 1.1 && h->i_frame > 3 ) lmax *= rcc->lstep; else if( overflow < 0.9 ) lmin /= rcc->lstep; q = x264_clip3f(q, lmin, lmax); } } else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 ) { q = qp2qscale( ABR_INIT_QP ) / h->param.rc.f_ip_factor; } rcc->qp_novbv = qscale2qp( q ); //FIXME use get_diff_limited_q() ? q = clip_qscale( h, pict_type, q ); } rcc->last_qscale_for[pict_type] = rcc->last_qscale = q; if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 ) rcc->last_qscale_for[SLICE_TYPE_P] = q * h->param.rc.f_ip_factor; if( rcc->b_2pass ) rcc->frame_size_planned = qscale2bits( &rce, q ); else rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); /* Always use up the whole VBV in this case. */ if( rcc->single_frame_vbv ) rcc->frame_size_planned = rcc->buffer_rate; /* Limit planned size by MinCR */ if( rcc->b_vbv ) rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum ); rcc->frame_size_estimated = rcc->frame_size_planned; return q; } } static void threads_normalize_predictors( x264_t *h ) { double totalsize = 0; for( int i = 0; i < h->param.i_threads; i++ ) totalsize += h->thread[i]->rc->slice_size_planned; double factor = h->rc->frame_size_planned / totalsize; for( int i = 0; i < h->param.i_threads; i++ ) h->thread[i]->rc->slice_size_planned *= factor; } void x264_threads_distribute_ratecontrol( x264_t *h ) { int row; x264_ratecontrol_t *rc = h->rc; x264_emms(); float qscale = qp2qscale( rc->qpm ); /* Initialize row predictors */ if( h->i_frame == 0 ) for( int i = 0; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; if( t != h ) memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) ); } for( int i = 0; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; if( t != h ) memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) ); t->rc->row_pred = t->rc->row_preds[h->sh.i_type]; /* Calculate the planned slice size. */ if( rc->b_vbv && rc->frame_size_planned ) { int size = 0; for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ ) size += h->fdec->i_row_satd[row]; t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size ); } else t->rc->slice_size_planned = 0; } if( rc->b_vbv && rc->frame_size_planned ) { threads_normalize_predictors( h ); if( rc->single_frame_vbv ) { /* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */ for( int i = 0; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; float max_frame_error = x264_clip3f( 1.0 / (t->i_threadslice_end - t->i_threadslice_start), 0.05, 0.25 ); t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned; } threads_normalize_predictors( h ); } for( int i = 0; i < h->param.i_threads; i++ ) h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned; } } void x264_threads_merge_ratecontrol( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; x264_emms(); for( int i = 0; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; x264_ratecontrol_t *rct = h->thread[i]->rc; if( h->param.rc.i_vbv_buffer_size ) { int size = 0; for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ ) size += h->fdec->i_row_satd[row]; int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits; int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width; update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits ); } if( !i ) continue; rc->qpa_rc += rct->qpa_rc; rc->qpa_aq += rct->qpa_aq; } } void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) { if( cur != prev ) { #define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var)) /* these vars are updated in x264_ratecontrol_start() * so copy them from the context that most recently started (prev) * to the context that's about to start (cur). */ COPY(accum_p_qp); COPY(accum_p_norm); COPY(last_satd); COPY(last_rceq); COPY(last_qscale_for); COPY(last_non_b_pict_type); COPY(short_term_cplxsum); COPY(short_term_cplxcount); COPY(bframes); COPY(prev_zone); COPY(mbtree.qpbuf_pos); /* these vars can be updated by x264_ratecontrol_init_reconfigurable */ COPY(bitrate); COPY(buffer_size); COPY(buffer_rate); COPY(vbv_max_rate); COPY(single_frame_vbv); COPY(cbr_decay); COPY(rate_factor_constant); COPY(rate_factor_max_increment); #undef COPY } if( cur != next ) { #define COPY(var) next->rc->var = cur->rc->var /* these vars are updated in x264_ratecontrol_end() * so copy them from the context that most recently ended (cur) * to the context that's about to end (next) */ COPY(cplxr_sum); COPY(expected_bits_sum); COPY(filler_bits_sum); COPY(wanted_bits_window); COPY(bframe_bits); COPY(initial_cpb_removal_delay); COPY(initial_cpb_removal_delay_offset); COPY(nrt_first_access_unit); COPY(previous_cpb_final_arrival_time); #undef COPY } //FIXME row_preds[] (not strictly necessary, but would improve prediction) /* the rest of the variables are either constant or thread-local */ } static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over ) { /* find an interval ending on an overflow or underflow (depending on whether * we're adding or removing bits), and starting on the earliest frame that * can influence the buffer fill of that end frame. */ x264_ratecontrol_t *rcc = h->rc; const double buffer_min = .1 * rcc->buffer_size; const double buffer_max = .9 * rcc->buffer_size; double fill = fills[*t0-1]; double parity = over ? 1. : -1.; int start = -1, end = -1; for( int i = *t0; i < rcc->num_entries; i++ ) { fill += (rcc->entry_out[i]->i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale - qscale2bits( rcc->entry_out[i], rcc->entry_out[i]->new_qscale )) * parity; fill = x264_clip3f(fill, 0, rcc->buffer_size); fills[i] = fill; if( fill <= buffer_min || i == 0 ) { if( end >= 0 ) break; start = i; } else if( fill >= buffer_max && start >= 0 ) end = i; } *t0 = start; *t1 = end; return start >= 0 && end >= 0; } static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max ) { x264_ratecontrol_t *rcc = h->rc; double qscale_orig, qscale_new; int adjusted = 0; if( t0 > 0 ) t0++; for( int i = t0; i <= t1; i++ ) { qscale_orig = rcc->entry_out[i]->new_qscale; qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max ); qscale_new = qscale_orig * adjustment; qscale_new = x264_clip3f( qscale_new, qscale_min, qscale_max ); rcc->entry_out[i]->new_qscale = qscale_new; adjusted = adjusted || (qscale_new != qscale_orig); } return adjusted; } static double count_expected_bits( x264_t *h ) { x264_ratecontrol_t *rcc = h->rc; double expected_bits = 0; for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = rcc->entry_out[i]; rce->expected_bits = expected_bits; expected_bits += qscale2bits( rce, rce->new_qscale ); } return expected_bits; } static int vbv_pass2( x264_t *h, double all_available_bits ) { /* for each interval of buffer_full .. underflow, uniformly increase the qp of all * frames in the interval until either buffer is full at some intermediate frame or the * last frame in the interval no longer underflows. Recompute intervals and repeat. * Then do the converse to put bits back into overflow areas until target size is met */ x264_ratecontrol_t *rcc = h->rc; double *fills; double expected_bits = 0; double adjustment; double prev_bits = 0; int t0, t1; double qscale_min = qp2qscale( h->param.rc.i_qp_min ); double qscale_max = qp2qscale( h->param.rc.i_qp_max ); int iterations = 0; int adj_min, adj_max; CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) ); fills++; /* adjust overall stream size */ do { iterations++; prev_bits = expected_bits; if( expected_bits ) { /* not first iteration */ adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9); fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init; t0 = 0; /* fix overflows */ adj_min = 1; while( adj_min && find_underflow( h, fills, &t0, &t1, 1 ) ) { adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max ); t0 = t1; } } fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init); t0 = 0; /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */ adj_max = 1; while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) ) adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max ); expected_bits = count_expected_bits( h ); } while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) ); if( !adj_max ) x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n"); /* store expected vbv filling values for tracking when encoding */ for( int i = 0; i < rcc->num_entries; i++ ) rcc->entry_out[i]->expected_vbv = rcc->buffer_size - fills[i]; x264_free( fills-1 ); return 0; fail: return -1; } static int init_pass2( x264_t *h ) { x264_ratecontrol_t *rcc = h->rc; uint64_t all_const_bits = 0; double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; double duration = 0; for( int i = 0; i < rcc->num_entries; i++ ) duration += rcc->entry[i].i_duration; duration *= timescale; uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration; double rate_factor, step_mult; double qblur = h->param.rc.f_qblur; double cplxblur = h->param.rc.f_complexity_blur; const int filter_size = (int)(qblur*4) | 1; double expected_bits; double *qscale, *blurred_qscale; double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); /* find total/average complexity & const_bits */ for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; all_const_bits += rce->misc_bits; } if( all_available_bits < all_const_bits) { x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n", (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) ); return -1; } /* Blur complexities, to reduce local fluctuation of QP. * We don't blur the QPs directly, because then one very simple frame * could drag down the QP of a nearby complex frame and give it more * bits than intended. */ for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; double weight_sum = 0; double cplx_sum = 0; double weight = 1.0; double gaussian_weight; /* weighted average of cplx of future frames */ for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ ) { ratecontrol_entry_t *rcj = &rcc->entry[i+j]; double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION; weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); if( weight < .0001 ) break; gaussian_weight = weight * exp( -j*j/200.0 ); weight_sum += gaussian_weight; cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration; } /* weighted average of cplx of past frames */ weight = 1.0; for( int j = 0; j <= cplxblur*2 && j <= i; j++ ) { ratecontrol_entry_t *rcj = &rcc->entry[i-j]; double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION; gaussian_weight = weight * exp( -j*j/200.0 ); weight_sum += gaussian_weight; cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration; weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); if( weight < .0001 ) break; } rce->blurred_complexity = cplx_sum / weight_sum; } CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries ); if( filter_size > 1 ) CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries ); else blurred_qscale = qscale; /* Search for a factor which, when multiplied by the RCEQ values from * each frame, adds up to the desired total size. * There is no exact closed-form solution because of VBV constraints and * because qscale2bits is not invertible, but we can start with the simple * approximation of scaling the 1st pass by the ratio of bitrates. * The search range is probably overkill, but speed doesn't matter here. */ expected_bits = 1; for( int i = 0; i < rcc->num_entries; i++ ) { double q = get_qscale(h, &rcc->entry[i], 1.0, i); expected_bits += qscale2bits(&rcc->entry[i], q); rcc->last_qscale_for[rcc->entry[i].pict_type] = q; } step_mult = all_available_bits / expected_bits; rate_factor = 0; for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5) { expected_bits = 0; rate_factor += step; rcc->last_non_b_pict_type = -1; rcc->last_accum_p_norm = 1; rcc->accum_p_norm = 0; rcc->last_qscale_for[0] = rcc->last_qscale_for[1] = rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor; /* find qscale */ for( int i = 0; i < rcc->num_entries; i++ ) { qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 ); rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i]; } /* fixed I/B qscale relative to P */ for( int i = rcc->num_entries-1; i >= 0; i-- ) { qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i ); assert(qscale[i] >= 0); } /* smooth curve */ if( filter_size > 1 ) { assert( filter_size%2 == 1 ); for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; double q = 0.0, sum = 0.0; for( int j = 0; j < filter_size; j++ ) { int idx = i+j-filter_size/2; double d = idx-i; double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) ); if( idx < 0 || idx >= rcc->num_entries ) continue; if( rce->pict_type != rcc->entry[idx].pict_type ) continue; q += qscale[idx] * coeff; sum += coeff; } blurred_qscale[i] = q/sum; } } /* find expected bits */ for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] ); assert(rce->new_qscale >= 0); expected_bits += qscale2bits( rce, rce->new_qscale ); } if( expected_bits > all_available_bits ) rate_factor -= step; } x264_free( qscale ); if( filter_size > 1 ) x264_free( blurred_qscale ); if( rcc->b_vbv ) if( vbv_pass2( h, all_available_bits ) ) return -1; expected_bits = count_expected_bits( h ); if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 ) { double avgq = 0; for( int i = 0; i < rcc->num_entries; i++ ) avgq += rcc->entry[i].new_qscale; avgq = qscale2qp( avgq / rcc->num_entries ); if( expected_bits > all_available_bits || !rcc->b_vbv ) x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" ); x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", (float)h->param.rc.i_bitrate, expected_bits * rcc->fps / (rcc->num_entries * 1000.), avgq ); if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 ) { if( h->param.rc.i_qp_min > 0 ) x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min ); else x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" ); } else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 ) { if( h->param.rc.i_qp_max < QP_MAX ) x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max ); else x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n"); } else if( !(rcc->b_2pass && rcc->b_vbv) ) x264_log( h, X264_LOG_WARNING, "internal error\n" ); } return 0; fail: return -1; }