/***************************************************************************** * macroblock.c: macroblock common functions ***************************************************************************** * Copyright (C) 2003-2022 x264 project * * Authors: Fiona Glaser * Laurent Aimar * Loren Merritt * Henrik Gramner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common.h" #define MC_LUMA(list,p) \ h->mc.mc_luma( &h->mb.pic.p_fdec[p][4*y*FDEC_STRIDE+4*x], FDEC_STRIDE, \ &h->mb.pic.p_fref[list][i_ref][p*4], h->mb.pic.i_stride[p], \ mvx, mvy, 4*width, 4*height, \ list ? x264_weight_none : &h->sh.weight[i_ref][p] ); static NOINLINE void mb_mc_0xywh( x264_t *h, int x, int y, int width, int height ) { int i8 = x264_scan8[0]+x+8*y; int i_ref = h->mb.cache.ref[0][i8]; int mvx = x264_clip3( h->mb.cache.mv[0][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x; int mvy = x264_clip3( h->mb.cache.mv[0][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y; MC_LUMA( 0, 0 ); if( CHROMA444 ) { MC_LUMA( 0, 1 ); MC_LUMA( 0, 2 ); } else if( CHROMA_FORMAT ) { int v_shift = CHROMA_V_SHIFT; // Chroma in 4:2:0 is offset if MCing from a field of opposite parity if( v_shift & MB_INTERLACED & i_ref ) mvy += (h->mb.i_mb_y & 1)*4 - 2; int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x; height = 4*height >> v_shift; h->mc.mc_chroma( &h->mb.pic.p_fdec[1][offset], &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, h->mb.pic.p_fref[0][i_ref][4], h->mb.pic.i_stride[1], mvx, 2*mvy>>v_shift, 2*width, height ); if( h->sh.weight[i_ref][1].weightfn ) h->sh.weight[i_ref][1].weightfn[width>>1]( &h->mb.pic.p_fdec[1][offset], FDEC_STRIDE, &h->mb.pic.p_fdec[1][offset], FDEC_STRIDE, &h->sh.weight[i_ref][1], height ); if( h->sh.weight[i_ref][2].weightfn ) h->sh.weight[i_ref][2].weightfn[width>>1]( &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, &h->sh.weight[i_ref][2], height ); } } static NOINLINE void mb_mc_1xywh( x264_t *h, int x, int y, int width, int height ) { int i8 = x264_scan8[0]+x+8*y; int i_ref = h->mb.cache.ref[1][i8]; int mvx = x264_clip3( h->mb.cache.mv[1][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x; int mvy = x264_clip3( h->mb.cache.mv[1][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y; MC_LUMA( 1, 0 ); if( CHROMA444 ) { MC_LUMA( 1, 1 ); MC_LUMA( 1, 2 ); } else if( CHROMA_FORMAT ) { int v_shift = CHROMA_V_SHIFT; if( v_shift & MB_INTERLACED & i_ref ) mvy += (h->mb.i_mb_y & 1)*4 - 2; int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x; h->mc.mc_chroma( &h->mb.pic.p_fdec[1][offset], &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, h->mb.pic.p_fref[1][i_ref][4], h->mb.pic.i_stride[1], mvx, 2*mvy>>v_shift, 2*width, 4*height>>v_shift ); } } #define MC_LUMA_BI(p) \ src0 = h->mc.get_ref( tmp0, &i_stride0, &h->mb.pic.p_fref[0][i_ref0][p*4], h->mb.pic.i_stride[p], \ mvx0, mvy0, 4*width, 4*height, x264_weight_none ); \ src1 = h->mc.get_ref( tmp1, &i_stride1, &h->mb.pic.p_fref[1][i_ref1][p*4], h->mb.pic.i_stride[p], \ mvx1, mvy1, 4*width, 4*height, x264_weight_none ); \ h->mc.avg[i_mode]( &h->mb.pic.p_fdec[p][4*y*FDEC_STRIDE+4*x], FDEC_STRIDE, \ src0, i_stride0, src1, i_stride1, weight ); static NOINLINE void mb_mc_01xywh( x264_t *h, int x, int y, int width, int height ) { int i8 = x264_scan8[0]+x+8*y; int i_ref0 = h->mb.cache.ref[0][i8]; int i_ref1 = h->mb.cache.ref[1][i8]; int weight = h->mb.bipred_weight[i_ref0][i_ref1]; int mvx0 = x264_clip3( h->mb.cache.mv[0][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x; int mvx1 = x264_clip3( h->mb.cache.mv[1][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x; int mvy0 = x264_clip3( h->mb.cache.mv[0][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y; int mvy1 = x264_clip3( h->mb.cache.mv[1][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y; int i_mode = x264_size2pixel[height][width]; intptr_t i_stride0 = 16, i_stride1 = 16; ALIGNED_ARRAY_32( pixel, tmp0,[16*16] ); ALIGNED_ARRAY_32( pixel, tmp1,[16*16] ); pixel *src0, *src1; MC_LUMA_BI( 0 ); if( CHROMA444 ) { MC_LUMA_BI( 1 ); MC_LUMA_BI( 2 ); } else if( CHROMA_FORMAT ) { int v_shift = CHROMA_V_SHIFT; if( v_shift & MB_INTERLACED & i_ref0 ) mvy0 += (h->mb.i_mb_y & 1)*4 - 2; if( v_shift & MB_INTERLACED & i_ref1 ) mvy1 += (h->mb.i_mb_y & 1)*4 - 2; h->mc.mc_chroma( tmp0, tmp0+8, 16, h->mb.pic.p_fref[0][i_ref0][4], h->mb.pic.i_stride[1], mvx0, 2*mvy0>>v_shift, 2*width, 4*height>>v_shift ); h->mc.mc_chroma( tmp1, tmp1+8, 16, h->mb.pic.p_fref[1][i_ref1][4], h->mb.pic.i_stride[1], mvx1, 2*mvy1>>v_shift, 2*width, 4*height>>v_shift ); int chromapix = h->luma2chroma_pixel[i_mode]; int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x; h->mc.avg[chromapix]( &h->mb.pic.p_fdec[1][offset], FDEC_STRIDE, tmp0, 16, tmp1, 16, weight ); h->mc.avg[chromapix]( &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, tmp0+8, 16, tmp1+8, 16, weight ); } } #undef MC_LUMA #undef MC_LUMA_BI void x264_mb_mc_8x8( x264_t *h, int i8 ) { int x = 2*(i8&1); int y = 2*(i8>>1); if( h->sh.i_type == SLICE_TYPE_P ) { switch( h->mb.i_sub_partition[i8] ) { case D_L0_8x8: mb_mc_0xywh( h, x, y, 2, 2 ); break; case D_L0_8x4: mb_mc_0xywh( h, x, y+0, 2, 1 ); mb_mc_0xywh( h, x, y+1, 2, 1 ); break; case D_L0_4x8: mb_mc_0xywh( h, x+0, y, 1, 2 ); mb_mc_0xywh( h, x+1, y, 1, 2 ); break; case D_L0_4x4: mb_mc_0xywh( h, x+0, y+0, 1, 1 ); mb_mc_0xywh( h, x+1, y+0, 1, 1 ); mb_mc_0xywh( h, x+0, y+1, 1, 1 ); mb_mc_0xywh( h, x+1, y+1, 1, 1 ); break; } } else { int scan8 = x264_scan8[0] + x + 8*y; if( h->mb.cache.ref[0][scan8] >= 0 ) if( h->mb.cache.ref[1][scan8] >= 0 ) mb_mc_01xywh( h, x, y, 2, 2 ); else mb_mc_0xywh( h, x, y, 2, 2 ); else mb_mc_1xywh( h, x, y, 2, 2 ); } } void x264_mb_mc( x264_t *h ) { if( h->mb.i_partition == D_8x8 ) { for( int i = 0; i < 4; i++ ) x264_mb_mc_8x8( h, i ); } else { int ref0a = h->mb.cache.ref[0][x264_scan8[ 0]]; int ref0b = h->mb.cache.ref[0][x264_scan8[12]]; int ref1a = h->mb.cache.ref[1][x264_scan8[ 0]]; int ref1b = h->mb.cache.ref[1][x264_scan8[12]]; if( h->mb.i_partition == D_16x16 ) { if( ref0a >= 0 ) if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 4, 4 ); else mb_mc_0xywh ( h, 0, 0, 4, 4 ); else mb_mc_1xywh ( h, 0, 0, 4, 4 ); } else if( h->mb.i_partition == D_16x8 ) { if( ref0a >= 0 ) if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 4, 2 ); else mb_mc_0xywh ( h, 0, 0, 4, 2 ); else mb_mc_1xywh ( h, 0, 0, 4, 2 ); if( ref0b >= 0 ) if( ref1b >= 0 ) mb_mc_01xywh( h, 0, 2, 4, 2 ); else mb_mc_0xywh ( h, 0, 2, 4, 2 ); else mb_mc_1xywh ( h, 0, 2, 4, 2 ); } else if( h->mb.i_partition == D_8x16 ) { if( ref0a >= 0 ) if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 2, 4 ); else mb_mc_0xywh ( h, 0, 0, 2, 4 ); else mb_mc_1xywh ( h, 0, 0, 2, 4 ); if( ref0b >= 0 ) if( ref1b >= 0 ) mb_mc_01xywh( h, 2, 0, 2, 4 ); else mb_mc_0xywh ( h, 2, 0, 2, 4 ); else mb_mc_1xywh ( h, 2, 0, 2, 4 ); } } } int x264_macroblock_cache_allocate( x264_t *h ) { int i_mb_count = h->mb.i_mb_count; h->mb.i_mb_stride = h->mb.i_mb_width; h->mb.i_b8_stride = h->mb.i_mb_width * 2; h->mb.i_b4_stride = h->mb.i_mb_width * 4; h->mb.b_interlaced = PARAM_INTERLACED; PREALLOC_INIT PREALLOC( h->mb.qp, i_mb_count * sizeof(int8_t) ); PREALLOC( h->mb.cbp, i_mb_count * sizeof(int16_t) ); PREALLOC( h->mb.mb_transform_size, i_mb_count * sizeof(int8_t) ); PREALLOC( h->mb.slice_table, i_mb_count * sizeof(int32_t) ); /* 0 -> 3 top(4), 4 -> 6 : left(3) */ PREALLOC( h->mb.intra4x4_pred_mode, i_mb_count * 8 * sizeof(int8_t) ); /* all coeffs */ PREALLOC( h->mb.non_zero_count, i_mb_count * 48 * sizeof(uint8_t) ); if( h->param.b_cabac ) { PREALLOC( h->mb.skipbp, i_mb_count * sizeof(int8_t) ); PREALLOC( h->mb.chroma_pred_mode, i_mb_count * sizeof(int8_t) ); PREALLOC( h->mb.mvd[0], i_mb_count * sizeof( **h->mb.mvd ) ); if( h->param.i_bframe ) PREALLOC( h->mb.mvd[1], i_mb_count * sizeof( **h->mb.mvd ) ); } for( int i = 0; i < 2; i++ ) { int i_refs = X264_MIN(X264_REF_MAX, (i ? 1 + !!h->param.i_bframe_pyramid : h->param.i_frame_reference) ) << PARAM_INTERLACED; if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART ) i_refs = X264_MIN(X264_REF_MAX, i_refs + 1 + (BIT_DEPTH == 8)); //smart weights add two duplicate frames, one in >8-bit for( int j = !i; j < i_refs; j++ ) PREALLOC( h->mb.mvr[i][j], 2 * (i_mb_count + 1) * sizeof(int16_t) ); } if( h->param.analyse.i_weighted_pred ) { int i_padv = PADV << PARAM_INTERLACED; int luma_plane_size = 0; int numweightbuf; if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_FAKE ) { // only need buffer for lookahead if( !h->param.i_sync_lookahead || h == h->thread[h->param.i_threads] ) { // Fake analysis only works on lowres luma_plane_size = h->fdec->i_stride_lowres * (h->mb.i_mb_height*8+2*i_padv); // Only need 1 buffer for analysis numweightbuf = 1; } else numweightbuf = 0; } else { /* Both ref and fenc is stored for 4:2:0 and 4:2:2 which means that 4:2:0 and 4:4:4 * needs the same amount of space and 4:2:2 needs twice that much */ luma_plane_size = h->fdec->i_stride[0] * (h->mb.i_mb_height*(16<<(CHROMA_FORMAT==CHROMA_422))+2*i_padv); if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART ) //smart can weight one ref and one offset -1 in 8-bit numweightbuf = 1 + (BIT_DEPTH == 8); else //simple only has one weighted ref numweightbuf = 1; } for( int i = 0; i < numweightbuf; i++ ) PREALLOC( h->mb.p_weight_buf[i], luma_plane_size * SIZEOF_PIXEL ); } PREALLOC_END( h->mb.base ); memset( h->mb.slice_table, -1, i_mb_count * sizeof(int32_t) ); for( int i = 0; i < 2; i++ ) { int i_refs = X264_MIN(X264_REF_MAX, (i ? 1 + !!h->param.i_bframe_pyramid : h->param.i_frame_reference) ) << PARAM_INTERLACED; if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART ) i_refs = X264_MIN(X264_REF_MAX, i_refs + 1 + (BIT_DEPTH == 8)); //smart weights add two duplicate frames, one in >8-bit for( int j = !i; j < i_refs; j++ ) { M32( h->mb.mvr[i][j][0] ) = 0; h->mb.mvr[i][j]++; } } return 0; fail: return -1; } void x264_macroblock_cache_free( x264_t *h ) { x264_free( h->mb.base ); } int x264_macroblock_thread_allocate( x264_t *h, int b_lookahead ) { if( !b_lookahead ) { for( int i = 0; i < (PARAM_INTERLACED ? 5 : 2); i++ ) for( int j = 0; j < (CHROMA444 ? 3 : 2); j++ ) { CHECKED_MALLOC( h->intra_border_backup[i][j], (h->sps->i_mb_width*16+32) * SIZEOF_PIXEL ); h->intra_border_backup[i][j] += 16; } for( int i = 0; i <= PARAM_INTERLACED; i++ ) { if( h->param.b_sliced_threads ) { /* Only allocate the first one, and allocate it for the whole frame, because we * won't be deblocking until after the frame is fully encoded. */ if( h == h->thread[0] && !i ) CHECKED_MALLOC( h->deblock_strength[0], sizeof(**h->deblock_strength) * h->mb.i_mb_count ); else h->deblock_strength[i] = h->thread[0]->deblock_strength[0]; } else CHECKED_MALLOC( h->deblock_strength[i], sizeof(**h->deblock_strength) * h->mb.i_mb_width ); h->deblock_strength[1] = h->deblock_strength[i]; } } /* Allocate scratch buffer */ int scratch_size = 0; if( !b_lookahead ) { int buf_hpel = (h->thread[0]->fdec->i_width[0]+48+32) * sizeof(int16_t); int buf_ssim = h->param.analyse.b_ssim * 8 * (h->param.i_width/4+3) * sizeof(int); int me_range = X264_MIN(h->param.analyse.i_me_range, h->param.analyse.i_mv_range); int buf_tesa = (h->param.analyse.i_me_method >= X264_ME_ESA) * ((me_range*2+24) * sizeof(int16_t) + (me_range+4) * (me_range+1) * 4 * sizeof(mvsad_t)); scratch_size = X264_MAX3( buf_hpel, buf_ssim, buf_tesa ); } int buf_mbtree = h->param.rc.b_mb_tree * ((h->mb.i_mb_width+15)&~15) * sizeof(int16_t); scratch_size = X264_MAX( scratch_size, buf_mbtree ); if( scratch_size ) CHECKED_MALLOC( h->scratch_buffer, scratch_size ); else h->scratch_buffer = NULL; int buf_lookahead_threads = (h->mb.i_mb_height + (4 + 32) * h->param.i_lookahead_threads) * sizeof(int) * 2; int buf_mbtree2 = buf_mbtree * 12; /* size of the internal propagate_list asm buffer */ scratch_size = X264_MAX( buf_lookahead_threads, buf_mbtree2 ); CHECKED_MALLOC( h->scratch_buffer2, scratch_size ); return 0; fail: return -1; } void x264_macroblock_thread_free( x264_t *h, int b_lookahead ) { if( !b_lookahead ) { for( int i = 0; i <= PARAM_INTERLACED; i++ ) if( !h->param.b_sliced_threads || (h == h->thread[0] && !i) ) x264_free( h->deblock_strength[i] ); for( int i = 0; i < (PARAM_INTERLACED ? 5 : 2); i++ ) for( int j = 0; j < (CHROMA444 ? 3 : 2); j++ ) x264_free( h->intra_border_backup[i][j] - 16 ); } x264_free( h->scratch_buffer ); x264_free( h->scratch_buffer2 ); } void x264_macroblock_slice_init( x264_t *h ) { h->mb.mv[0] = h->fdec->mv[0]; h->mb.mv[1] = h->fdec->mv[1]; h->mb.mvr[0][0] = h->fdec->mv16x16; h->mb.ref[0] = h->fdec->ref[0]; h->mb.ref[1] = h->fdec->ref[1]; h->mb.type = h->fdec->mb_type; h->mb.partition = h->fdec->mb_partition; h->mb.field = h->fdec->field; h->fdec->i_ref[0] = h->i_ref[0]; h->fdec->i_ref[1] = h->i_ref[1]; for( int i = 0; i < h->i_ref[0]; i++ ) h->fdec->ref_poc[0][i] = h->fref[0][i]->i_poc; if( h->sh.i_type == SLICE_TYPE_B ) { for( int i = 0; i < h->i_ref[1]; i++ ) h->fdec->ref_poc[1][i] = h->fref[1][i]->i_poc; map_col_to_list0(-1) = -1; map_col_to_list0(-2) = -2; for( int i = 0; i < h->fref[1][0]->i_ref[0]; i++ ) { int poc = h->fref[1][0]->ref_poc[0][i]; map_col_to_list0(i) = -2; for( int j = 0; j < h->i_ref[0]; j++ ) if( h->fref[0][j]->i_poc == poc ) { map_col_to_list0(i) = j; break; } } } else if( h->sh.i_type == SLICE_TYPE_P ) { if( h->sh.i_disable_deblocking_filter_idc != 1 && h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART ) { deblock_ref_table(-2) = -2; deblock_ref_table(-1) = -1; for( int i = 0; i < h->i_ref[0] << SLICE_MBAFF; i++ ) { /* Mask off high bits to avoid frame num collisions with -1/-2. * In current x264 frame num values don't cover a range of more * than 32, so 6 bits is enough for uniqueness. */ if( !MB_INTERLACED ) deblock_ref_table(i) = h->fref[0][i]->i_frame_num&63; else deblock_ref_table(i) = ((h->fref[0][i>>1]->i_frame_num&63)<<1) + (i&1); } } } /* init with not available (for top right idx=7,15) */ memset( h->mb.cache.ref, -2, sizeof( h->mb.cache.ref ) ); if( h->i_ref[0] > 0 ) for( int field = 0; field <= SLICE_MBAFF; field++ ) { int curpoc = h->fdec->i_poc + h->fdec->i_delta_poc[field]; int refpoc = h->fref[0][0]->i_poc + h->fref[0][0]->i_delta_poc[field]; int delta = curpoc - refpoc; h->fdec->inv_ref_poc[field] = (256 + delta/2) / delta; } h->mb.i_neighbour4[6] = h->mb.i_neighbour4[9] = h->mb.i_neighbour4[12] = h->mb.i_neighbour4[14] = MB_LEFT|MB_TOP|MB_TOPLEFT|MB_TOPRIGHT; h->mb.i_neighbour4[3] = h->mb.i_neighbour4[7] = h->mb.i_neighbour4[11] = h->mb.i_neighbour4[13] = h->mb.i_neighbour4[15] = h->mb.i_neighbour8[3] = MB_LEFT|MB_TOP|MB_TOPLEFT; } void x264_macroblock_thread_init( x264_t *h ) { h->mb.i_me_method = h->param.analyse.i_me_method; h->mb.i_subpel_refine = h->param.analyse.i_subpel_refine; if( h->sh.i_type == SLICE_TYPE_B && (h->mb.i_subpel_refine == 6 || h->mb.i_subpel_refine == 8) ) h->mb.i_subpel_refine--; h->mb.b_chroma_me = h->param.analyse.b_chroma_me && ((h->sh.i_type == SLICE_TYPE_P && h->mb.i_subpel_refine >= 5) || (h->sh.i_type == SLICE_TYPE_B && h->mb.i_subpel_refine >= 9)); h->mb.b_dct_decimate = h->sh.i_type == SLICE_TYPE_B || (h->param.analyse.b_dct_decimate && h->sh.i_type != SLICE_TYPE_I); h->mb.i_mb_prev_xy = -1; /* 4:2:0 4:2:2 4:4:4 * fdec fenc fdec fenc fdec fenc * y y y y y y y Y Y Y Y y y y y y y y Y Y Y Y y y y y y y y Y Y Y Y * y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y * y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y * y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y * y Y Y Y Y U U V V y Y Y Y Y U U V V y Y Y Y Y U U U U * u u u v v v U U V V u u u v v v U U V V u u u u u u u U U U U * u U U v V V u U U v V V U U V V u U U U U U U U U * u U U v V V u U U v V V U U V V u U U U U U U U U * u U U v V V u U U U U V V V V * u U U v V V u U U U U V V V V * v v v v v v v V V V V * v V V V V V V V V * v V V V V * v V V V V * v V V V V */ h->mb.pic.p_fenc[0] = h->mb.pic.fenc_buf; h->mb.pic.p_fdec[0] = h->mb.pic.fdec_buf + 2*FDEC_STRIDE; if( CHROMA_FORMAT ) { h->mb.pic.p_fenc[1] = h->mb.pic.fenc_buf + 16*FENC_STRIDE; h->mb.pic.p_fdec[1] = h->mb.pic.fdec_buf + 20*FDEC_STRIDE; if( CHROMA444 ) { h->mb.pic.p_fenc[2] = h->mb.pic.fenc_buf + 32*FENC_STRIDE; h->mb.pic.p_fdec[2] = h->mb.pic.fdec_buf + 38*FDEC_STRIDE; } else { h->mb.pic.p_fenc[2] = h->mb.pic.fenc_buf + 16*FENC_STRIDE + 8; h->mb.pic.p_fdec[2] = h->mb.pic.fdec_buf + 20*FDEC_STRIDE + 16; } } } void x264_prefetch_fenc( x264_t *h, x264_frame_t *fenc, int i_mb_x, int i_mb_y ) { int stride_y = fenc->i_stride[0]; int stride_uv = fenc->i_stride[1]; int off_y = 16 * i_mb_x + 16 * i_mb_y * stride_y; int off_uv = 16 * i_mb_x + (16 * i_mb_y * stride_uv >> CHROMA_V_SHIFT); h->mc.prefetch_fenc( fenc->plane[0]+off_y, stride_y, fenc->plane[1] != NULL ? fenc->plane[1]+off_uv : NULL, stride_uv, i_mb_x ); } NOINLINE void x264_copy_column8( pixel *dst, pixel *src ) { // input pointers are offset by 4 rows because that's faster (smaller instruction size on x86) for( int i = -4; i < 4; i++ ) dst[i*FDEC_STRIDE] = src[i*FDEC_STRIDE]; } static ALWAYS_INLINE void macroblock_load_pic_pointers( x264_t *h, int mb_x, int mb_y, int i, int b_chroma, int b_mbaff ) { int mb_interlaced = b_mbaff && MB_INTERLACED; int height = b_chroma ? 16 >> CHROMA_V_SHIFT : 16; int i_stride = h->fdec->i_stride[i]; int i_stride2 = i_stride << mb_interlaced; int i_pix_offset = mb_interlaced ? 16 * mb_x + height * (mb_y&~1) * i_stride + (mb_y&1) * i_stride : 16 * mb_x + height * mb_y * i_stride; pixel *plane_fdec = &h->fdec->plane[i][i_pix_offset]; int fdec_idx = b_mbaff ? (mb_interlaced ? (3 + (mb_y&1)) : (mb_y&1) ? 2 : 4) : !(mb_y&1); pixel *intra_fdec = &h->intra_border_backup[fdec_idx][i][mb_x*16]; int ref_pix_offset[2] = { i_pix_offset, i_pix_offset }; /* ref_pix_offset[0] references the current field and [1] the opposite field. */ if( mb_interlaced ) ref_pix_offset[1] += (1-2*(mb_y&1)) * i_stride; h->mb.pic.i_stride[i] = i_stride2; h->mb.pic.p_fenc_plane[i] = &h->fenc->plane[i][i_pix_offset]; if( b_chroma ) { h->mc.load_deinterleave_chroma_fenc( h->mb.pic.p_fenc[1], h->mb.pic.p_fenc_plane[1], i_stride2, height ); memcpy( h->mb.pic.p_fdec[1]-FDEC_STRIDE, intra_fdec, 8*SIZEOF_PIXEL ); memcpy( h->mb.pic.p_fdec[2]-FDEC_STRIDE, intra_fdec+8, 8*SIZEOF_PIXEL ); h->mb.pic.p_fdec[1][-FDEC_STRIDE-1] = intra_fdec[-1-8]; h->mb.pic.p_fdec[2][-FDEC_STRIDE-1] = intra_fdec[-1]; } else { h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fenc[i], FENC_STRIDE, h->mb.pic.p_fenc_plane[i], i_stride2, 16 ); memcpy( h->mb.pic.p_fdec[i]-FDEC_STRIDE, intra_fdec, 24*SIZEOF_PIXEL ); h->mb.pic.p_fdec[i][-FDEC_STRIDE-1] = intra_fdec[-1]; } if( b_mbaff || h->mb.b_reencode_mb ) { for( int j = 0; j < height; j++ ) if( b_chroma ) { h->mb.pic.p_fdec[1][-1+j*FDEC_STRIDE] = plane_fdec[-2+j*i_stride2]; h->mb.pic.p_fdec[2][-1+j*FDEC_STRIDE] = plane_fdec[-1+j*i_stride2]; } else h->mb.pic.p_fdec[i][-1+j*FDEC_STRIDE] = plane_fdec[-1+j*i_stride2]; } pixel *plane_src, **filtered_src; for( int j = 0; j < h->mb.pic.i_fref[0]; j++ ) { // Interpolate between pixels in same field. if( mb_interlaced ) { plane_src = h->fref[0][j>>1]->plane_fld[i]; filtered_src = h->fref[0][j>>1]->filtered_fld[i]; } else { plane_src = h->fref[0][j]->plane[i]; filtered_src = h->fref[0][j]->filtered[i]; } h->mb.pic.p_fref[0][j][i*4] = plane_src + ref_pix_offset[j&1]; if( !b_chroma ) { if( h->param.analyse.i_subpel_refine ) for( int k = 1; k < 4; k++ ) h->mb.pic.p_fref[0][j][i*4+k] = filtered_src[k] + ref_pix_offset[j&1]; if( !i ) { if( h->sh.weight[j][0].weightfn ) h->mb.pic.p_fref_w[j] = &h->fenc->weighted[j >> mb_interlaced][ref_pix_offset[j&1]]; else h->mb.pic.p_fref_w[j] = h->mb.pic.p_fref[0][j][0]; } } } if( h->sh.i_type == SLICE_TYPE_B ) for( int j = 0; j < h->mb.pic.i_fref[1]; j++ ) { if( mb_interlaced ) { plane_src = h->fref[1][j>>1]->plane_fld[i]; filtered_src = h->fref[1][j>>1]->filtered_fld[i]; } else { plane_src = h->fref[1][j]->plane[i]; filtered_src = h->fref[1][j]->filtered[i]; } h->mb.pic.p_fref[1][j][i*4] = plane_src + ref_pix_offset[j&1]; if( !b_chroma && h->param.analyse.i_subpel_refine ) for( int k = 1; k < 4; k++ ) h->mb.pic.p_fref[1][j][i*4+k] = filtered_src[k] + ref_pix_offset[j&1]; } } static const x264_left_table_t left_indices[4] = { /* Current is progressive */ {{ 4, 4, 5, 5}, { 3, 3, 7, 7}, {16+1, 16+1, 32+1, 32+1}, {0, 0, 1, 1}, {0, 0, 0, 0}}, {{ 6, 6, 3, 3}, {11, 11, 15, 15}, {16+5, 16+5, 32+5, 32+5}, {2, 2, 3, 3}, {1, 1, 1, 1}}, /* Current is interlaced */ {{ 4, 6, 4, 6}, { 3, 11, 3, 11}, {16+1, 16+1, 32+1, 32+1}, {0, 2, 0, 2}, {0, 1, 0, 1}}, /* Both same */ {{ 4, 5, 6, 3}, { 3, 7, 11, 15}, {16+1, 16+5, 32+1, 32+5}, {0, 1, 2, 3}, {0, 0, 1, 1}} }; static ALWAYS_INLINE void macroblock_cache_load_neighbours( x264_t *h, int mb_x, int mb_y, int b_interlaced ) { const int mb_interlaced = b_interlaced && MB_INTERLACED; int top_y = mb_y - (1 << mb_interlaced); int top = top_y * h->mb.i_mb_stride + mb_x; h->mb.i_mb_x = mb_x; h->mb.i_mb_y = mb_y; h->mb.i_mb_xy = mb_y * h->mb.i_mb_stride + mb_x; h->mb.i_b8_xy = 2*(mb_y * h->mb.i_b8_stride + mb_x); h->mb.i_b4_xy = 4*(mb_y * h->mb.i_b4_stride + mb_x); h->mb.left_b8[0] = h->mb.left_b8[1] = -1; h->mb.left_b4[0] = h->mb.left_b4[1] = -1; h->mb.i_neighbour = 0; h->mb.i_neighbour_intra = 0; h->mb.i_neighbour_frame = 0; h->mb.i_mb_top_xy = -1; h->mb.i_mb_top_y = -1; h->mb.i_mb_left_xy[0] = h->mb.i_mb_left_xy[1] = -1; h->mb.i_mb_topleft_xy = -1; h->mb.i_mb_topright_xy = -1; h->mb.i_mb_type_top = -1; h->mb.i_mb_type_left[0] = h->mb.i_mb_type_left[1] = -1; h->mb.i_mb_type_topleft = -1; h->mb.i_mb_type_topright = -1; h->mb.left_index_table = &left_indices[3]; h->mb.topleft_partition = 0; int topleft_y = top_y; int topright_y = top_y; int left[2]; left[0] = left[1] = h->mb.i_mb_xy - 1; h->mb.left_b8[0] = h->mb.left_b8[1] = h->mb.i_b8_xy - 2; h->mb.left_b4[0] = h->mb.left_b4[1] = h->mb.i_b4_xy - 4; if( b_interlaced ) { h->mb.i_mb_top_mbpair_xy = h->mb.i_mb_xy - 2*h->mb.i_mb_stride; h->mb.i_mb_topleft_y = -1; h->mb.i_mb_topright_y = -1; if( mb_y&1 ) { if( mb_x && mb_interlaced != h->mb.field[h->mb.i_mb_xy-1] ) { left[0] = left[1] = h->mb.i_mb_xy - 1 - h->mb.i_mb_stride; h->mb.left_b8[0] = h->mb.left_b8[1] = h->mb.i_b8_xy - 2 - 2*h->mb.i_b8_stride; h->mb.left_b4[0] = h->mb.left_b4[1] = h->mb.i_b4_xy - 4 - 4*h->mb.i_b4_stride; if( mb_interlaced ) { h->mb.left_index_table = &left_indices[2]; left[1] += h->mb.i_mb_stride; h->mb.left_b8[1] += 2*h->mb.i_b8_stride; h->mb.left_b4[1] += 4*h->mb.i_b4_stride; } else { h->mb.left_index_table = &left_indices[1]; topleft_y++; h->mb.topleft_partition = 1; } } if( !mb_interlaced ) topright_y = -1; } else { if( mb_interlaced && top >= 0 ) { if( !h->mb.field[top] ) { top += h->mb.i_mb_stride; top_y++; } if( mb_x ) topleft_y += !h->mb.field[h->mb.i_mb_stride*topleft_y + mb_x - 1]; if( mb_x < h->mb.i_mb_width-1 ) topright_y += !h->mb.field[h->mb.i_mb_stride*topright_y + mb_x + 1]; } if( mb_x && mb_interlaced != h->mb.field[h->mb.i_mb_xy-1] ) { if( mb_interlaced ) { h->mb.left_index_table = &left_indices[2]; left[1] += h->mb.i_mb_stride; h->mb.left_b8[1] += 2*h->mb.i_b8_stride; h->mb.left_b4[1] += 4*h->mb.i_b4_stride; } else h->mb.left_index_table = &left_indices[0]; } } } if( mb_x > 0 ) { h->mb.i_neighbour_frame |= MB_LEFT; h->mb.i_mb_left_xy[0] = left[0]; h->mb.i_mb_left_xy[1] = left[1]; h->mb.i_mb_type_left[0] = h->mb.type[h->mb.i_mb_left_xy[0]]; h->mb.i_mb_type_left[1] = h->mb.type[h->mb.i_mb_left_xy[1]]; if( h->mb.slice_table[left[0]] == h->sh.i_first_mb ) { h->mb.i_neighbour |= MB_LEFT; // FIXME: We don't currently support constrained intra + mbaff. if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_left[0] ) ) h->mb.i_neighbour_intra |= MB_LEFT; } } /* We can't predict from the previous threadslice since it hasn't been encoded yet. */ if( (h->i_threadslice_start >> mb_interlaced) != (mb_y >> mb_interlaced) ) { if( top >= 0 ) { h->mb.i_neighbour_frame |= MB_TOP; h->mb.i_mb_top_xy = top; h->mb.i_mb_top_y = top_y; h->mb.i_mb_type_top = h->mb.type[h->mb.i_mb_top_xy]; if( h->mb.slice_table[top] == h->sh.i_first_mb ) { h->mb.i_neighbour |= MB_TOP; if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_top ) ) h->mb.i_neighbour_intra |= MB_TOP; /* We only need to prefetch the top blocks because the left was just written * to as part of the previous cache_save. Since most target CPUs use write-allocate * caches, left blocks are near-guaranteed to be in L1 cache. Top--not so much. */ x264_prefetch( &h->mb.cbp[top] ); x264_prefetch( h->mb.intra4x4_pred_mode[top] ); x264_prefetch( &h->mb.non_zero_count[top][12] ); x264_prefetch( &h->mb.mb_transform_size[top] ); if( h->param.b_cabac ) x264_prefetch( &h->mb.skipbp[top] ); } } if( mb_x > 0 && topleft_y >= 0 ) { h->mb.i_neighbour_frame |= MB_TOPLEFT; h->mb.i_mb_topleft_xy = h->mb.i_mb_stride*topleft_y + mb_x - 1; h->mb.i_mb_topleft_y = topleft_y; h->mb.i_mb_type_topleft = h->mb.type[h->mb.i_mb_topleft_xy]; if( h->mb.slice_table[h->mb.i_mb_topleft_xy] == h->sh.i_first_mb ) { h->mb.i_neighbour |= MB_TOPLEFT; if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_topleft ) ) h->mb.i_neighbour_intra |= MB_TOPLEFT; } } if( mb_x < h->mb.i_mb_width - 1 && topright_y >= 0 ) { h->mb.i_neighbour_frame |= MB_TOPRIGHT; h->mb.i_mb_topright_xy = h->mb.i_mb_stride*topright_y + mb_x + 1; h->mb.i_mb_topright_y = topright_y; h->mb.i_mb_type_topright = h->mb.type[h->mb.i_mb_topright_xy]; if( h->mb.slice_table[h->mb.i_mb_topright_xy] == h->sh.i_first_mb ) { h->mb.i_neighbour |= MB_TOPRIGHT; if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_topright ) ) h->mb.i_neighbour_intra |= MB_TOPRIGHT; } } } } #define LTOP 0 #if HAVE_INTERLACED # define LBOT 1 #else # define LBOT 0 #endif static ALWAYS_INLINE void macroblock_cache_load( x264_t *h, int mb_x, int mb_y, int b_mbaff ) { macroblock_cache_load_neighbours( h, mb_x, mb_y, b_mbaff ); int *left = h->mb.i_mb_left_xy; int top = h->mb.i_mb_top_xy; int top_y = h->mb.i_mb_top_y; int s8x8 = h->mb.i_b8_stride; int s4x4 = h->mb.i_b4_stride; int top_8x8 = (2*top_y+1) * s8x8 + 2*mb_x; int top_4x4 = (4*top_y+3) * s4x4 + 4*mb_x; int lists = (1 << h->sh.i_type) & 3; /* GCC pessimizes direct loads from heap-allocated arrays due to aliasing. */ /* By only dereferencing them once, we avoid this issue. */ int8_t (*i4x4)[8] = h->mb.intra4x4_pred_mode; uint8_t (*nnz)[48] = h->mb.non_zero_count; int16_t *cbp = h->mb.cbp; const x264_left_table_t *left_index_table = h->mb.left_index_table; h->mb.cache.deblock_strength = h->deblock_strength[mb_y&1][h->param.b_sliced_threads?h->mb.i_mb_xy:mb_x]; /* load cache */ if( h->mb.i_neighbour & MB_TOP ) { h->mb.cache.i_cbp_top = cbp[top]; /* load intra4x4 */ CP32( &h->mb.cache.intra4x4_pred_mode[x264_scan8[0] - 8], &i4x4[top][0] ); /* load non_zero_count */ CP32( &h->mb.cache.non_zero_count[x264_scan8[ 0] - 8], &nnz[top][12] ); CP32( &h->mb.cache.non_zero_count[x264_scan8[16] - 8], &nnz[top][16-4 + (16>>CHROMA_V_SHIFT)] ); CP32( &h->mb.cache.non_zero_count[x264_scan8[32] - 8], &nnz[top][32-4 + (16>>CHROMA_V_SHIFT)] ); /* Finish the prefetching */ for( int l = 0; l < lists; l++ ) { x264_prefetch( &h->mb.mv[l][top_4x4-1] ); /* Top right being not in the same cacheline as top left will happen * once every 4 MBs, so one extra prefetch is worthwhile */ x264_prefetch( &h->mb.mv[l][top_4x4+4] ); x264_prefetch( &h->mb.ref[l][top_8x8-1] ); if( h->param.b_cabac ) x264_prefetch( &h->mb.mvd[l][top] ); } } else { h->mb.cache.i_cbp_top = -1; /* load intra4x4 */ M32( &h->mb.cache.intra4x4_pred_mode[x264_scan8[0] - 8] ) = 0xFFFFFFFFU; /* load non_zero_count */ M32( &h->mb.cache.non_zero_count[x264_scan8[ 0] - 8] ) = 0x80808080U; M32( &h->mb.cache.non_zero_count[x264_scan8[16] - 8] ) = 0x80808080U; M32( &h->mb.cache.non_zero_count[x264_scan8[32] - 8] ) = 0x80808080U; } if( h->mb.i_neighbour & MB_LEFT ) { int ltop = left[LTOP]; int lbot = b_mbaff ? left[LBOT] : ltop; if( b_mbaff ) { const int16_t top_luma = (cbp[ltop] >> (left_index_table->mv[0]&(~1))) & 2; const int16_t bot_luma = (cbp[lbot] >> (left_index_table->mv[2]&(~1))) & 2; h->mb.cache.i_cbp_left = (cbp[ltop] & 0xfff0) | (bot_luma<<2) | top_luma; } else h->mb.cache.i_cbp_left = cbp[ltop]; /* load intra4x4 */ h->mb.cache.intra4x4_pred_mode[x264_scan8[ 0] - 1] = i4x4[ltop][left_index_table->intra[0]]; h->mb.cache.intra4x4_pred_mode[x264_scan8[ 2] - 1] = i4x4[ltop][left_index_table->intra[1]]; h->mb.cache.intra4x4_pred_mode[x264_scan8[ 8] - 1] = i4x4[lbot][left_index_table->intra[2]]; h->mb.cache.intra4x4_pred_mode[x264_scan8[10] - 1] = i4x4[lbot][left_index_table->intra[3]]; /* load non_zero_count */ h->mb.cache.non_zero_count[x264_scan8[ 0] - 1] = nnz[ltop][left_index_table->nnz[0]]; h->mb.cache.non_zero_count[x264_scan8[ 2] - 1] = nnz[ltop][left_index_table->nnz[1]]; h->mb.cache.non_zero_count[x264_scan8[ 8] - 1] = nnz[lbot][left_index_table->nnz[2]]; h->mb.cache.non_zero_count[x264_scan8[10] - 1] = nnz[lbot][left_index_table->nnz[3]]; if( CHROMA_FORMAT >= CHROMA_422 ) { int offset = (4>>CHROMA_H_SHIFT) - 4; h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] = nnz[ltop][left_index_table->nnz[0]+16+offset]; h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] = nnz[ltop][left_index_table->nnz[1]+16+offset]; h->mb.cache.non_zero_count[x264_scan8[16+ 8] - 1] = nnz[lbot][left_index_table->nnz[2]+16+offset]; h->mb.cache.non_zero_count[x264_scan8[16+10] - 1] = nnz[lbot][left_index_table->nnz[3]+16+offset]; h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] = nnz[ltop][left_index_table->nnz[0]+32+offset]; h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = nnz[ltop][left_index_table->nnz[1]+32+offset]; h->mb.cache.non_zero_count[x264_scan8[32+ 8] - 1] = nnz[lbot][left_index_table->nnz[2]+32+offset]; h->mb.cache.non_zero_count[x264_scan8[32+10] - 1] = nnz[lbot][left_index_table->nnz[3]+32+offset]; } else { h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] = nnz[ltop][left_index_table->nnz_chroma[0]]; h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] = nnz[lbot][left_index_table->nnz_chroma[1]]; h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] = nnz[ltop][left_index_table->nnz_chroma[2]]; h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = nnz[lbot][left_index_table->nnz_chroma[3]]; } } else { h->mb.cache.i_cbp_left = -1; h->mb.cache.intra4x4_pred_mode[x264_scan8[ 0] - 1] = h->mb.cache.intra4x4_pred_mode[x264_scan8[ 2] - 1] = h->mb.cache.intra4x4_pred_mode[x264_scan8[ 8] - 1] = h->mb.cache.intra4x4_pred_mode[x264_scan8[10] - 1] = -1; /* load non_zero_count */ h->mb.cache.non_zero_count[x264_scan8[ 0] - 1] = h->mb.cache.non_zero_count[x264_scan8[ 2] - 1] = h->mb.cache.non_zero_count[x264_scan8[ 8] - 1] = h->mb.cache.non_zero_count[x264_scan8[10] - 1] = h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] = h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] = h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] = h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = 0x80; if( CHROMA_FORMAT >= CHROMA_422 ) { h->mb.cache.non_zero_count[x264_scan8[16+ 8] - 1] = h->mb.cache.non_zero_count[x264_scan8[16+10] - 1] = h->mb.cache.non_zero_count[x264_scan8[32+ 8] - 1] = h->mb.cache.non_zero_count[x264_scan8[32+10] - 1] = 0x80; } } if( h->pps->b_transform_8x8_mode ) { h->mb.cache.i_neighbour_transform_size = ( (h->mb.i_neighbour & MB_LEFT) && h->mb.mb_transform_size[left[0]] ) + ( (h->mb.i_neighbour & MB_TOP) && h->mb.mb_transform_size[top] ); } if( b_mbaff ) { h->mb.pic.i_fref[0] = h->i_ref[0] << MB_INTERLACED; h->mb.pic.i_fref[1] = h->i_ref[1] << MB_INTERLACED; } if( !b_mbaff ) { x264_copy_column8( h->mb.pic.p_fdec[0]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[0]+15+ 4*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[0]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[0]+15+12*FDEC_STRIDE ); macroblock_load_pic_pointers( h, mb_x, mb_y, 0, 0, 0 ); if( CHROMA444 ) { x264_copy_column8( h->mb.pic.p_fdec[1]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+15+ 4*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[1]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[1]+15+12*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[2]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+15+ 4*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[2]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[2]+15+12*FDEC_STRIDE ); macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 0, 0 ); macroblock_load_pic_pointers( h, mb_x, mb_y, 2, 0, 0 ); } else if( CHROMA_FORMAT ) { x264_copy_column8( h->mb.pic.p_fdec[1]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+ 7+ 4*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[2]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+ 7+ 4*FDEC_STRIDE ); if( CHROMA_FORMAT == CHROMA_422 ) { x264_copy_column8( h->mb.pic.p_fdec[1]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[1]+ 7+12*FDEC_STRIDE ); x264_copy_column8( h->mb.pic.p_fdec[2]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[2]+ 7+12*FDEC_STRIDE ); } macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 1, 0 ); } } else { macroblock_load_pic_pointers( h, mb_x, mb_y, 0, 0, 1 ); if( CHROMA444 ) { macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 0, 1 ); macroblock_load_pic_pointers( h, mb_x, mb_y, 2, 0, 1 ); } else if( CHROMA_FORMAT ) macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 1, 1 ); } if( h->fdec->integral ) { int offset = 16 * (mb_x + mb_y * h->fdec->i_stride[0]); for( int list = 0; list < 2; list++ ) for( int i = 0; i < h->mb.pic.i_fref[list]; i++ ) h->mb.pic.p_integral[list][i] = &h->fref[list][i]->integral[offset]; } x264_prefetch_fenc( h, h->fenc, mb_x, mb_y ); /* load ref/mv/mvd */ for( int l = 0; l < lists; l++ ) { int16_t (*mv)[2] = h->mb.mv[l]; int8_t *ref = h->mb.ref[l]; int i8 = x264_scan8[0] - 1 - 1*8; if( h->mb.i_neighbour & MB_TOPLEFT ) { int ir = b_mbaff ? 2*(s8x8*h->mb.i_mb_topleft_y + mb_x-1)+1+s8x8 : top_8x8 - 1; int iv = b_mbaff ? 4*(s4x4*h->mb.i_mb_topleft_y + mb_x-1)+3+3*s4x4 : top_4x4 - 1; if( b_mbaff && h->mb.topleft_partition ) { /* Take motion vector from the middle of macroblock instead of * the bottom right as usual. */ iv -= 2*s4x4; ir -= s8x8; } h->mb.cache.ref[l][i8] = ref[ir]; CP32( h->mb.cache.mv[l][i8], mv[iv] ); } else { h->mb.cache.ref[l][i8] = -2; M32( h->mb.cache.mv[l][i8] ) = 0; } i8 = x264_scan8[0] - 8; if( h->mb.i_neighbour & MB_TOP ) { h->mb.cache.ref[l][i8+0] = h->mb.cache.ref[l][i8+1] = ref[top_8x8 + 0]; h->mb.cache.ref[l][i8+2] = h->mb.cache.ref[l][i8+3] = ref[top_8x8 + 1]; CP128( h->mb.cache.mv[l][i8], mv[top_4x4] ); } else { M128( h->mb.cache.mv[l][i8] ) = M128_ZERO; M32( &h->mb.cache.ref[l][i8] ) = (uint8_t)(-2) * 0x01010101U; } i8 = x264_scan8[0] + 4 - 1*8; if( h->mb.i_neighbour & MB_TOPRIGHT ) { int ir = b_mbaff ? 2*(s8x8*h->mb.i_mb_topright_y + (mb_x+1))+s8x8 : top_8x8 + 2; int iv = b_mbaff ? 4*(s4x4*h->mb.i_mb_topright_y + (mb_x+1))+3*s4x4 : top_4x4 + 4; h->mb.cache.ref[l][i8] = ref[ir]; CP32( h->mb.cache.mv[l][i8], mv[iv] ); } else h->mb.cache.ref[l][i8] = -2; i8 = x264_scan8[0] - 1; if( h->mb.i_neighbour & MB_LEFT ) { if( b_mbaff ) { h->mb.cache.ref[l][i8+0*8] = ref[h->mb.left_b8[LTOP] + 1 + s8x8*left_index_table->ref[0]]; h->mb.cache.ref[l][i8+1*8] = ref[h->mb.left_b8[LTOP] + 1 + s8x8*left_index_table->ref[1]]; h->mb.cache.ref[l][i8+2*8] = ref[h->mb.left_b8[LBOT] + 1 + s8x8*left_index_table->ref[2]]; h->mb.cache.ref[l][i8+3*8] = ref[h->mb.left_b8[LBOT] + 1 + s8x8*left_index_table->ref[3]]; CP32( h->mb.cache.mv[l][i8+0*8], mv[h->mb.left_b4[LTOP] + 3 + s4x4*left_index_table->mv[0]] ); CP32( h->mb.cache.mv[l][i8+1*8], mv[h->mb.left_b4[LTOP] + 3 + s4x4*left_index_table->mv[1]] ); CP32( h->mb.cache.mv[l][i8+2*8], mv[h->mb.left_b4[LBOT] + 3 + s4x4*left_index_table->mv[2]] ); CP32( h->mb.cache.mv[l][i8+3*8], mv[h->mb.left_b4[LBOT] + 3 + s4x4*left_index_table->mv[3]] ); } else { const int ir = h->mb.i_b8_xy - 1; const int iv = h->mb.i_b4_xy - 1; h->mb.cache.ref[l][i8+0*8] = h->mb.cache.ref[l][i8+1*8] = ref[ir + 0*s8x8]; h->mb.cache.ref[l][i8+2*8] = h->mb.cache.ref[l][i8+3*8] = ref[ir + 1*s8x8]; CP32( h->mb.cache.mv[l][i8+0*8], mv[iv + 0*s4x4] ); CP32( h->mb.cache.mv[l][i8+1*8], mv[iv + 1*s4x4] ); CP32( h->mb.cache.mv[l][i8+2*8], mv[iv + 2*s4x4] ); CP32( h->mb.cache.mv[l][i8+3*8], mv[iv + 3*s4x4] ); } } else { for( int i = 0; i < 4; i++ ) { h->mb.cache.ref[l][i8+i*8] = -2; M32( h->mb.cache.mv[l][i8+i*8] ) = 0; } } /* Extra logic for top right mv in mbaff. * . . . d . . a . * . . . e . . . . * . . . f b . c . * . . . . . . . . * * If the top right of the 4x4 partitions labeled a, b and c in the * above diagram do not exist, but the entries d, e and f exist (in * the macroblock to the left) then use those instead. */ if( b_mbaff && (h->mb.i_neighbour & MB_LEFT) ) { if( MB_INTERLACED && !h->mb.field[h->mb.i_mb_xy-1] ) { h->mb.cache.topright_ref[l][0] = ref[h->mb.left_b8[0] + 1 + s8x8*0]; h->mb.cache.topright_ref[l][1] = ref[h->mb.left_b8[0] + 1 + s8x8*1]; h->mb.cache.topright_ref[l][2] = ref[h->mb.left_b8[1] + 1 + s8x8*0]; CP32( h->mb.cache.topright_mv[l][0], mv[h->mb.left_b4[0] + 3 + s4x4*(left_index_table->mv[0]+1)] ); CP32( h->mb.cache.topright_mv[l][1], mv[h->mb.left_b4[0] + 3 + s4x4*(left_index_table->mv[1]+1)] ); CP32( h->mb.cache.topright_mv[l][2], mv[h->mb.left_b4[1] + 3 + s4x4*(left_index_table->mv[2]+1)] ); } else if( !MB_INTERLACED && h->mb.field[h->mb.i_mb_xy-1] ) { // Looking at the bottom field so always take the bottom macroblock of the pair. h->mb.cache.topright_ref[l][0] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[0]]; h->mb.cache.topright_ref[l][1] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[1]]; h->mb.cache.topright_ref[l][2] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[2]]; CP32( h->mb.cache.topright_mv[l][0], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[0]] ); CP32( h->mb.cache.topright_mv[l][1], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[1]] ); CP32( h->mb.cache.topright_mv[l][2], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[2]] ); } } if( h->param.b_cabac ) { uint8_t (*mvd)[8][2] = h->mb.mvd[l]; if( h->mb.i_neighbour & MB_TOP ) CP64( h->mb.cache.mvd[l][x264_scan8[0] - 8], mvd[top][0] ); else M64( h->mb.cache.mvd[l][x264_scan8[0] - 8] ) = 0; if( h->mb.i_neighbour & MB_LEFT && (!b_mbaff || h->mb.cache.ref[l][x264_scan8[0]-1] >= 0) ) { CP16( h->mb.cache.mvd[l][x264_scan8[0 ] - 1], mvd[left[LTOP]][left_index_table->intra[0]] ); CP16( h->mb.cache.mvd[l][x264_scan8[2 ] - 1], mvd[left[LTOP]][left_index_table->intra[1]] ); } else { M16( h->mb.cache.mvd[l][x264_scan8[0]-1+0*8] ) = 0; M16( h->mb.cache.mvd[l][x264_scan8[0]-1+1*8] ) = 0; } if( h->mb.i_neighbour & MB_LEFT && (!b_mbaff || h->mb.cache.ref[l][x264_scan8[0]-1+2*8] >= 0) ) { CP16( h->mb.cache.mvd[l][x264_scan8[8 ] - 1], mvd[left[LBOT]][left_index_table->intra[2]] ); CP16( h->mb.cache.mvd[l][x264_scan8[10] - 1], mvd[left[LBOT]][left_index_table->intra[3]] ); } else { M16( h->mb.cache.mvd[l][x264_scan8[0]-1+2*8] ) = 0; M16( h->mb.cache.mvd[l][x264_scan8[0]-1+3*8] ) = 0; } } /* If motion vectors are cached from frame macroblocks but this * macroblock is a field macroblock then the motion vector must be * halved. Similarly, motion vectors from field macroblocks are doubled. */ if( b_mbaff ) { #define MAP_MVS\ if( FIELD_DIFFERENT(h->mb.i_mb_topleft_xy) )\ MAP_F2F(mv, ref, x264_scan8[0] - 1 - 1*8)\ if( FIELD_DIFFERENT(top) )\ {\ MAP_F2F(mv, ref, x264_scan8[0] + 0 - 1*8)\ MAP_F2F(mv, ref, x264_scan8[0] + 1 - 1*8)\ MAP_F2F(mv, ref, x264_scan8[0] + 2 - 1*8)\ MAP_F2F(mv, ref, x264_scan8[0] + 3 - 1*8)\ }\ if( FIELD_DIFFERENT(h->mb.i_mb_topright_xy) )\ MAP_F2F(mv, ref, x264_scan8[0] + 4 - 1*8)\ if( FIELD_DIFFERENT(left[0]) )\ {\ MAP_F2F(mv, ref, x264_scan8[0] - 1 + 0*8)\ MAP_F2F(mv, ref, x264_scan8[0] - 1 + 1*8)\ MAP_F2F(mv, ref, x264_scan8[0] - 1 + 2*8)\ MAP_F2F(mv, ref, x264_scan8[0] - 1 + 3*8)\ MAP_F2F(topright_mv, topright_ref, 0)\ MAP_F2F(topright_mv, topright_ref, 1)\ MAP_F2F(topright_mv, topright_ref, 2)\ } if( MB_INTERLACED ) { #define FIELD_DIFFERENT(macroblock) (macroblock >= 0 && !h->mb.field[macroblock]) #define MAP_F2F(varmv, varref, index)\ if( h->mb.cache.varref[l][index] >= 0 )\ {\ h->mb.cache.varref[l][index] <<= 1;\ h->mb.cache.varmv[l][index][1] /= 2;\ h->mb.cache.mvd[l][index][1] >>= 1;\ } MAP_MVS #undef MAP_F2F #undef FIELD_DIFFERENT } else { #define FIELD_DIFFERENT(macroblock) (macroblock >= 0 && h->mb.field[macroblock]) #define MAP_F2F(varmv, varref, index)\ if( h->mb.cache.varref[l][index] >= 0 )\ {\ h->mb.cache.varref[l][index] >>= 1;\ h->mb.cache.varmv[l][index][1] *= 2;\ h->mb.cache.mvd[l][index][1] <<= 1;\ } MAP_MVS #undef MAP_F2F #undef FIELD_DIFFERENT } } } if( b_mbaff && mb_x == 0 && !(mb_y&1) ) { if( h->mb.i_mb_top_xy >= h->sh.i_first_mb ) h->mb.field_decoding_flag = h->mb.field[h->mb.i_mb_top_xy]; else h->mb.field_decoding_flag = 0; } /* Check whether skip here would cause decoder to predict interlace mode incorrectly. * FIXME: It might be better to change the interlace type rather than forcing a skip to be non-skip. */ h->mb.b_allow_skip = 1; if( b_mbaff ) { if( MB_INTERLACED != h->mb.field_decoding_flag && (mb_y&1) && IS_SKIP(h->mb.type[h->mb.i_mb_xy - h->mb.i_mb_stride]) ) h->mb.b_allow_skip = 0; } if( h->param.b_cabac ) { if( b_mbaff ) { int left_xy, top_xy; /* Neighbours here are calculated based on field_decoding_flag */ int mb_xy = mb_x + (mb_y&~1)*h->mb.i_mb_stride; left_xy = mb_xy - 1; if( (mb_y&1) && mb_x > 0 && h->mb.field_decoding_flag == h->mb.field[left_xy] ) left_xy += h->mb.i_mb_stride; if( h->mb.field_decoding_flag ) { top_xy = mb_xy - h->mb.i_mb_stride; if( !(mb_y&1) && top_xy >= 0 && h->mb.slice_table[top_xy] == h->sh.i_first_mb && h->mb.field[top_xy] ) top_xy -= h->mb.i_mb_stride; } else top_xy = mb_x + (mb_y-1)*h->mb.i_mb_stride; h->mb.cache.i_neighbour_skip = (mb_x > 0 && h->mb.slice_table[left_xy] == h->sh.i_first_mb && !IS_SKIP( h->mb.type[left_xy] )) + (top_xy >= 0 && h->mb.slice_table[top_xy] == h->sh.i_first_mb && !IS_SKIP( h->mb.type[top_xy] )); } else { h->mb.cache.i_neighbour_skip = ((h->mb.i_neighbour & MB_LEFT) && !IS_SKIP( h->mb.i_mb_type_left[0] )) + ((h->mb.i_neighbour & MB_TOP) && !IS_SKIP( h->mb.i_mb_type_top )); } } /* load skip */ if( h->sh.i_type == SLICE_TYPE_B ) { h->mb.bipred_weight = h->mb.bipred_weight_buf[MB_INTERLACED][MB_INTERLACED&(mb_y&1)]; h->mb.dist_scale_factor = h->mb.dist_scale_factor_buf[MB_INTERLACED][MB_INTERLACED&(mb_y&1)]; if( h->param.b_cabac ) { uint8_t skipbp; x264_macroblock_cache_skip( h, 0, 0, 4, 4, 0 ); if( b_mbaff ) { skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[LTOP]] : 0; h->mb.cache.skip[x264_scan8[0] - 1] = (skipbp >> (1+(left_index_table->mv[0]&~1))) & 1; skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[LBOT]] : 0; h->mb.cache.skip[x264_scan8[8] - 1] = (skipbp >> (1+(left_index_table->mv[2]&~1))) & 1; } else { skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[0]] : 0; h->mb.cache.skip[x264_scan8[0] - 1] = skipbp & 0x2; h->mb.cache.skip[x264_scan8[8] - 1] = skipbp & 0x8; } skipbp = (h->mb.i_neighbour & MB_TOP) ? h->mb.skipbp[top] : 0; h->mb.cache.skip[x264_scan8[0] - 8] = skipbp & 0x4; h->mb.cache.skip[x264_scan8[4] - 8] = skipbp & 0x8; } } if( h->sh.i_type == SLICE_TYPE_P ) x264_mb_predict_mv_pskip( h, h->mb.cache.pskip_mv ); h->mb.i_neighbour4[0] = h->mb.i_neighbour8[0] = (h->mb.i_neighbour_intra & (MB_TOP|MB_LEFT|MB_TOPLEFT)) | ((h->mb.i_neighbour_intra & MB_TOP) ? MB_TOPRIGHT : 0); h->mb.i_neighbour4[4] = h->mb.i_neighbour4[1] = MB_LEFT | ((h->mb.i_neighbour_intra & MB_TOP) ? (MB_TOP|MB_TOPLEFT|MB_TOPRIGHT) : 0); h->mb.i_neighbour4[2] = h->mb.i_neighbour4[8] = h->mb.i_neighbour4[10] = h->mb.i_neighbour8[2] = MB_TOP|MB_TOPRIGHT | ((h->mb.i_neighbour_intra & MB_LEFT) ? (MB_LEFT|MB_TOPLEFT) : 0); h->mb.i_neighbour4[5] = h->mb.i_neighbour8[1] = MB_LEFT | (h->mb.i_neighbour_intra & MB_TOPRIGHT) | ((h->mb.i_neighbour_intra & MB_TOP) ? MB_TOP|MB_TOPLEFT : 0); } void x264_macroblock_cache_load_progressive( x264_t *h, int mb_x, int mb_y ) { macroblock_cache_load( h, mb_x, mb_y, 0 ); } void x264_macroblock_cache_load_interlaced( x264_t *h, int mb_x, int mb_y ) { macroblock_cache_load( h, mb_x, mb_y, 1 ); } static void macroblock_deblock_strength_mbaff( x264_t *h, uint8_t (*bs)[8][4] ) { if( (h->mb.i_neighbour & MB_LEFT) && h->mb.field[h->mb.i_mb_left_xy[0]] != MB_INTERLACED ) { static const uint8_t offset[2][2][8] = { { { 0, 0, 0, 0, 1, 1, 1, 1 }, { 2, 2, 2, 2, 3, 3, 3, 3 }, }, { { 0, 1, 2, 3, 0, 1, 2, 3 }, { 0, 1, 2, 3, 0, 1, 2, 3 }, } }; ALIGNED_ARRAY_8( uint8_t, tmpbs, [8] ); const uint8_t *off = offset[MB_INTERLACED][h->mb.i_mb_y&1]; uint8_t (*nnz)[48] = h->mb.non_zero_count; for( int i = 0; i < 8; i++ ) { int left = h->mb.i_mb_left_xy[MB_INTERLACED ? i>>2 : i&1]; int nnz_this = h->mb.cache.non_zero_count[x264_scan8[0]+8*(i>>1)]; int nnz_left = nnz[left][3 + 4*off[i]]; if( !h->param.b_cabac && h->pps->b_transform_8x8_mode ) { int j = off[i]&~1; if( h->mb.mb_transform_size[left] ) nnz_left = !!(M16( &nnz[left][2+4*j] ) | M16( &nnz[left][2+4*(1+j)] )); } tmpbs[i] = (nnz_left || nnz_this) ? 2 : 1; } if( MB_INTERLACED ) { CP32( bs[0][0], &tmpbs[0] ); CP32( bs[0][4], &tmpbs[4] ); } else { for( int i = 0; i < 4; i++ ) bs[0][0][i] = tmpbs[2*i]; for( int i = 0; i < 4; i++ ) bs[0][4][i] = tmpbs[1+2*i]; } } if( (h->mb.i_neighbour & MB_TOP) && MB_INTERLACED != h->mb.field[h->mb.i_mb_top_xy] ) { if( !(h->mb.i_mb_y&1) && !MB_INTERLACED ) { /* Need to filter both fields (even for frame macroblocks). * Filter top two rows using the top macroblock of the above * pair and then the bottom one. */ int mbn_xy = h->mb.i_mb_xy - 2 * h->mb.i_mb_stride; uint8_t *nnz_cur = &h->mb.cache.non_zero_count[x264_scan8[0]]; for( int j = 0; j < 2; j++, mbn_xy += h->mb.i_mb_stride ) { uint8_t (*nnz)[48] = h->mb.non_zero_count; ALIGNED_4( uint8_t nnz_top[4] ); CP32( nnz_top, &nnz[mbn_xy][3*4] ); if( !h->param.b_cabac && h->pps->b_transform_8x8_mode && h->mb.mb_transform_size[mbn_xy] ) { nnz_top[0] = nnz_top[1] = M16( &nnz[mbn_xy][ 8] ) || M16( &nnz[mbn_xy][12] ); nnz_top[2] = nnz_top[3] = M16( &nnz[mbn_xy][10] ) || M16( &nnz[mbn_xy][14] ); } for( int i = 0; i < 4; i++ ) bs[1][4*j][i] = (nnz_cur[i] || nnz_top[i]) ? 2 : 1; } } else for( int i = 0; i < 4; i++ ) bs[1][0][i] = X264_MAX( bs[1][0][i], 1 ); } } void x264_macroblock_deblock_strength( x264_t *h ) { uint8_t (*bs)[8][4] = h->mb.cache.deblock_strength; if( IS_INTRA( h->mb.i_type ) ) { M32( bs[0][1] ) = 0x03030303; M64( bs[0][2] ) = 0x0303030303030303ULL; M32( bs[1][1] ) = 0x03030303; M64( bs[1][2] ) = 0x0303030303030303ULL; return; } /* Early termination: in this case, nnz guarantees all edges use strength 2.*/ if( h->mb.b_transform_8x8 && !CHROMA444 ) { int cbp_mask = 0xf >> CHROMA_V_SHIFT; if( (h->mb.i_cbp_luma&cbp_mask) == cbp_mask ) { M32( bs[0][0] ) = 0x02020202; M32( bs[0][2] ) = 0x02020202; M32( bs[0][4] ) = 0x02020202; M64( bs[1][0] ) = 0x0202020202020202ULL; /* [1][1] and [1][3] has to be set for 4:2:2 */ M64( bs[1][2] ) = 0x0202020202020202ULL; M32( bs[1][4] ) = 0x02020202; return; } } int neighbour_changed = 0; if( h->sh.i_disable_deblocking_filter_idc != 2 ) { neighbour_changed = h->mb.i_neighbour_frame&~h->mb.i_neighbour; h->mb.i_neighbour = h->mb.i_neighbour_frame; } /* MBAFF deblock uses different left neighbors from encoding */ if( SLICE_MBAFF && (h->mb.i_neighbour & MB_LEFT) && (h->mb.field[h->mb.i_mb_xy - 1] != MB_INTERLACED) ) { h->mb.i_mb_left_xy[1] = h->mb.i_mb_left_xy[0] = h->mb.i_mb_xy - 1; if( h->mb.i_mb_y&1 ) h->mb.i_mb_left_xy[0] -= h->mb.i_mb_stride; else h->mb.i_mb_left_xy[1] += h->mb.i_mb_stride; } /* If we have multiple slices and we're deblocking on slice edges, we * have to reload neighbour data. */ if( neighbour_changed ) { int top_y = h->mb.i_mb_top_y; int top_8x8 = (2*top_y+1) * h->mb.i_b8_stride + 2*h->mb.i_mb_x; int top_4x4 = (4*top_y+3) * h->mb.i_b4_stride + 4*h->mb.i_mb_x; int s8x8 = h->mb.i_b8_stride; int s4x4 = h->mb.i_b4_stride; uint8_t (*nnz)[48] = h->mb.non_zero_count; const x264_left_table_t *left_index_table = SLICE_MBAFF ? h->mb.left_index_table : &left_indices[3]; if( neighbour_changed & MB_TOP ) CP32( &h->mb.cache.non_zero_count[x264_scan8[0] - 8], &nnz[h->mb.i_mb_top_xy][12] ); if( neighbour_changed & MB_LEFT ) { int *left = h->mb.i_mb_left_xy; h->mb.cache.non_zero_count[x264_scan8[0 ] - 1] = nnz[left[0]][left_index_table->nnz[0]]; h->mb.cache.non_zero_count[x264_scan8[2 ] - 1] = nnz[left[0]][left_index_table->nnz[1]]; h->mb.cache.non_zero_count[x264_scan8[8 ] - 1] = nnz[left[1]][left_index_table->nnz[2]]; h->mb.cache.non_zero_count[x264_scan8[10] - 1] = nnz[left[1]][left_index_table->nnz[3]]; } for( int l = 0; l <= (h->sh.i_type == SLICE_TYPE_B); l++ ) { int16_t (*mv)[2] = h->mb.mv[l]; int8_t *ref = h->mb.ref[l]; int i8 = x264_scan8[0] - 8; if( neighbour_changed & MB_TOP ) { h->mb.cache.ref[l][i8+0] = h->mb.cache.ref[l][i8+1] = ref[top_8x8 + 0]; h->mb.cache.ref[l][i8+2] = h->mb.cache.ref[l][i8+3] = ref[top_8x8 + 1]; CP128( h->mb.cache.mv[l][i8], mv[top_4x4] ); } i8 = x264_scan8[0] - 1; if( neighbour_changed & MB_LEFT ) { h->mb.cache.ref[l][i8+0*8] = h->mb.cache.ref[l][i8+1*8] = ref[h->mb.left_b8[0] + 1 + s8x8*left_index_table->ref[0]]; h->mb.cache.ref[l][i8+2*8] = h->mb.cache.ref[l][i8+3*8] = ref[h->mb.left_b8[1] + 1 + s8x8*left_index_table->ref[2]]; CP32( h->mb.cache.mv[l][i8+0*8], mv[h->mb.left_b4[0] + 3 + s4x4*left_index_table->mv[0]] ); CP32( h->mb.cache.mv[l][i8+1*8], mv[h->mb.left_b4[0] + 3 + s4x4*left_index_table->mv[1]] ); CP32( h->mb.cache.mv[l][i8+2*8], mv[h->mb.left_b4[1] + 3 + s4x4*left_index_table->mv[2]] ); CP32( h->mb.cache.mv[l][i8+3*8], mv[h->mb.left_b4[1] + 3 + s4x4*left_index_table->mv[3]] ); } } } if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART && h->sh.i_type == SLICE_TYPE_P ) { /* Handle reference frame duplicates */ int i8 = x264_scan8[0] - 8; h->mb.cache.ref[0][i8+0] = h->mb.cache.ref[0][i8+1] = deblock_ref_table(h->mb.cache.ref[0][i8+0]); h->mb.cache.ref[0][i8+2] = h->mb.cache.ref[0][i8+3] = deblock_ref_table(h->mb.cache.ref[0][i8+2]); i8 = x264_scan8[0] - 1; h->mb.cache.ref[0][i8+0*8] = h->mb.cache.ref[0][i8+1*8] = deblock_ref_table(h->mb.cache.ref[0][i8+0*8]); h->mb.cache.ref[0][i8+2*8] = h->mb.cache.ref[0][i8+3*8] = deblock_ref_table(h->mb.cache.ref[0][i8+2*8]); int ref0 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 0]]); int ref1 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 4]]); int ref2 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 8]]); int ref3 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[12]]); uint32_t reftop = pack16to32( (uint8_t)ref0, (uint8_t)ref1 ) * 0x0101; uint32_t refbot = pack16to32( (uint8_t)ref2, (uint8_t)ref3 ) * 0x0101; M32( &h->mb.cache.ref[0][x264_scan8[0]+8*0] ) = reftop; M32( &h->mb.cache.ref[0][x264_scan8[0]+8*1] ) = reftop; M32( &h->mb.cache.ref[0][x264_scan8[0]+8*2] ) = refbot; M32( &h->mb.cache.ref[0][x264_scan8[0]+8*3] ) = refbot; } /* Munge NNZ for cavlc + 8x8dct */ if( !h->param.b_cabac && h->pps->b_transform_8x8_mode ) { uint8_t (*nnz)[48] = h->mb.non_zero_count; int top = h->mb.i_mb_top_xy; int *left = h->mb.i_mb_left_xy; if( (h->mb.i_neighbour & MB_TOP) && h->mb.mb_transform_size[top] ) { int i8 = x264_scan8[0] - 8; int nnz_top0 = M16( &nnz[top][8] ) | M16( &nnz[top][12] ); int nnz_top1 = M16( &nnz[top][10] ) | M16( &nnz[top][14] ); M16( &h->mb.cache.non_zero_count[i8+0] ) = nnz_top0 ? 0x0101 : 0; M16( &h->mb.cache.non_zero_count[i8+2] ) = nnz_top1 ? 0x0101 : 0; } if( h->mb.i_neighbour & MB_LEFT ) { int i8 = x264_scan8[0] - 1; if( h->mb.mb_transform_size[left[0]] ) { int nnz_left0 = M16( &nnz[left[0]][2] ) | M16( &nnz[left[0]][6] ); h->mb.cache.non_zero_count[i8+8*0] = !!nnz_left0; h->mb.cache.non_zero_count[i8+8*1] = !!nnz_left0; } if( h->mb.mb_transform_size[left[1]] ) { int nnz_left1 = M16( &nnz[left[1]][10] ) | M16( &nnz[left[1]][14] ); h->mb.cache.non_zero_count[i8+8*2] = !!nnz_left1; h->mb.cache.non_zero_count[i8+8*3] = !!nnz_left1; } } if( h->mb.b_transform_8x8 ) { int nnz0 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ); int nnz1 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 4]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[ 6]] ); int nnz2 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[10]] ); int nnz3 = M16( &h->mb.cache.non_zero_count[x264_scan8[12]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[14]] ); uint32_t nnztop = pack16to32( !!nnz0, !!nnz1 ) * 0x0101; uint32_t nnzbot = pack16to32( !!nnz2, !!nnz3 ) * 0x0101; M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*0] ) = nnztop; M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*1] ) = nnztop; M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*2] ) = nnzbot; M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*3] ) = nnzbot; } } h->loopf.deblock_strength( h->mb.cache.non_zero_count, h->mb.cache.ref, h->mb.cache.mv, bs, 4 >> MB_INTERLACED, h->sh.i_type == SLICE_TYPE_B ); if( SLICE_MBAFF ) macroblock_deblock_strength_mbaff( h, bs ); } static ALWAYS_INLINE void macroblock_store_pic( x264_t *h, int mb_x, int mb_y, int i, int b_chroma, int b_mbaff ) { int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16; int i_stride = h->fdec->i_stride[i]; int i_stride2 = i_stride << (b_mbaff && MB_INTERLACED); int i_pix_offset = (b_mbaff && MB_INTERLACED) ? 16 * mb_x + height * (mb_y&~1) * i_stride + (mb_y&1) * i_stride : 16 * mb_x + height * mb_y * i_stride; if( b_chroma ) h->mc.store_interleave_chroma( &h->fdec->plane[1][i_pix_offset], i_stride2, h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], height ); else h->mc.copy[PIXEL_16x16]( &h->fdec->plane[i][i_pix_offset], i_stride2, h->mb.pic.p_fdec[i], FDEC_STRIDE, 16 ); } static ALWAYS_INLINE void macroblock_backup_intra( x264_t *h, int mb_x, int mb_y, int b_mbaff ) { /* In MBAFF we store the last two rows in intra_border_backup[0] and [1]. * For progressive mbs this is the bottom two rows, and for interlaced the * bottom row of each field. We also store samples needed for the next * mbpair in intra_border_backup[2]. */ int backup_dst = !b_mbaff ? (mb_y&1) : (mb_y&1) ? 1 : MB_INTERLACED ? 0 : 2; memcpy( &h->intra_border_backup[backup_dst][0][mb_x*16 ], h->mb.pic.p_fdec[0]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL ); if( CHROMA444 ) { memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL ); memcpy( &h->intra_border_backup[backup_dst][2][mb_x*16 ], h->mb.pic.p_fdec[2]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL ); } else if( CHROMA_FORMAT ) { int backup_src = (15>>CHROMA_V_SHIFT) * FDEC_STRIDE; memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 8*SIZEOF_PIXEL ); memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16+8], h->mb.pic.p_fdec[2]+backup_src, 8*SIZEOF_PIXEL ); } if( b_mbaff ) { if( mb_y&1 ) { int backup_src = (MB_INTERLACED ? 7 : 14) * FDEC_STRIDE; backup_dst = MB_INTERLACED ? 2 : 0; memcpy( &h->intra_border_backup[backup_dst][0][mb_x*16 ], h->mb.pic.p_fdec[0]+backup_src, 16*SIZEOF_PIXEL ); if( CHROMA444 ) { memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 16*SIZEOF_PIXEL ); memcpy( &h->intra_border_backup[backup_dst][2][mb_x*16 ], h->mb.pic.p_fdec[2]+backup_src, 16*SIZEOF_PIXEL ); } else if( CHROMA_FORMAT ) { if( CHROMA_FORMAT == CHROMA_420 ) backup_src = (MB_INTERLACED ? 3 : 6) * FDEC_STRIDE; memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 8*SIZEOF_PIXEL ); memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16+8], h->mb.pic.p_fdec[2]+backup_src, 8*SIZEOF_PIXEL ); } } } } void x264_macroblock_cache_save( x264_t *h ) { const int i_mb_xy = h->mb.i_mb_xy; const int i_mb_type = x264_mb_type_fix[h->mb.i_type]; const int s8x8 = h->mb.i_b8_stride; const int s4x4 = h->mb.i_b4_stride; const int i_mb_4x4 = h->mb.i_b4_xy; const int i_mb_8x8 = h->mb.i_b8_xy; /* GCC pessimizes direct stores to heap-allocated arrays due to aliasing. */ /* By only dereferencing them once, we avoid this issue. */ int8_t *i4x4 = h->mb.intra4x4_pred_mode[i_mb_xy]; uint8_t *nnz = h->mb.non_zero_count[i_mb_xy]; if( SLICE_MBAFF ) { macroblock_backup_intra( h, h->mb.i_mb_x, h->mb.i_mb_y, 1 ); macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 0, 0, 1 ); if( CHROMA444 ) { macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 0, 1 ); macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 2, 0, 1 ); } else if( CHROMA_FORMAT ) macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 1, 1 ); } else { macroblock_backup_intra( h, h->mb.i_mb_x, h->mb.i_mb_y, 0 ); macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 0, 0, 0 ); if( CHROMA444 ) { macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 0, 0 ); macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 2, 0, 0 ); } else if( CHROMA_FORMAT ) macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 1, 0 ); } x264_prefetch_fenc( h, h->fdec, h->mb.i_mb_x, h->mb.i_mb_y ); h->mb.type[i_mb_xy] = i_mb_type; h->mb.slice_table[i_mb_xy] = h->sh.i_first_mb; h->mb.partition[i_mb_xy] = IS_INTRA( i_mb_type ) ? D_16x16 : h->mb.i_partition; h->mb.i_mb_prev_xy = i_mb_xy; /* save intra4x4 */ if( i_mb_type == I_4x4 ) { CP32( &i4x4[0], &h->mb.cache.intra4x4_pred_mode[x264_scan8[10]] ); M32( &i4x4[4] ) = pack8to32( h->mb.cache.intra4x4_pred_mode[x264_scan8[5] ], h->mb.cache.intra4x4_pred_mode[x264_scan8[7] ], h->mb.cache.intra4x4_pred_mode[x264_scan8[13] ], 0); } else if( !h->param.b_constrained_intra || IS_INTRA(i_mb_type) ) M64( i4x4 ) = I_PRED_4x4_DC * 0x0101010101010101ULL; else M64( i4x4 ) = (uint8_t)(-1) * 0x0101010101010101ULL; if( i_mb_type == I_PCM ) { h->mb.qp[i_mb_xy] = 0; h->mb.i_last_dqp = 0; h->mb.i_cbp_chroma = CHROMA444 ? 0 : 2; h->mb.i_cbp_luma = 0xf; h->mb.cbp[i_mb_xy] = (h->mb.i_cbp_chroma << 4) | h->mb.i_cbp_luma | 0x1700; h->mb.b_transform_8x8 = 0; for( int i = 0; i < 48; i++ ) h->mb.cache.non_zero_count[x264_scan8[i]] = h->param.b_cabac ? 1 : 16; } else { if( h->mb.i_type != I_16x16 && h->mb.i_cbp_luma == 0 && h->mb.i_cbp_chroma == 0 ) h->mb.i_qp = h->mb.i_last_qp; h->mb.qp[i_mb_xy] = h->mb.i_qp; h->mb.i_last_dqp = h->mb.i_qp - h->mb.i_last_qp; h->mb.i_last_qp = h->mb.i_qp; } /* save non zero count */ CP32( &nnz[ 0+0*4], &h->mb.cache.non_zero_count[x264_scan8[ 0]] ); CP32( &nnz[ 0+1*4], &h->mb.cache.non_zero_count[x264_scan8[ 2]] ); CP32( &nnz[ 0+2*4], &h->mb.cache.non_zero_count[x264_scan8[ 8]] ); CP32( &nnz[ 0+3*4], &h->mb.cache.non_zero_count[x264_scan8[10]] ); CP32( &nnz[16+0*4], &h->mb.cache.non_zero_count[x264_scan8[16+0]] ); CP32( &nnz[16+1*4], &h->mb.cache.non_zero_count[x264_scan8[16+2]] ); CP32( &nnz[32+0*4], &h->mb.cache.non_zero_count[x264_scan8[32+0]] ); CP32( &nnz[32+1*4], &h->mb.cache.non_zero_count[x264_scan8[32+2]] ); if( CHROMA_FORMAT >= CHROMA_422 ) { CP32( &nnz[16+2*4], &h->mb.cache.non_zero_count[x264_scan8[16+ 8]] ); CP32( &nnz[16+3*4], &h->mb.cache.non_zero_count[x264_scan8[16+10]] ); CP32( &nnz[32+2*4], &h->mb.cache.non_zero_count[x264_scan8[32+ 8]] ); CP32( &nnz[32+3*4], &h->mb.cache.non_zero_count[x264_scan8[32+10]] ); } if( h->mb.i_cbp_luma == 0 && h->mb.i_type != I_8x8 ) h->mb.b_transform_8x8 = 0; h->mb.mb_transform_size[i_mb_xy] = h->mb.b_transform_8x8; if( h->sh.i_type != SLICE_TYPE_I ) { int16_t (*mv0)[2] = &h->mb.mv[0][i_mb_4x4]; int8_t *ref0 = &h->mb.ref[0][i_mb_8x8]; if( !IS_INTRA( i_mb_type ) ) { ref0[0+0*s8x8] = h->mb.cache.ref[0][x264_scan8[0]]; ref0[1+0*s8x8] = h->mb.cache.ref[0][x264_scan8[4]]; ref0[0+1*s8x8] = h->mb.cache.ref[0][x264_scan8[8]]; ref0[1+1*s8x8] = h->mb.cache.ref[0][x264_scan8[12]]; CP128( &mv0[0*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*0] ); CP128( &mv0[1*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*1] ); CP128( &mv0[2*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*2] ); CP128( &mv0[3*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*3] ); if( h->sh.i_type == SLICE_TYPE_B ) { int16_t (*mv1)[2] = &h->mb.mv[1][i_mb_4x4]; int8_t *ref1 = &h->mb.ref[1][i_mb_8x8]; ref1[0+0*s8x8] = h->mb.cache.ref[1][x264_scan8[0]]; ref1[1+0*s8x8] = h->mb.cache.ref[1][x264_scan8[4]]; ref1[0+1*s8x8] = h->mb.cache.ref[1][x264_scan8[8]]; ref1[1+1*s8x8] = h->mb.cache.ref[1][x264_scan8[12]]; CP128( &mv1[0*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*0] ); CP128( &mv1[1*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*1] ); CP128( &mv1[2*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*2] ); CP128( &mv1[3*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*3] ); } } else { M16( &ref0[0*s8x8] ) = (uint8_t)(-1) * 0x0101; M16( &ref0[1*s8x8] ) = (uint8_t)(-1) * 0x0101; M128( &mv0[0*s4x4] ) = M128_ZERO; M128( &mv0[1*s4x4] ) = M128_ZERO; M128( &mv0[2*s4x4] ) = M128_ZERO; M128( &mv0[3*s4x4] ) = M128_ZERO; if( h->sh.i_type == SLICE_TYPE_B ) { int16_t (*mv1)[2] = &h->mb.mv[1][i_mb_4x4]; int8_t *ref1 = &h->mb.ref[1][i_mb_8x8]; M16( &ref1[0*s8x8] ) = (uint8_t)(-1) * 0x0101; M16( &ref1[1*s8x8] ) = (uint8_t)(-1) * 0x0101; M128( &mv1[0*s4x4] ) = M128_ZERO; M128( &mv1[1*s4x4] ) = M128_ZERO; M128( &mv1[2*s4x4] ) = M128_ZERO; M128( &mv1[3*s4x4] ) = M128_ZERO; } } } if( h->param.b_cabac ) { uint8_t (*mvd0)[2] = h->mb.mvd[0][i_mb_xy]; if( IS_INTRA(i_mb_type) && i_mb_type != I_PCM ) h->mb.chroma_pred_mode[i_mb_xy] = x264_mb_chroma_pred_mode_fix[h->mb.i_chroma_pred_mode]; else h->mb.chroma_pred_mode[i_mb_xy] = I_PRED_CHROMA_DC; if( (0x3FF30 >> i_mb_type) & 1 ) /* !INTRA && !SKIP && !DIRECT */ { CP64( mvd0[0], h->mb.cache.mvd[0][x264_scan8[10]] ); CP16( mvd0[4], h->mb.cache.mvd[0][x264_scan8[5 ]] ); CP16( mvd0[5], h->mb.cache.mvd[0][x264_scan8[7 ]] ); CP16( mvd0[6], h->mb.cache.mvd[0][x264_scan8[13]] ); if( h->sh.i_type == SLICE_TYPE_B ) { uint8_t (*mvd1)[2] = h->mb.mvd[1][i_mb_xy]; CP64( mvd1[0], h->mb.cache.mvd[1][x264_scan8[10]] ); CP16( mvd1[4], h->mb.cache.mvd[1][x264_scan8[5 ]] ); CP16( mvd1[5], h->mb.cache.mvd[1][x264_scan8[7 ]] ); CP16( mvd1[6], h->mb.cache.mvd[1][x264_scan8[13]] ); } } else { M128( mvd0[0] ) = M128_ZERO; if( h->sh.i_type == SLICE_TYPE_B ) { uint8_t (*mvd1)[2] = h->mb.mvd[1][i_mb_xy]; M128( mvd1[0] ) = M128_ZERO; } } if( h->sh.i_type == SLICE_TYPE_B ) { if( i_mb_type == B_SKIP || i_mb_type == B_DIRECT ) h->mb.skipbp[i_mb_xy] = 0xf; else if( i_mb_type == B_8x8 ) { int skipbp = ( h->mb.i_sub_partition[0] == D_DIRECT_8x8 ) << 0; skipbp |= ( h->mb.i_sub_partition[1] == D_DIRECT_8x8 ) << 1; skipbp |= ( h->mb.i_sub_partition[2] == D_DIRECT_8x8 ) << 2; skipbp |= ( h->mb.i_sub_partition[3] == D_DIRECT_8x8 ) << 3; h->mb.skipbp[i_mb_xy] = skipbp; } else h->mb.skipbp[i_mb_xy] = 0; } } } void x264_macroblock_bipred_init( x264_t *h ) { for( int mbfield = 0; mbfield <= SLICE_MBAFF; mbfield++ ) for( int field = 0; field <= SLICE_MBAFF; field++ ) for( int i_ref0 = 0; i_ref0 < (h->i_ref[0]<fref[0][i_ref0>>mbfield]; int poc0 = l0->i_poc + mbfield*l0->i_delta_poc[field^(i_ref0&1)]; for( int i_ref1 = 0; i_ref1 < (h->i_ref[1]<fref[1][i_ref1>>mbfield]; int cur_poc = h->fdec->i_poc + mbfield*h->fdec->i_delta_poc[field]; int poc1 = l1->i_poc + mbfield*l1->i_delta_poc[field^(i_ref1&1)]; int td = x264_clip3( poc1 - poc0, -128, 127 ); if( td == 0 /* || pic0 is a long-term ref */ ) { h->mb.dist_scale_factor_buf[mbfield][field][i_ref0][i_ref1] = 256; h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 32; } else { int tb = x264_clip3( cur_poc - poc0, -128, 127 ); int tx = (16384 + (abs(td) >> 1)) / td; int dist_scale_factor = x264_clip3( (tb * tx + 32) >> 6, -1024, 1023 ); h->mb.dist_scale_factor_buf[mbfield][field][i_ref0][i_ref1] = dist_scale_factor; dist_scale_factor >>= 2; if( h->param.analyse.b_weighted_bipred /* && pic1 is not a long-term ref */ && dist_scale_factor >= -64 && dist_scale_factor <= 128 ) { h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 64 - dist_scale_factor; // ssse3 implementation of biweight doesn't support the extrema. // if we ever generate them, we'll have to drop that optimization. assert( dist_scale_factor >= -63 && dist_scale_factor <= 127 ); } else h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 32; } } } }