/* * Copyright 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include /* For PRIu64 */ #include #include #include #include #include "file_type.h" #include "futility.h" #include "host_common.h" #include "kernel_blob.h" #include "util_misc.h" #include "vb1_helper.h" /****************************************************************************/ /* Here are globals containing all the bits & pieces I'm working on. * * kernel vblock = keyblock + kernel preamble + padding to 64K (or whatever) * kernel blob = 32-bit kernel + config file + params + bootloader stub + * vmlinuz_header * kernel partition = kernel vblock + kernel blob * * The VbKernelPreambleHeader.preamble_size includes the padding. */ /* The keyblock, preamble, and kernel blob are kept in separate places. */ static VbKeyBlockHeader *g_keyblock; static VbKernelPreambleHeader *g_preamble; static uint8_t *g_kernel_blob_data; static uint64_t g_kernel_blob_size; /* These refer to individual parts within the kernel blob. */ static uint8_t *g_kernel_data; static uint64_t g_kernel_size; static uint8_t *g_config_data; static uint64_t g_config_size; static uint8_t *g_param_data; static uint64_t g_param_size; static uint8_t *g_bootloader_data; static uint64_t g_bootloader_size; static uint8_t *g_vmlinuz_header_data; static uint64_t g_vmlinuz_header_size; static uint64_t g_ondisk_bootloader_addr; static uint64_t g_ondisk_vmlinuz_header_addr; /* * Read the kernel command line from a file. Get rid of \n characters along * the way and verify that the line fits into a 4K buffer. * * Return the buffer contaning the line on success (and set the line length * using the passed in parameter), or NULL in case something goes wrong. */ uint8_t *ReadConfigFile(const char *config_file, uint64_t *config_size) { uint8_t *config_buf; int i; config_buf = ReadFile(config_file, config_size); if (!config_buf) return NULL; Debug(" config file size=0x%" PRIx64 "\n", *config_size); if (CROS_CONFIG_SIZE <= *config_size) { /* room for trailing '\0' */ fprintf(stderr, "Config file %s is too large (>= %d bytes)\n", config_file, CROS_CONFIG_SIZE); return NULL; } /* Replace newlines with spaces */ for (i = 0; i < *config_size; i++) if ('\n' == config_buf[i]) config_buf[i] = ' '; return config_buf; } /****************************************************************************/ /* Return the smallest integral multiple of [alignment] that is equal * to or greater than [val]. Used to determine the number of * pages/sectors/blocks/whatever needed to contain [val] * items/bytes/etc. */ static uint64_t roundup(uint64_t val, uint64_t alignment) { uint64_t rem = val % alignment; if (rem) return val + (alignment - rem); return val; } /* Match regexp /\b--\b/ to delimit the start of the kernel commandline. If we * don't find one, we'll use the whole thing. */ static unsigned int find_cmdline_start(uint8_t *buf_ptr, unsigned int max_len) { char *input = (char *)buf_ptr; int start = 0; int i; for (i = 0; i < max_len - 1 && input[i]; i++) { if ('-' == input[i] && '-' == input[i + 1]) { if ((i == 0 || ' ' == input[i - 1]) && (i + 2 >= max_len || ' ' == input[i + 2])) { /* found "--" with nothing before or after it */ start = i + 2; /* hope for a trailing '\0' */ break; } } } while (' ' == input[start]) /* skip leading spaces */ start++; return start; } /* Offset of kernel command line string from the start of the kernel blob */ uint64_t KernelCmdLineOffset(VbKernelPreambleHeader *preamble) { return preamble->bootloader_address - preamble->body_load_address - CROS_CONFIG_SIZE - CROS_PARAMS_SIZE; } /* Returns the size of the 32-bit kernel, or negative on error. */ static int KernelSize(uint8_t *kernel_buf, uint64_t kernel_size, enum arch_t arch) { uint64_t kernel32_start = 0; struct linux_kernel_params *lh; /* Except for x86, the kernel is the kernel. */ if (arch != ARCH_X86) return kernel_size; /* The first part of the x86 vmlinuz is a header, followed by * a real-mode boot stub. We only want the 32-bit part. */ lh = (struct linux_kernel_params *)kernel_buf; kernel32_start = (lh->setup_sects + 1) << 9; if (kernel32_start >= kernel_size) { fprintf(stderr, "Malformed kernel\n"); return -1; } return kernel_size - kernel32_start; } /* This extracts g_kernel_* and g_param_* from a standard vmlinuz file. * It returns nonzero on error. */ static int PickApartVmlinuz(uint8_t *kernel_buf, uint64_t kernel_size, enum arch_t arch, uint64_t kernel_body_load_address) { uint64_t kernel32_start = 0; uint64_t kernel32_size = kernel_size; struct linux_kernel_params *lh, *params; /* Except for x86, the kernel is the kernel. */ if (arch == ARCH_X86) { /* The first part of the x86 vmlinuz is a header, followed by * a real-mode boot stub. We only want the 32-bit part. */ lh = (struct linux_kernel_params *)kernel_buf; kernel32_start = (lh->setup_sects + 1) << 9; if (kernel32_start >= kernel_size) { fprintf(stderr, "Malformed kernel\n"); return -1; } kernel32_size = kernel_size - kernel32_start; Debug(" kernel16_start=0x%" PRIx64 "\n", 0); Debug(" kernel16_size=0x%" PRIx64 "\n", kernel32_start); /* Copy the original zeropage data from kernel_buf into * g_param_data, then tweak a few fields for our purposes */ params = (struct linux_kernel_params *)(g_param_data); Memcpy(&(params->setup_sects), &(lh->setup_sects), offsetof(struct linux_kernel_params, e820_entries) - offsetof(struct linux_kernel_params, setup_sects)); params->boot_flag = 0; params->ramdisk_image = 0; /* we don't support initrd */ params->ramdisk_size = 0; params->type_of_loader = 0xff; /* We need to point to the kernel commandline arg. On disk, it * will come right after the 32-bit part of the kernel. */ params->cmd_line_ptr = kernel_body_load_address + roundup(kernel32_size, CROS_ALIGN) + find_cmdline_start(g_config_data, g_config_size); Debug(" cmdline_addr=0x%x\n", params->cmd_line_ptr); Debug(" version=0x%x\n", params->version); Debug(" kernel_alignment=0x%x\n", params->kernel_alignment); Debug(" relocatable_kernel=0x%x\n", params->relocatable_kernel); /* Add a fake e820 memory map with 2 entries. */ params->n_e820_entry = 2; params->e820_entries[0].start_addr = 0x00000000; params->e820_entries[0].segment_size = 0x00001000; params->e820_entries[0].segment_type = E820_TYPE_RAM; params->e820_entries[1].start_addr = 0xfffff000; params->e820_entries[1].segment_size = 0x00001000; params->e820_entries[1].segment_type = E820_TYPE_RESERVED; } Debug(" kernel32_start=0x%" PRIx64 "\n", kernel32_start); Debug(" kernel32_size=0x%" PRIx64 "\n", kernel32_size); /* Keep just the 32-bit kernel. */ if (kernel32_size) { g_kernel_size = kernel32_size; Memcpy(g_kernel_data, kernel_buf + kernel32_start, g_kernel_size); } /* done */ return 0; } /* Split a kernel blob into separate g_kernel, g_param, g_config, * g_bootloader, and g_vmlinuz_header parts. */ static void UnpackKernelBlob(uint8_t *kernel_blob_data) { uint64_t now; uint64_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; /* We have to work backwards from the end, because the preamble only describes the bootloader and vmlinuz stubs. */ /* Vmlinuz Header is at the end */ if (VbGetKernelVmlinuzHeader(g_preamble, &vmlinuz_header_address, &vmlinuz_header_size) != VBOOT_SUCCESS) { fprintf(stderr, "Unable to retrieve Vmlinuz Header!"); return; } if (vmlinuz_header_size) { now = vmlinuz_header_address - g_preamble->body_load_address; g_vmlinuz_header_size = vmlinuz_header_size; g_vmlinuz_header_data = kernel_blob_data + now; Debug("vmlinuz_header_size = 0x%" PRIx64 "\n", g_vmlinuz_header_size); Debug("vmlinuz_header_ofs = 0x%" PRIx64 "\n", now); } /* Where does the bootloader stub begin? */ now = g_preamble->bootloader_address - g_preamble->body_load_address; /* Bootloader is at the end */ g_bootloader_size = g_preamble->bootloader_size; g_bootloader_data = kernel_blob_data + now; /* TODO: What to do if this is beyond the end of the blob? */ Debug("bootloader_size = 0x%" PRIx64 "\n", g_bootloader_size); Debug("bootloader_ofs = 0x%" PRIx64 "\n", now); /* Before that is the params */ now -= CROS_PARAMS_SIZE; g_param_size = CROS_PARAMS_SIZE; g_param_data = kernel_blob_data + now; Debug("param_ofs = 0x%" PRIx64 "\n", now); /* Before that is the config */ now -= CROS_CONFIG_SIZE; g_config_size = CROS_CONFIG_SIZE; g_config_data = kernel_blob_data + now; Debug("config_ofs = 0x%" PRIx64 "\n", now); /* The kernel starts at offset 0 and extends up to the config */ g_kernel_data = kernel_blob_data; g_kernel_size = now; Debug("kernel_size = 0x%" PRIx64 "\n", g_kernel_size); } /* Replaces the config section of the specified kernel blob. * Return nonzero on error. */ int UpdateKernelBlobConfig(uint8_t *kblob_data, uint64_t kblob_size, uint8_t *config_data, uint64_t config_size) { /* We should have already examined this blob. If not, we could do it * again, but it's more likely due to an error. */ if (kblob_data != g_kernel_blob_data || kblob_size != g_kernel_blob_size) { fprintf(stderr, "Trying to update some other blob\n"); return -1; } Memset(g_config_data, 0, g_config_size); Memcpy(g_config_data, config_data, config_size); return 0; } /* Split a kernel partition into separate vblock and blob parts. */ uint8_t *UnpackKPart(uint8_t *kpart_data, uint64_t kpart_size, uint64_t padding, VbKeyBlockHeader **keyblock_ptr, VbKernelPreambleHeader **preamble_ptr, uint64_t *blob_size_ptr) { VbKeyBlockHeader *keyblock; VbKernelPreambleHeader *preamble; uint64_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; uint64_t now = 0; uint32_t flags = 0; /* Sanity-check the keyblock */ keyblock = (VbKeyBlockHeader *)kpart_data; Debug("Keyblock is 0x%" PRIx64 " bytes\n", keyblock->key_block_size); now += keyblock->key_block_size; if (now > kpart_size) { fprintf(stderr, "key_block_size advances past the end of the blob\n"); return NULL; } if (now > padding) { fprintf(stderr, "key_block_size advances past %" PRIu64 " byte padding\n", padding); return NULL; } /* LGTM */ g_keyblock = keyblock; /* And the preamble */ preamble = (VbKernelPreambleHeader *)(kpart_data + now); Debug("Preamble is 0x%" PRIx64 " bytes\n", preamble->preamble_size); now += preamble->preamble_size; if (now > kpart_size) { fprintf(stderr, "preamble_size advances past the end of the blob\n"); return NULL; } if (now > padding) { fprintf(stderr, "preamble_size advances past %" PRIu64 " byte padding\n", padding); return NULL; } /* LGTM */ Debug(" kernel_version = %d\n", preamble->kernel_version); Debug(" bootloader_address = 0x%" PRIx64 "\n", preamble->bootloader_address); Debug(" bootloader_size = 0x%" PRIx64 "\n", preamble->bootloader_size); Debug(" kern_blob_size = 0x%" PRIx64 "\n", preamble->body_signature.data_size); if (VbKernelHasFlags(preamble) == VBOOT_SUCCESS) flags = preamble->flags; Debug(" flags = 0x%" PRIx32 "\n", flags); g_preamble = preamble; g_ondisk_bootloader_addr = g_preamble->bootloader_address; if (VbGetKernelVmlinuzHeader(preamble, &vmlinuz_header_address, &vmlinuz_header_size) != VBOOT_SUCCESS) { fprintf(stderr, "Unable to retrieve Vmlinuz Header!"); return NULL; } if (vmlinuz_header_size) { Debug(" vmlinuz_header_address = 0x%" PRIx64 "\n", vmlinuz_header_address); Debug(" vmlinuz_header_size = 0x%" PRIx64 "\n", vmlinuz_header_size); g_ondisk_vmlinuz_header_addr = vmlinuz_header_address; } Debug("kernel blob is at offset 0x%" PRIx64 "\n", now); g_kernel_blob_data = kpart_data + now; g_kernel_blob_size = preamble->body_signature.data_size; /* Sanity check */ if (g_kernel_blob_size < preamble->body_signature.data_size) fprintf(stderr, "Warning: kernel file only has 0x%" PRIx64 " bytes\n", g_kernel_blob_size); /* Update the blob pointers */ UnpackKernelBlob(g_kernel_blob_data); if (keyblock_ptr) *keyblock_ptr = keyblock; if (preamble_ptr) *preamble_ptr = preamble; if (blob_size_ptr) *blob_size_ptr = g_kernel_blob_size; return g_kernel_blob_data; } uint8_t *SignKernelBlob(uint8_t *kernel_blob, uint64_t kernel_size, uint64_t padding, int version, uint64_t kernel_body_load_address, VbKeyBlockHeader *keyblock, VbPrivateKey *signpriv_key, uint32_t flags, uint64_t *vblock_size_ptr) { VbSignature *body_sig; VbKernelPreambleHeader *preamble; uint64_t min_size = padding > keyblock->key_block_size ? padding - keyblock->key_block_size : 0; void *outbuf; uint64_t outsize; /* Sign the kernel data */ body_sig = CalculateSignature(kernel_blob, kernel_size, signpriv_key); if (!body_sig) { fprintf(stderr, "Error calculating body signature\n"); return NULL; } /* Create preamble */ preamble = CreateKernelPreamble(version, kernel_body_load_address, g_ondisk_bootloader_addr, g_bootloader_size, body_sig, g_ondisk_vmlinuz_header_addr, g_vmlinuz_header_size, flags, min_size, signpriv_key); if (!preamble) { fprintf(stderr, "Error creating preamble.\n"); return 0; } outsize = keyblock->key_block_size + preamble->preamble_size; outbuf = malloc(outsize); Memset(outbuf, 0, outsize); Memcpy(outbuf, keyblock, keyblock->key_block_size); Memcpy(outbuf + keyblock->key_block_size, preamble, preamble->preamble_size); if (vblock_size_ptr) *vblock_size_ptr = outsize; return outbuf; } /* Returns zero on success */ int WriteSomeParts(const char *outfile, void *part1_data, uint64_t part1_size, void *part2_data, uint64_t part2_size) { FILE *f; /* Write the output file */ Debug("writing %s with 0x%" PRIx64 ", 0x%" PRIx64 "\n", outfile, part1_size, part2_size); f = fopen(outfile, "wb"); if (!f) { fprintf(stderr, "Can't open output file %s: %s\n", outfile, strerror(errno)); return -1; } if (part1_data && part1_size) { if (1 != fwrite(part1_data, part1_size, 1, f)) { fprintf(stderr, "Can't write output file %s: %s\n", outfile, strerror(errno)); fclose(f); unlink(outfile); return -1; } } if (part2_data && part2_size) { if (1 != fwrite(part2_data, part2_size, 1, f)) { fprintf(stderr, "Can't write output file %s: %s\n", outfile, strerror(errno)); fclose(f); unlink(outfile); return -1; } } fclose(f); /* Success */ return 0; } /* Returns 0 on success */ int VerifyKernelBlob(uint8_t *kernel_blob, uint64_t kernel_size, VbPublicKey *signpub_key, const char *keyblock_outfile, uint64_t min_version) { VbPublicKey *data_key; RSAPublicKey *rsa; int rv = -1; uint64_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; if (0 != KeyBlockVerify(g_keyblock, g_keyblock->key_block_size, signpub_key, (0 == signpub_key))) { fprintf(stderr, "Error verifying key block.\n"); goto done; } printf("Key block:\n"); data_key = &g_keyblock->data_key; printf(" Signature: %s\n", signpub_key ? "valid" : "ignored"); printf(" Size: 0x%" PRIx64 "\n", g_keyblock->key_block_size); printf(" Flags: %" PRIu64 " ", g_keyblock->key_block_flags); if (g_keyblock->key_block_flags & KEY_BLOCK_FLAG_DEVELOPER_0) printf(" !DEV"); if (g_keyblock->key_block_flags & KEY_BLOCK_FLAG_DEVELOPER_1) printf(" DEV"); if (g_keyblock->key_block_flags & KEY_BLOCK_FLAG_RECOVERY_0) printf(" !REC"); if (g_keyblock->key_block_flags & KEY_BLOCK_FLAG_RECOVERY_1) printf(" REC"); printf("\n"); printf(" Data key algorithm: %" PRIu64 " %s\n", data_key->algorithm, (data_key->algorithm < kNumAlgorithms ? algo_strings[data_key->algorithm] : "(invalid)")); printf(" Data key version: %" PRIu64 "\n", data_key->key_version); printf(" Data key sha1sum: "); PrintPubKeySha1Sum(data_key); printf("\n"); if (keyblock_outfile) { FILE *f = NULL; f = fopen(keyblock_outfile, "wb"); if (!f) { fprintf(stderr, "Can't open key block file %s: %s\n", keyblock_outfile, strerror(errno)); goto done; } if (1 != fwrite(g_keyblock, g_keyblock->key_block_size, 1, f)) { fprintf(stderr, "Can't write key block file %s: %s\n", keyblock_outfile, strerror(errno)); fclose(f); goto done; } fclose(f); } if (data_key->key_version < (min_version >> 16)) { fprintf(stderr, "Data key version %" PRIu64 " is lower than minimum %" PRIu64 ".\n", data_key->key_version, (min_version >> 16)); goto done; } rsa = PublicKeyToRSA(data_key); if (!rsa) { fprintf(stderr, "Error parsing data key.\n"); goto done; } /* Verify preamble */ if (0 != VerifyKernelPreamble(g_preamble, g_preamble->preamble_size, rsa)) { fprintf(stderr, "Error verifying preamble.\n"); goto done; } printf("Preamble:\n"); printf(" Size: 0x%" PRIx64 "\n", g_preamble->preamble_size); printf(" Header version: %" PRIu32 ".%" PRIu32 "\n", g_preamble->header_version_major, g_preamble->header_version_minor); printf(" Kernel version: %" PRIu64 "\n", g_preamble->kernel_version); printf(" Body load address: 0x%" PRIx64 "\n", g_preamble->body_load_address); printf(" Body size: 0x%" PRIx64 "\n", g_preamble->body_signature.data_size); printf(" Bootloader address: 0x%" PRIx64 "\n", g_preamble->bootloader_address); printf(" Bootloader size: 0x%" PRIx64 "\n", g_preamble->bootloader_size); if (VbGetKernelVmlinuzHeader(g_preamble, &vmlinuz_header_address, &vmlinuz_header_size) != VBOOT_SUCCESS) { fprintf(stderr, "Unable to retrieve Vmlinuz Header!"); goto done; } if (vmlinuz_header_size) { printf(" Vmlinuz header address: 0x%" PRIx64 "\n", vmlinuz_header_address); printf(" Vmlinuz header size: 0x%" PRIx64 "\n", vmlinuz_header_size); } if (VbKernelHasFlags(g_preamble) == VBOOT_SUCCESS) printf(" Flags : 0x%" PRIx32 "\n", g_preamble->flags); if (g_preamble->kernel_version < (min_version & 0xFFFF)) { fprintf(stderr, "Kernel version %" PRIu64 " is lower than minimum %" PRIu64 ".\n", g_preamble->kernel_version, (min_version & 0xFFFF)); goto done; } /* Verify body */ if (0 != VerifyData(kernel_blob, kernel_size, &g_preamble->body_signature, rsa)) { fprintf(stderr, "Error verifying kernel body.\n"); goto done; } printf("Body verification succeeded.\n"); printf("Config:\n%s\n", kernel_blob + KernelCmdLineOffset(g_preamble)); rv = 0; done: return rv; } uint8_t *CreateKernelBlob(uint8_t *vmlinuz_buf, uint64_t vmlinuz_size, enum arch_t arch, uint64_t kernel_body_load_address, uint8_t *config_data, uint64_t config_size, uint8_t *bootloader_data, uint64_t bootloader_size, uint64_t *blob_size_ptr) { uint64_t now = 0; int tmp; /* We have all the parts. How much room do we need? */ tmp = KernelSize(vmlinuz_buf, vmlinuz_size, arch); if (tmp < 0) return NULL; g_kernel_size = tmp; g_config_size = CROS_CONFIG_SIZE; g_param_size = CROS_PARAMS_SIZE; g_bootloader_size = roundup(bootloader_size, CROS_ALIGN); g_vmlinuz_header_size = vmlinuz_size-g_kernel_size; g_kernel_blob_size = roundup(g_kernel_size, CROS_ALIGN) + g_config_size + g_param_size + g_bootloader_size + g_vmlinuz_header_size; Debug("g_kernel_blob_size 0x%" PRIx64 "\n", g_kernel_blob_size); /* Allocate space for the blob. */ g_kernel_blob_data = malloc(g_kernel_blob_size); Memset(g_kernel_blob_data, 0, g_kernel_blob_size); /* Assign the sub-pointers */ g_kernel_data = g_kernel_blob_data + now; Debug("g_kernel_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n", g_kernel_size, now); now += roundup(g_kernel_size, CROS_ALIGN); g_config_data = g_kernel_blob_data + now; Debug("g_config_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n", g_config_size, now); now += g_config_size; g_param_data = g_kernel_blob_data + now; Debug("g_param_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n", g_param_size, now); now += g_param_size; g_bootloader_data = g_kernel_blob_data + now; Debug("g_bootloader_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n", g_bootloader_size, now); g_ondisk_bootloader_addr = kernel_body_load_address + now; Debug("g_ondisk_bootloader_addr 0x%" PRIx64 "\n", g_ondisk_bootloader_addr); now += g_bootloader_size; if (g_vmlinuz_header_size) { g_vmlinuz_header_data = g_kernel_blob_data + now; Debug("g_vmlinuz_header_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n", g_vmlinuz_header_size, now); g_ondisk_vmlinuz_header_addr = kernel_body_load_address + now; Debug("g_ondisk_vmlinuz_header_addr 0x%" PRIx64 "\n", g_ondisk_vmlinuz_header_addr); } Debug("end of kern_blob at kern_blob+0x%" PRIx64 "\n", now); /* Copy the kernel and params bits into the correct places */ if (0 != PickApartVmlinuz(vmlinuz_buf, vmlinuz_size, arch, kernel_body_load_address)) { fprintf(stderr, "Error picking apart kernel file.\n"); free(g_kernel_blob_data); g_kernel_blob_data = NULL; g_kernel_blob_size = 0; return NULL; } /* Copy the other bits too */ Memcpy(g_config_data, config_data, config_size); Memcpy(g_bootloader_data, bootloader_data, bootloader_size); if (g_vmlinuz_header_size) { Memcpy(g_vmlinuz_header_data, vmlinuz_buf, g_vmlinuz_header_size); } if (blob_size_ptr) *blob_size_ptr = g_kernel_blob_size; return g_kernel_blob_data; } enum futil_file_type ft_recognize_vblock1(uint8_t *buf, uint32_t len) { VbKeyBlockHeader *key_block = (VbKeyBlockHeader *)buf; VbFirmwarePreambleHeader *fw_preamble; VbKernelPreambleHeader *kern_preamble; RSAPublicKey *rsa; if (VBOOT_SUCCESS == KeyBlockVerify(key_block, len, NULL, 1)) { rsa = PublicKeyToRSA(&key_block->data_key); uint32_t more = key_block->key_block_size; /* and firmware preamble too? */ fw_preamble = (VbFirmwarePreambleHeader *)(buf + more); if (VBOOT_SUCCESS == VerifyFirmwarePreamble(fw_preamble, len - more, rsa)) return FILE_TYPE_FW_PREAMBLE; /* or maybe kernel preamble? */ kern_preamble = (VbKernelPreambleHeader *)(buf + more); if (VBOOT_SUCCESS == VerifyKernelPreamble(kern_preamble, len - more, rsa)) return FILE_TYPE_KERN_PREAMBLE; /* no, just keyblock */ return FILE_TYPE_KEYBLOCK; } return FILE_TYPE_UNKNOWN; } enum futil_file_type ft_recognize_vb1_key(uint8_t *buf, uint32_t len) { VbPublicKey *pubkey = (VbPublicKey *)buf; VbPrivateKey key; const unsigned char *start; /* Maybe just a VbPublicKey? */ if (len >= sizeof(VbPublicKey) && PublicKeyLooksOkay(pubkey, len)) return FILE_TYPE_PUBKEY; /* How about a VbPrivateKey? */ if (len < sizeof(key.algorithm)) return FILE_TYPE_UNKNOWN; key.algorithm = *(typeof(key.algorithm) *)buf; start = buf + sizeof(key.algorithm); key.rsa_private_key = d2i_RSAPrivateKey(NULL, &start, len - sizeof(key.algorithm)); if (key.rsa_private_key) { RSA_free(key.rsa_private_key); return FILE_TYPE_PRIVKEY; } return FILE_TYPE_UNKNOWN; }