/* * Unsquash a squashfs filesystem. This is a highly compressed read only * filesystem. * * Copyright (c) 2009, 2010, 2013 * Phillip Lougher * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2, * or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * unsquash-2.c */ #include "unsquashfs.h" #include "squashfs_compat.h" static squashfs_fragment_entry_2 *fragment_table; void read_block_list_2(unsigned int *block_list, char *block_ptr, int blocks) { TRACE("read_block_list: blocks %d\n", blocks); if(swap) { unsigned int sblock_list[blocks]; memcpy(sblock_list, block_ptr, blocks * sizeof(unsigned int)); SQUASHFS_SWAP_INTS_3(block_list, sblock_list, blocks); } else memcpy(block_list, block_ptr, blocks * sizeof(unsigned int)); } int read_fragment_table_2(long long *directory_table_end) { int res, i; int bytes = SQUASHFS_FRAGMENT_BYTES_2(sBlk.s.fragments); int indexes = SQUASHFS_FRAGMENT_INDEXES_2(sBlk.s.fragments); unsigned int fragment_table_index[indexes]; TRACE("read_fragment_table: %d fragments, reading %d fragment indexes " "from 0x%llx\n", sBlk.s.fragments, indexes, sBlk.s.fragment_table_start); if(sBlk.s.fragments == 0) { *directory_table_end = sBlk.s.fragment_table_start; return TRUE; } fragment_table = malloc(bytes); if(fragment_table == NULL) EXIT_UNSQUASH("read_fragment_table: failed to allocate " "fragment table\n"); if(swap) { unsigned int sfragment_table_index[indexes]; res = read_fs_bytes(fd, sBlk.s.fragment_table_start, SQUASHFS_FRAGMENT_INDEX_BYTES_2(sBlk.s.fragments), sfragment_table_index); if(res == FALSE) { ERROR("read_fragment_table: failed to read fragment " "table index\n"); return FALSE; } SQUASHFS_SWAP_FRAGMENT_INDEXES_2(fragment_table_index, sfragment_table_index, indexes); } else { res = read_fs_bytes(fd, sBlk.s.fragment_table_start, SQUASHFS_FRAGMENT_INDEX_BYTES_2(sBlk.s.fragments), fragment_table_index); if(res == FALSE) { ERROR("read_fragment_table: failed to read fragment " "table index\n"); return FALSE; } } for(i = 0; i < indexes; i++) { int expected = (i + 1) != indexes ? SQUASHFS_METADATA_SIZE : bytes & (SQUASHFS_METADATA_SIZE - 1); int length = read_block(fd, fragment_table_index[i], NULL, expected, ((char *) fragment_table) + (i * SQUASHFS_METADATA_SIZE)); TRACE("Read fragment table block %d, from 0x%x, length %d\n", i, fragment_table_index[i], length); if(length == FALSE) { ERROR("read_fragment_table: failed to read fragment " "table block\n"); return FALSE; } } if(swap) { squashfs_fragment_entry_2 sfragment; for(i = 0; i < sBlk.s.fragments; i++) { SQUASHFS_SWAP_FRAGMENT_ENTRY_2((&sfragment), (&fragment_table[i])); memcpy((char *) &fragment_table[i], (char *) &sfragment, sizeof(squashfs_fragment_entry_2)); } } *directory_table_end = fragment_table_index[0]; return TRUE; } void read_fragment_2(unsigned int fragment, long long *start_block, int *size) { TRACE("read_fragment: reading fragment %d\n", fragment); squashfs_fragment_entry_2 *fragment_entry = &fragment_table[fragment]; *start_block = fragment_entry->start_block; *size = fragment_entry->size; } struct inode *read_inode_2(unsigned int start_block, unsigned int offset) { static union squashfs_inode_header_2 header; long long start = sBlk.s.inode_table_start + start_block; int bytes = lookup_entry(inode_table_hash, start); char *block_ptr = inode_table + bytes + offset; static struct inode i; TRACE("read_inode: reading inode [%d:%d]\n", start_block, offset); if(bytes == -1) EXIT_UNSQUASH("read_inode: inode table block %lld not found\n", start); if(swap) { squashfs_base_inode_header_2 sinode; memcpy(&sinode, block_ptr, sizeof(header.base)); SQUASHFS_SWAP_BASE_INODE_HEADER_2(&header.base, &sinode, sizeof(squashfs_base_inode_header_2)); } else memcpy(&header.base, block_ptr, sizeof(header.base)); i.xattr = SQUASHFS_INVALID_XATTR; i.uid = (uid_t) uid_table[header.base.uid]; i.gid = header.base.guid == SQUASHFS_GUIDS ? i.uid : (uid_t) guid_table[header.base.guid]; i.mode = lookup_type[header.base.inode_type] | header.base.mode; i.type = header.base.inode_type; i.time = sBlk.s.mkfs_time; i.inode_number = inode_number++; switch(header.base.inode_type) { case SQUASHFS_DIR_TYPE: { squashfs_dir_inode_header_2 *inode = &header.dir; if(swap) { squashfs_dir_inode_header_2 sinode; memcpy(&sinode, block_ptr, sizeof(header.dir)); SQUASHFS_SWAP_DIR_INODE_HEADER_2(&header.dir, &sinode); } else memcpy(&header.dir, block_ptr, sizeof(header.dir)); i.data = inode->file_size; i.offset = inode->offset; i.start = inode->start_block; i.time = inode->mtime; break; } case SQUASHFS_LDIR_TYPE: { squashfs_ldir_inode_header_2 *inode = &header.ldir; if(swap) { squashfs_ldir_inode_header_2 sinode; memcpy(&sinode, block_ptr, sizeof(header.ldir)); SQUASHFS_SWAP_LDIR_INODE_HEADER_2(&header.ldir, &sinode); } else memcpy(&header.ldir, block_ptr, sizeof(header.ldir)); i.data = inode->file_size; i.offset = inode->offset; i.start = inode->start_block; i.time = inode->mtime; break; } case SQUASHFS_FILE_TYPE: { squashfs_reg_inode_header_2 *inode = &header.reg; if(swap) { squashfs_reg_inode_header_2 sinode; memcpy(&sinode, block_ptr, sizeof(sinode)); SQUASHFS_SWAP_REG_INODE_HEADER_2(inode, &sinode); } else memcpy(inode, block_ptr, sizeof(*inode)); i.data = inode->file_size; i.time = inode->mtime; i.frag_bytes = inode->fragment == SQUASHFS_INVALID_FRAG ? 0 : inode->file_size % sBlk.s.block_size; i.fragment = inode->fragment; i.offset = inode->offset; i.blocks = inode->fragment == SQUASHFS_INVALID_FRAG ? (i.data + sBlk.s.block_size - 1) >> sBlk.s.block_log : i.data >> sBlk.s.block_log; i.start = inode->start_block; i.sparse = 0; i.block_ptr = block_ptr + sizeof(*inode); break; } case SQUASHFS_SYMLINK_TYPE: { squashfs_symlink_inode_header_2 *inodep = &header.symlink; if(swap) { squashfs_symlink_inode_header_2 sinodep; memcpy(&sinodep, block_ptr, sizeof(sinodep)); SQUASHFS_SWAP_SYMLINK_INODE_HEADER_2(inodep, &sinodep); } else memcpy(inodep, block_ptr, sizeof(*inodep)); i.symlink = malloc(inodep->symlink_size + 1); if(i.symlink == NULL) EXIT_UNSQUASH("read_inode: failed to malloc " "symlink data\n"); strncpy(i.symlink, block_ptr + sizeof(squashfs_symlink_inode_header_2), inodep->symlink_size); i.symlink[inodep->symlink_size] = '\0'; i.data = inodep->symlink_size; break; } case SQUASHFS_BLKDEV_TYPE: case SQUASHFS_CHRDEV_TYPE: { squashfs_dev_inode_header_2 *inodep = &header.dev; if(swap) { squashfs_dev_inode_header_2 sinodep; memcpy(&sinodep, block_ptr, sizeof(sinodep)); SQUASHFS_SWAP_DEV_INODE_HEADER_2(inodep, &sinodep); } else memcpy(inodep, block_ptr, sizeof(*inodep)); i.data = inodep->rdev; break; } case SQUASHFS_FIFO_TYPE: case SQUASHFS_SOCKET_TYPE: i.data = 0; break; default: EXIT_UNSQUASH("Unknown inode type %d in " "read_inode_header_2!\n", header.base.inode_type); } return &i; }