
A Python module to help you manage your bits

by Scott Griffiths

version 3.1.6

July 8, 2019

github.com/scott-griffiths/bitstring

Contents

I User Manual 1

1 Walkthrough 3
1.1 A Brief Introduction . 3

1.1.1 Prerequisites . 3
1.1.2 Getting started . 3
1.1.3 Modifying bitstrings . 5
1.1.4 Finding and Replacing . 5
1.1.5 Constructing a bitstring . 6
1.1.6 Parsing bitstreams . 7

1.2 Worked examples . 7
1.2.1 Hamming distance . 8
1.2.2 Sieve of Eratosthenes . 8

2 Introduction 9
2.1 Getting Started . 10

3 Creation 11
3.1 The bitstring classes . 11
3.2 Using the constructor . 12

3.2.1 From a hexadecimal string . 12
3.2.2 From a binary string . 12
3.2.3 From an octal string . 13
3.2.4 From an integer . 13
3.2.5 Big and little-endian integers . 13
3.2.6 From a floating point number . 14
3.2.7 Exponential-Golomb codes . 14
3.2.8 From raw byte data . 14
3.2.9 From a file . 15

3.3 The auto initialiser . 15

4 Packing 17
4.1 Compact format strings . 19

5 Interpreting Bitstrings 21
5.1 bin . 21
5.2 hex . 21
5.3 oct . 22
5.4 uint / uintbe / uintle / uintne . 22
5.5 int / intbe / intle / intne . 22
5.6 float / floatbe / floatle / floatne . 23
5.7 bytes . 23

i

5.8 ue . 23
5.9 se . 23
5.10 uie / sie . 24

6 Slicing, Dicing and Splicing 25
6.1 Slicing . 25

6.1.1 Stepping in slices . 26
6.2 Joining . 26
6.3 Truncating, inserting, deleting and overwriting . 27

6.3.1 Deleting and truncating . 27
6.3.2 insert . 27
6.3.3 overwrite . 27

6.4 The bitstring as a list . 27
6.5 Splitting . 28

6.5.1 split . 28
6.5.2 cut . 28

7 Reading, Parsing and Unpacking 29
7.1 Reading and parsing . 29

7.1.1 read / readlist . 29
7.1.2 Reading using format strings . 30
7.1.3 Peeking . 31

7.2 Unpacking . 31
7.3 Seeking . 31
7.4 Finding and replacing . 32

7.4.1 find / rfind . 32
7.4.2 findall . 32
7.4.3 replace . 32

7.5 Working with byte aligned data . 33

8 Miscellany 35
8.1 Other Functions . 35

8.1.1 bytealign . 35
8.1.2 reverse . 35
8.1.3 tobytes . 35
8.1.4 tofile . 36
8.1.5 startswith / endswith . 36
8.1.6 ror / rol . 36

8.2 Special Methods . 36
8.2.1 __len__ . 36
8.2.2 __str__ / __repr__ . 37
8.2.3 __eq__ / __ne__ . 37
8.2.4 __invert__ . 37
8.2.5 __lshift__ / __rshift__ / __ilshift__ / __irshift__ 37
8.2.6 __mul__ / __imul__ / __rmul__ . 38
8.2.7 __copy__ . 38
8.2.8 __and__ / __or__ / __xor__ / __iand__ / __ior__ / __ixor__ . 38

II Reference 39

9 Quick Reference 41
9.1 Bits . 41

9.1.1 Methods . 41
9.1.2 Special methods . 42
9.1.3 Properties . 42

9.2 BitArray . 42
9.2.1 Additional methods . 42
9.2.2 Additional special methods . 43

ii

9.2.3 Attributes . 43
9.3 ConstBitStream . 43

9.3.1 Additional methods . 43
9.3.2 Additional attributes . 43

9.4 BitStream . 43

10 The bitstring module 45
10.1 The auto initialiser . 45
10.2 Compact format strings . 46
10.3 Class properties . 46

11 The Bits class 47

12 The BitArray class 57

13 The ConstBitStream class 63

14 The BitStream class 67

15 Functions 69

16 Exceptions 71

III Appendices 73

17 Examples 77
17.1 Creation . 77
17.2 Manipulation . 77
17.3 Parsing . 78
17.4 Sieve of Eratosthenes . 78

18 Exponential-Golomb Codes 79
18.1 Interleaved exponential-Golomb codes . 80

19 Optimisation Techniques 81
19.1 Use combined read and interpretation . 81
19.2 Choose the simplest class you can . 81
19.3 Use dedicated functions for bit setting and checking . 82

20 Release Notes 83
20.1 Full Version History . 83

20.1.1 July 9th 2019: version 3.1.6 released . 83
20.1.2 May 17th 2016: version 3.1.5 released . 83
20.1.3 March 19th 2016: version 3.1.4 released . 83
20.1.4 March 4th 2014: version 3.1.3 released . 83
20.1.5 April 18th 2013: version 3.1.2 released . 84
20.1.6 March 21st 2013: version 3.1.1 released . 84
20.1.7 February 26th 2013: version 3.1.0 released . 84
20.1.8 November 21st 2011: version 3.0.0 released . 84
20.1.9 Backwardly incompatible changes . 84
20.1.10 New features . 85
20.1.11 June 18th 2011: version 2.2.0 released . 85
20.1.12 February 23rd 2011: version 2.1.1 released . 86
20.1.13 January 23rd 2011: version 2.1.0 released . 86
20.1.14 New class hierarchy introduced with simpler classes 86
20.1.15 July 26th 2010: version 2.0.3 released . 87
20.1.16 July 25th 2010: version 2.0.2 released . 87
20.1.17 The backwardly incompatible changes are: . 88
20.1.18 The new features in this release are: . 91

iii

20.1.19 March 18th 2010: version 1.3.0 for Python 2.6 and 3.x released 92
20.1.20 New features . 92
20.1.21 January 19th 2010: version 1.2.0 for Python 2.6 and 3.x released 94
20.1.22 New ‘Bits’ class . 94
20.1.23 December 22nd 2009: version 1.1.3 for Python 2.6 and 3.x released 95
20.1.24 December 18th 2009: version 1.1.2 for Python 2.6 and 3.x released 95
20.1.25 November 24th 2009: version 1.1.0 for Python 2.6 and 3.x released 95
20.1.26 New features . 95
20.1.27 October 10th 2009: version 1.0.1 for Python 3.x released 96
20.1.28 October 9th 2009: version 1.0.0 for Python 2.x released 97
20.1.29 API Changes . 97
20.1.30 New features . 98
20.1.31 September 11th 2009: version 0.5.2 for Python 2.x released 98
20.1.32 August 26th 2009: version 0.5.1 for Python 2.x released 99
20.1.33 July 19th 2009: version 0.5.0 for Python 2.x released 100
20.1.34 June 15th 2009: version 0.4.3 for Python 2.x released 102
20.1.35 May 25th 2009: version 0.4.2 for Python 2.x released 103
20.1.36 April 23rd 2009: Python 3 only version 0.4.1 released 104
20.1.37 April 11th 2009: version 0.4.0 released . 104
20.1.38 March 11th 2009: version 0.3.2 released . 105
20.1.39 February 26th 2009: version 0.3.1 released . 105
20.1.40 February 15th 2009: version 0.3.0 released . 106
20.1.41 January 13th 2009: version 0.2.0 released . 107
20.1.42 December 29th 2008: version 0.1.0 released . 107

Python Module Index 109

Index 111

iv

Part I

User Manual

1

CHAPTER 1

Walkthrough

1.1 A Brief Introduction

The aim of the bitstring module is make dealing with binary data in Python as easy as possible. In this section
I will take you through some of the features of the module to help you get started using it.

Only a few of the module’s features will be covered in this walkthrough; the User Manual and Reference provide
a more thorough guide. The whole of this section can be safely skipped or skimmed over if you prefer to start with
the manual. If however you’d like a gentler introduction then you might like to follow along the examples with a
Python interpreter.

1.1.1 Prerequisites

• Python 2.7 or 3.x.

• An installed bitstring module.

• A rudimentary knowledge of binary concepts.

• A little free time.

If you haven’t yet downloaded and installed bitstring then please do so (it should be as easy as typing “pip
install bitstring”). I’ll be going through some examples using the interactive Python interpreter, so feel
free to start up a Python session and follow along.

1.1.2 Getting started

>>> from bitstring import BitArray, BitStream

First things first, we’re going to be typing ‘bitstring’ a lot, so importing directly saves us a lot of bitstring.
BitStream nonsense. The classes we have imported are BitArray which is just a container for our binary
data and BitStream which adds a bit position and reading methods to treat the data as a stream. There are also
immutable versions of both these classes that we won’t be using here.

We can now create a couple of bitstrings:

3

bitstring Documentation, Release 3.1.6

>>> a = BitArray('0xff01')
>>> b = BitArray('0b110')

The first of these we made from the hexadecimal string 0xff01 - the 0x prefix makes it hexadecimal just as 0b
means binary and 0o means octal. Each hex digit represents four bits, so we have a bitstring of length 16 bits.

The second was created from a binary string. In this case it is just three bits long. Don’t worry about it not being
a whole number of bytes long, that’s all been taken care of internally.

Note: Be sure to remember the quotes around the hex and binary strings. If you forget them you would just have
an ordinary Python integer, which would instead create a bitstring of that many ‘0’ bits. For example 0xff01 is
the same as the base-10 number 65281, so BitArray(0xff01) would consist of 65281 zero bits!

There are lots of things we can do with our new bitstrings, the simplest of which is just to print them:

>>> print(a)
0xff01
>>> print(b)
0b110

Now you would be forgiven for thinking that the strings that we used to create the two bitstrings had just been
stored to be given back when printed, but that’s not the case. Every bitstring should be considered just as a
sequence of bits. As we’ll see there are lots of ways to create and manipulate them, but they have no memory
of how they were created. When they are printed they just pick the simplest hex or binary representation of
themselves. If you prefer you can pick the representation that you want:

>>> a.bin
'1111111100000001'
>>> b.oct
'6'
>>> b.int
-2
>>> a.bytes
'\xff\x01'

There are a few things to note here:

• To get the different interpretations of the binary data we use properties such as bin, hex, oct, int and
bytes. You can probably guess what these all mean, but you don’t need to know quite yet. The properties
are calculated when you ask for them rather than being stored as part of the object itself.

• The bytes property returns a bytes object. This is slightly different in Python 2.7 to Python 3 - in Python
3 you would get b'\xff\x01' returned instead.

Great - let’s try some more:

>>> b.hex
bitstring.InterpretError: Cannot convert to hex unambiguously - not multiple of 4
→˓bits.

Oh dear. The problem we have here is that b is 3 bits long, whereas each hex digit represents 4 bits. This
means that there is no unambiguous way to represent it in hexadecimal. There are similar restrictions on other
interpretations (octal must be a multiple of 3 bits, bytes a multiple of 8 bits etc.)

An exception is raised rather than trying to guess the best hex representation as there are a multitude of ways to
convert to hex. I occasionally get asked why it doesn’t just do the ‘obvious’ conversion, which is invariably what
that person expects from his own field of work. This could be truncating bits at the start or end, or padding at the
start or end with either zeros or ones. Rather than try to guess what is meant we just raise an exception - if you
want a particular behaviour then write it explicitly:

4 Chapter 1. Walkthrough

bitstring Documentation, Release 3.1.6

>>> (b + [0]).hex
'c'
>>> ([0] + b).hex
'6'

Here we’ve added a zero bit first to the end and then to the start. Don’t worry too much about how it all works, but
just to give you a taster the zero bit [0] could also have been written as BitArray([0]), BitArray([0]),
BitArray('0b0'), BitArray(bin='0'), '0b0' or just 1 (this final method isn’t a typo, it means con-
struct a bitstring of length one, with all the bits initialised to zero - it does look a bit confusing though which is
why I prefer [0] and [1] to represent single bits). Take a look at The auto initialiser for more details.

1.1.3 Modifying bitstrings

A BitArray can be treated just like a list of bits. You can slice it, delete sections, insert new bits and more using
standard index notation:

>>> print(a[3:9])
0b111110
>>> del a[-6:]
>>> print(a)
0b1111111100

The slicing works just as it does for other containers, so the deletion above removes the final six bits.

If you ask for a single item, rather than a slice, a boolean is returned. Naturally enough 1 bits are True whereas
0 bits are False.

>>> a[0]
True
>>> a[-1]
False

To join together bitstrings you can use a variety of methods, including append, prepend, insert, and plain
+ or += operations:

>>> a.prepend('0b01')
>>> a.append('0o7')
>>> a += '0x06'

Here we first put two bits at the start of a, then three bits on the end (a single octal digit) and finally another byte
(two hex digits) on the end.

Note how we are just using ordinary strings to specify the new bitstrings we are adding. These get converted
automatically to the right sequence of bits.

Note: The length in bits of bitstrings specified with strings depends on the number of characters, including
leading zeros. So each hex character is four bits, each octal character three bits and each binary character one bit.

1.1.4 Finding and Replacing

A find is provided to search for bit patterns within a bitstring. You can choose whether to search only on byte
boundaries or at any bit position:

>>> a = BitArray('0xa9f')
>>> a.find('0x4f')
(3,)

1.1. A Brief Introduction 5

bitstring Documentation, Release 3.1.6

Here we have found the 0x4f byte in our bitstring, though it wasn’t obvious from the hexadecimal as it was at bit
position 3. To see this clearer consider this equality:

>>> a == '0b101, 0x4f, 0b1'
True

in which we’ve broken the bitstring into three parts to show the found byte. This also illustrates using commas to
join bitstring sections.

1.1.5 Constructing a bitstring

Let’s say you have a specification for a binary file type (or maybe a packet specification etc.) and you want to
create a bitstring quickly and easily in Python. For this example I’m going to use a header from the MPEG-2
video standard. Here’s how the header is described in the standard:

sequence_header() No. of bits Mnemonic
sequence_header_code 32 bslbf
horizontal_size_value 12 uimsbf
vertical_size_value 12 uimsbf
aspect_ratio_information 4 uimsbf
frame_rate_code 4 uimsbf
bit_rate_value 18 uimsbf
marker_bit 1 bslbf
vbv_buffer_size_value 10 uimsbf
constrained_parameters_flag 1 bslbf
load_intra_quantiser_matrix 1 uimsbf
if (load_intra_quantiser_matrix)
{ intra_quantiser_matrix[64] } 8*64 uimsbf
load_non_intra_quantiser_matrix 1 uimsbf
if (load_non_intra_quantiser_matrix)
{ non_intra_quantiser_matrix[64] } 8*64 uimsbf
next_start_code()

The mnemonics mean things like uimsbf = ‘Unsigned integer, most significant bit first’.

So to create a sequence_header for your particular stream with width of 352 and height of 288 you could start like
this:

s = BitArray()
s.append('0x000001b3') # the sequence_header_code
s.append('uint:12=352') # 12 bit unsigned integer
s.append('uint:12=288')
...

which is fine, but if you wanted to be a bit more concise you could just write

s = BitArray('0x000001b3, uint:12=352, uint:12=288')

This is better, but it might not be a good idea to have the width and height hard-wired in like that. We can make it
more flexible by using a format string and the pack function:

width, height = 352, 288
s = bitstring.pack('0x000001b3, 2*uint:12', width, height)

where we have also used 2*uint:12 as shorthand for uint:12, uint:12.

The pack function can also take a dictionary as a parameter which can replace the tokens in the format string.
For example:

6 Chapter 1. Walkthrough

bitstring Documentation, Release 3.1.6

fmt = 'sequence_header_code,
uint:12=horizontal_size_value,
uint:12=vertical_size_value,
uint:4=aspect_ratio_information,
...
'

d = {'sequence_header_code': '0x000001b3',
'horizontal_size_value': 352,
'vertical_size_value': 288,
'aspect_ratio_information': 1,
...

}

s = bitstring.pack(fmt, **d)

1.1.6 Parsing bitstreams

You might have noticed that pack returned a BitStream rather than a BitArray . This isn’t a problem as the
BitStream class just adds a few stream-like qualities to BitArray which we’ll take a quick look at here.

First, let’s look at the stream we’ve just created:

>>> s
BitStream('0x000001b31601201')

The stream-ness of this object is via its bit position, and various reading and peeking methods. First let’s try a read
or two, and see how this affects the bit position:

>>> s.pos
0
>>> s.read(24)
BitStream('0x000001')
>>> s.pos
24
>>> s.read('hex:8')
'b3'
>>> s.pos
32

First we read 24 bits, which returned a new BitStream object, then we used a format string to read 8 bits
interpreted as a hexadecimal string. We know that the next two sets of 12 bits were created from integers, so to
read them back we can say

>>> s.readlist('2*uint:12')
[352, 288]

If you don’t want to use a bitstream then you can always use unpack. This takes much the same form as
readlist except it just unpacks from the start of the bitstring. For example:

>>> s.unpack('bytes:4, 2*uint:12, uint:4')
['\x00\x00\x01\xb3', 352, 288, 1]

1.2 Worked examples

Below are a few examples of using the bitstring module, as I always find that a good example can help more than
a lengthy reference manual.

1.2. Worked examples 7

bitstring Documentation, Release 3.1.6

1.2.1 Hamming distance

The Hamming distance between two bitstrings is the number of bit positions in which the two bitstrings differ. So
for example the distance between 0b00110 and 0b01100 is 2 as the second and fourth bits are different.

Write a function that calculates the Hamming weight of two bitstrings.

def hamming_weight(a, b):
return (a^b).count(True)

Er, that’s it. The ^ is a bit-wise exclusive or, which means that the bits in a^b are only set if they differ in a and
b. The count method just counts the number of 1 (or True) bits.

>>> a = Bits('0b00110')
>>> hamming_weight(a, '0b01100')
2

1.2.2 Sieve of Eratosthenes

The sieve of Eratosthenes is an ancient (and very inefficient) method of finding prime numbers. The algorithm
starts with the number 2 (which is prime) and marks all of its multiples as not prime, it then continues with the
next unmarked integer (which will also be prime) and marks all of its multiples as not prime.

So to print all primes under a million you could write:

from bitstring import BitArray
create a BitArray with a million zero bits.
The bits will be set to indicate that the bit position isn't prime.
has_factors = BitArray(1000000)
for i in xrange(2, 1000000):

if not has_factors[i]:
print(i)
Set all multiples of our prime to 1.
has_factors.set(True, xrange(i*2, 1000000, i))

I’ll leave optimising the algorithm as an exercise for the reader, but it illustrates both bit checking and setting. One
reason you might want to use a bitstring for this purpose (instead of a plain list for example) is that the million
bits only take up a million bits in memory, whereas for a list of integers it would be much more. Try asking for
a billion elements in a list - unless you’ve got some really nice hardware it will fail, whereas a billion element
bitstring only takes 125MB.

8 Chapter 1. Walkthrough

CHAPTER 2

Introduction

While it is not difficult to manipulate binary data in Python, for example using the struct and array modules,
it can be quite fiddly and time consuming even for quite small tasks, especially if you are not dealing only with
whole-byte data.

The bitstring module provides four classes, BitStream, BitArray , ConstBitStream and Bits, instances
of which can be constructed from integers, floats, hex, octal, binary, strings or files, but they all just represent a
string of binary digits. I shall use the general term ‘bitstring’ when referring generically to any of the classes, and
use the class names for parts that apply to only one or another.

BitArray objects can be sliced, joined, reversed, inserted into, overwritten, packed, unpacked etc. with simple
functions or slice notation. BitStream objects can also be read from, searched in, and navigated in, similar to a
file or stream.

Bitstrings are designed to be as lightweight as possible and can be considered to be just a list of binary digits.
They are however stored efficiently - although there are a variety of ways of creating and viewing the binary data,
the bitstring itself just stores the byte data, and all views are calculated as needed, and are not stored as part of the
object.

The different views or interpretations on the data are accessed through properties such as hex, bin and int, and
an extensive set of functions is supplied for modifying, navigating and analysing the binary data.

A complete reference for the module is given in the Reference section, while the rest of this manual acts more like
a tutorial or guided tour. Below are just a few examples to whet your appetite; everything here will be covered in
greater detail in the rest of this manual.

from bitstring import BitArray

Just some of the ways to create bitstrings:

from a binary string
a = BitArray('0b001')
from a hexadecimal string
b = BitArray('0xff470001')
straight from a file
c = BitArray(filename='somefile.ext')
from an integer
d = BitArray(int=540, length=11)
using a format string
d = BitArray('int:11=540')

9

bitstring Documentation, Release 3.1.6

Easily construct new bitstrings:

5 copies of 'a' followed by two new bytes
e = 5*a + '0xcdcd'
put a single bit on the front
e.prepend('0b1')
take a slice of the first 7 bits
f = e[7:]
replace 3 bits with 9 bits from octal string
f[1:4] = '0o775'
find and replace 2 bit string with 16 bit string
f.replace('0b01', '0xee34')

Interpret the bitstring however you want:

>>> print(e.hex)
'9249cdcd'
>>> print(e.int)
-1840656947
>>> print(e.uint)
2454310349

2.1 Getting Started

The easiest way to install bitstring is to use pip via:

pip install bitstring

or similar.

If you want an earlier version, or need other files in the full package, you can download it from the project’s
website.

If you then extract the contents of the zip file you should find files organised in these directories

• bitstring/ : The bitstring module files.

• test/ : Unit tests for the module, plus some example files for testing purposes.

• doc/ : This manual as a PDF and as HTML.

If you downloaded the source and want to install, run:

python setup.py install

You might need to add a ‘sudo’ to the start of that command, depending on your system. This will copy the source
files to your Python installation’s site-packages directory.

The module comes with comprehensive unit tests. To run them yourself use your favourite unit test running
method, mine is:

python -m unittest discover

which when run in the test folder should run all the tests (almost 500) and say OK. If tests fail then either your
version of Python isn’t supported (you need Python 2.7 or 3.x) or something unexpected has happened - in which
case please tell me about it.

10 Chapter 2. Introduction

CHAPTER 3

Creation

You can create bitstrings in a variety of ways. Internally they are stored as byte arrays, which means that no space
is wasted, and a bitstring containing 10MB of binary data will only take up 10MB of memory.

3.1 The bitstring classes

Four classes are provided by the bitstring module: BitStream and BitArray together with their immutable
versions ConstBitStream and Bits:

• Bits (object): This is the most basic class. It is immutable and so its contents can’t be changed after
creation.

• BitArray (Bits): This adds mutating methods to its base class.

• ConstBitStream (Bits): This adds methods and properties to allow the bits to be treated as a stream
of bits, with a bit position and reading/parsing methods.

• BitStream (BitArray, ConstBitStream): This is the most versatile class, having both the bit-
stream methods and the mutating methods.

Before version 3.0 Bits was known as ConstBitArray. The old name is still available for backward compat-
ibility.

The term ‘bitstring’ is used in this manual to refer generically to any of these classes.

Most of the examples in this manual use the BitArray class, with BitStream used when necessary. For most
uses the non-const classes are more versatile and so probably your best choice when starting to use the module.

To summarise when to use each class:

• If you need to change the contents of the bitstring then you must use BitArray or BitStream. Trun-
cating, replacing, inserting, appending etc. are not available for the const classes.

• If you need to use a bitstring as the key in a dictionary or as a member of a set then you must use Bits or
a ConstBitStream. As BitArray and BitStream objects are mutable they do not support hashing
and so cannot be used in these ways.

• If you are creating directly from a file then a BitArray or BitStream will read the file into memory
whereas a Bits or ConstBitStream will not, so using the const classes allows extremely large files to
be examined.

11

bitstring Documentation, Release 3.1.6

• If you don’t need the extra functionality of a particular class then the simpler ones might be faster and more
memory efficient. The fastest and most memory efficient class is Bits.

The Bits class is the base class of the other three class. This means that isinstance(s, Bits) will be true
if s is an instance of any of the four classes.

3.2 Using the constructor

When initialising a bitstring you need to specify at most one initialiser. These will be explained in full below, but
briefly they are:

• auto : Either a specially formatted string, a list or tuple, a file object, integer, bytearray, array, bytes or
another bitstring.

• bytes : A bytes object (a str in Python 2), for example read from a binary file.

• hex, oct, bin: Hexadecimal, octal or binary strings.

• int, uint: Signed or unsigned bit-wise big-endian binary integers.

• intle, uintle: Signed or unsigned byte-wise little-endian binary integers.

• intbe, uintbe: Signed or unsigned byte-wise big-endian binary integers.

• intne, uintne: Signed or unsigned byte-wise native-endian binary integers.

• float / floatbe, floatle, floatne: Big, little and native endian floating point numbers.

• se, ue : Signed or unsigned exponential-Golomb coded integers.

• sie, uie : Signed or unsigned interleaved exponential-Golomb coded integers.

• bool : A boolean (i.e. True or False).

• filename : Directly from a file, without reading into memory.

3.2.1 From a hexadecimal string

>>> c = BitArray(hex='0x000001b3')
>>> c.hex
'000001b3'

The initial 0x or 0X is optional. Whitespace is also allowed and is ignored. Note that the leading zeros are
significant, so the length of c will be 32.

If you include the initial 0x then you can use the auto initialiser instead. As it is the first parameter in __init__
this will work equally well:

c = BitArray('0x000001b3')

3.2.2 From a binary string

>>> d = BitArray(bin='0011 00')
>>> d.bin
'001100'

An initial 0b or 0B is optional and whitespace will be ignored.

As with hex, the auto initialiser will work if the binary string is prefixed by 0b:

>>> d = BitArray('0b001100')

12 Chapter 3. Creation

bitstring Documentation, Release 3.1.6

3.2.3 From an octal string

>>> o = BitArray(oct='34100')
>>> o.oct
'34100'

An initial 0o or 0O is optional, but 0o (a zero and lower-case ‘o’) is preferred as it is slightly more readable.

As with hex and bin, the auto initialiser will work if the octal string is prefixed by 0o:

>>> o = BitArray('0o34100')

3.2.4 From an integer

>>> e = BitArray(uint=45, length=12)
>>> f = BitArray(int=-1, length=7)
>>> e.bin
'000000101101'
>>> f.bin
'1111111'

For initialisation with signed and unsigned binary integers (int and uint respectively) the length parameter
is mandatory, and must be large enough to contain the integer. So for example if length is 8 then uint can be
in the range 0 to 255, while int can range from -128 to 127. Two’s complement is used to represent negative
numbers.

The auto initialise can be used by giving a colon and the length in bits immediately after the int or uint token,
followed by an equals sign then the value:

>>> e = BitArray('uint:12=45')
>>> f = BitArray('int:7=-1')

The plain int and uint initialisers are bit-wise big-endian. That is to say that the most significant bit comes first
and the least significant bit comes last, so the unsigned number one will have a 1 as its final bit with all other bits
set to 0. These can be any number of bits long. For whole-byte bitstring objects there are more options available
with different endiannesses.

3.2.5 Big and little-endian integers

>>> big_endian = BitArray(uintbe=1, length=16)
>>> little_endian = BitArray(uintle=1, length=16)
>>> native_endian = BitArray(uintne=1, length=16)

There are unsigned and signed versions of three additional ‘endian’ types. The unsigned versions are used above
to create three bitstrings.

The first of these, big_endian, is equivalent to just using the plain bit-wise big-endian uint initialiser, except
that all intbe or uintbe interpretations must be of whole-byte bitstrings, otherwise a ValueError is raised.

The second, little_endian, is interpreted as least significant byte first, i.e. it is a byte reversal of
big_endian. So we have:

>>> big_endian.hex
'0001'
>>> little_endian.hex
'0100'

Finally we have native_endian, which will equal either big_endian or little_endian, depending on
whether you are running on a big or little-endian machine (if you really need to check then use import sys;
sys.byteorder).

3.2. Using the constructor 13

bitstring Documentation, Release 3.1.6

3.2.6 From a floating point number

>>> f1 = BitArray(float=10.3, length=32)
>>> f2 = BitArray('float:64=5.4e31')

Floating point numbers can be used for initialisation provided that the bitstring is 32 or 64 bits long. Standard
Python floating point numbers are 64 bits long, so if you use 32 bits then some accuracy could be lost.

Note that the exact bits used to represent the floating point number could be platform dependent. Most PCs will
conform to the IEEE 754 standard, and presently other floating point representations are not supported (although
they should work on a single platform - it just might get confusing if you try to interpret a generated bitstring on
another platform).

Similar to the situation with integers there are big and little endian versions. The plain float is big endian and
so floatbe is just an alias.

As with other initialisers you can also auto initialise, as demonstrated with the second example below:

>>> little_endian = BitArray(floatle=0.0, length=64)
>>> native_endian = BitArray('floatne:32=-6.3')

3.2.7 Exponential-Golomb codes

Initialisation with integers represented by exponential-Golomb codes is also possible. ue is an unsigned code
while se is a signed code. Interleaved exponential-Golomb codes are also supported via uie and sie:

>>> g = BitArray(ue=12)
>>> h = BitArray(se=-402)
>>> g.bin
'0001101'
>>> h.bin
'0000000001100100101'

For these initialisers the length of the bitstring is fixed by the value it is initialised with, so the length parameter
must not be supplied and it is an error to do so. If you don’t know what exponential-Golomb codes are then you
are in good company, but they are quite interesting, so I’ve included a section on them (see Exponential-Golomb
Codes).

The auto initialiser may also be used by giving an equals sign and the value immediately after a ue or se token:

>>> g = BitArray('ue=12')
>>> h = BitArray('se=-402')

You may wonder why you would bother with auto in this case as the syntax is slightly longer. Hopefully all will
become clear in the next section.

3.2.8 From raw byte data

Using the length and offset parameters to specify the length in bits and an offset at the start to be ignored is
particularly useful when initialising from raw data or from a file.

a = BitArray(bytes=b'\x00\x01\x02\xff', length=28, offset=1)
b = BitArray(bytes=open("somefile", 'rb').read())

The length parameter is optional; it defaults to the length of the data in bits (and so will be a multiple of 8). You
can use it to truncate some bits from the end of the bitstring. The offset parameter is also optional and is used
to truncate bits at the start of the data.

You can also use a bytearray object, either explicitly with a bytes=some_bytearray keyword or via the
auto initialiser:

14 Chapter 3. Creation

bitstring Documentation, Release 3.1.6

c = BitArray(a_bytearray_object)

If you are using Python 3.x you can use this trick with bytes objects too. This should be used with caution as
in Python 2.7 it will instead be interpreted as a string (it’s not possible to distinguish between str and bytes in
Python 2) and so your code won’t work the same between Python versions.

d = BitArray(b'\x23g$5') # Use with caution! Only works correctly in Python 3.

3.2.9 From a file

Using the filename initialiser allows a file to be analysed without the need to read it all into memory. The way
to create a file-based bitstring is:

p = Bits(filename="my2GBfile")

This will open the file in binary read-only mode. The file will only be read as and when other operations require
it, and the contents of the file will not be changed by any operations. If only a portion of the file is needed then
the offset and length parameters (specified in bits) can be used.

Note that we created a Bits here rather than a BitArray , as they have quite different behaviour in this case.
The immutable Bits will never read the file into memory (except as needed by other operations), whereas if we
had created a BitArray then the whole of the file would immediately have been read into memory. This is
because in creating a BitArray you are implicitly saying that you want to modify it, and so it needs to be in
memory.

It’s also possible to use the auto initialiser for file objects. It’s as simple as:

f = open('my2GBfile', 'rb')
p = Bits(f)

3.3 The auto initialiser

The auto parameter is the first parameter in the __init__ function and so the auto= can be omitted when
using it. It accepts either a string, an iterable, another bitstring, an integer, a bytearray or a file object.

Strings starting with 0x or hex: are interpreted as hexadecimal, 0o or oct: implies octal, and strings starting
with 0b or bin: are interpreted as binary. You can also initialise with the various integer initialisers as described
above. If given another bitstring it will create a copy of it, (non string) iterables are interpreted as boolean arrays
and file objects acts a source of binary data. An array object will be converted into its constituent bytes. Finally
you can use an integer to create a zeroed bitstring of that number of bits.

>>> fromhex = BitArray('0x01ffc9')
>>> frombin = BitArray('0b01')
>>> fromoct = BitArray('0o7550')
>>> fromint = BitArray('int:32=10')
>>> fromfloat = BitArray('float:64=0.2')
>>> acopy = BitArray(fromoct)
>>> fromlist = BitArray([1, 0, 0])
>>> f = open('somefile', 'rb')
>>> fromfile = BitArray(f)
>>> zeroed = BitArray(1000)
>>> frombytes = BitArray(bytearray(b'xyz'))
>>> fromarray = BitArray(array.array('h', [3, 17, 10]))

It can also be used to convert between the BitArray and Bits classes:

3.3. The auto initialiser 15

bitstring Documentation, Release 3.1.6

>>> immutable = Bits('0xabc')
>>> mutable = BitArray(immutable)
>>> mutable += '0xdef'
>>> immutable = Bits(mutable)

As always the bitstring doesn’t know how it was created; initialising with octal or hex might be more convenient
or natural for a particular example but it is exactly equivalent to initialising with the corresponding binary string.

>>> fromoct.oct
'7550'
>>> fromoct.hex
'f68'
>>> fromoct.bin
'111101101000'
>>> fromoct.uint
3994
>>> fromoct.int
-152

>>> BitArray('0o7777') == '0xfff'
True
>>> BitArray('0xf') == '0b1111'
True
>>> frombin[::-1] + '0b0' == fromlist
True

Note how in the final examples above only one half of the == needs to be a bitstring, the other half gets auto
initialised before the comparison is made. This is in common with many other functions and operators.

You can also chain together string initialisers with commas, which causes the individual bitstrings to be concate-
nated.

>>> s = BitArray('0x12, 0b1, uint:5=2, ue=5, se=-1, se=4')
>>> s.find('uint:5=2, ue=5')
True
>>> s.insert('0o332, 0b11, int:23=300', 4)

Again, note how the format used in the auto initialiser can be used in many other places where a bitstring is
needed.

16 Chapter 3. Creation

CHAPTER 4

Packing

Another method of creating BitStream objects is to use the pack function. This takes a format specifier
which is a string with comma separated tokens, and a number of items to pack according to it. It’s signature is
bitstring.pack(format, *values, **kwargs).

For example using just the *values arguments we can say:

s = bitstring.pack('hex:32, uint:12, uint:12', '0x000001b3', 352, 288)

which is equivalent to initialising as:

s = BitStream('0x0000001b3, uint:12=352, uint:12=288')

The advantage of the pack function is if you want to write more general code for creation.

def foo(a, b, c, d):
return bitstring.pack('uint:8, 0b110, int:6, bin, bits', a, b, c, d)

s1 = foo(12, 5, '0b00000', '')
s2 = foo(101, 3, '0b11011', s1)

Note how you can use some tokens without sizes (such as bin and bits in the above example), and use values
of any length to fill them. If the size had been specified then a ValueError would be raised if the parameter
given was the wrong length. Note also how bitstring literals can be used (the 0b110 in the bitstring returned by
foo) and these don’t consume any of the items in *values.

You can also include keyword, value pairs (or an equivalent dictionary) as the final parameter(s). The values are
then packed according to the positions of the keywords in the format string. This is most easily explained with
some examples. Firstly the format string needs to contain parameter names:

format = 'hex:32=start_code, uint:12=width, uint:12=height'

Then we can make a dictionary with these parameters as keys and pass it to pack:

d = {'start_code': '0x000001b3', 'width': 352, 'height': 288}
s = bitstring.pack(format, **d)

Another method is to pass the same information as keywords at the end of pack’s parameter list:

17

bitstring Documentation, Release 3.1.6

s = bitstring.pack(format, width=352, height=288, start_code='0x000001b3')

The tokens in the format string that you must provide values for are:

int:n n bits as a signed integer.
uint:n n bits as an unsigned integer.
intbe:n n bits as a big-endian whole byte signed integer.
uintbe:n n bits as a big-endian whole byte unsigned integer.
intle:n n bits as a little-endian whole byte signed integer.
uintle:n n bits as a little-endian whole byte unsigned integer.
intne:n n bits as a native-endian whole byte signed integer.
uintne:n n bits as a native-endian whole byte unsigned integer.
float:n n bits as a big-endian floating point number (same as floatbe).
floatbe:n n bits as a big-endian floating point number (same as float).
floatle:n n bits as a little-endian floating point number.
floatne:n n bits as a native-endian floating point number.
hex[:n] [n bits as] a hexadecimal string.
oct[:n] [n bits as] an octal string.
bin[:n] [n bits as] a binary string.
bits[:n] [n bits as] a new bitstring.
bool[:1] single bit as a boolean (True or False).
ue an unsigned integer as an exponential-Golomb code.
se a signed integer as an exponential-Golomb code.
uie an unsigned integer as an interleaved exponential-Golomb code.
sie a signed integer as an interleaved exponential-Golomb code.

and you can also include constant bitstring tokens constructed from any of the following:

0b... binary literal.
0o... octal literal.
0x... hexadecimal literal.
int:n=m signed integer m in n bits.
uint:n=m unsigned integer m in n bits.
intbe:n=m big-endian whole byte signed integer m in n bits.
uintbe:n=m big-endian whole byte unsigned integer m in n bits.
intle:n=m little-endian whole byte signed integer m in n bits.
uintle:n=m little-endian whole byte unsigned integer m in n bits.
intne:n=m native-endian whole byte signed integer m in n bits.
uintne:n=m native-endian whole byte unsigned integer m in n bits.
float:n=f big-endian floating point number f in n bits.
floatbe:n=f big-endian floating point number f in n bits.
floatle:n=f little-endian floating point number f in n bits.
floatne:n=f native-endian floating point number f in n bits.
ue=m exponential-Golomb code for unsigned integer m.
se=m exponential-Golomb code for signed integer m.
uie=m interleaved exponential-Golomb code for unsigned integer m.
sie=m interleaved exponential-Golomb code for signed integer m.
bool=b a single bit, either True or False.
pad:n n zero bits (for use as padding).

You can also use a keyword for the length specifier in the token, for example:

s = bitstring.pack('int:n=-1', n=100)

And finally it is also possible just to use a keyword as a token:

18 Chapter 4. Packing

bitstring Documentation, Release 3.1.6

s = bitstring.pack('hello, world', world='0x123', hello='0b110')

As you would expect, there is also an unpack function that takes a bitstring and unpacks it according to a very
similar format string. This is covered later in more detail, but a quick example is:

>>> s = bitstring.pack('ue, oct:3, hex:8, uint:14', 3, '0o7', '0xff', 90)
>>> s.unpack('ue, oct:3, hex:8, uint:14')
[3, '7', 'ff', 90]

4.1 Compact format strings

Another option when using pack, as well as other methods such as read and byteswap, is to use a format
specifier similar to those used in the struct and array modules. These consist of a character to give the
endianness, followed by more single characters to give the format.

The endianness character must start the format string and unlike in the struct module it is not optional (except
when used with byteswap):

> Big-endian
< Little-endian
@ Native-endian

For ‘network’ endianness use > as network and big-endian are equivalent. This is followed by at least one of these
format characters:

b 8 bit signed integer
B 8 bit unsigned integer
h 16 bit signed integer
H 16 bit unsigned integer
l 32 bit signed integer
L 32 bit unsigned integer
q 64 bit signed integer
Q 64 bit unsigned integer
f 32 bit floating point number
d 64 bit floating point number

The exact type is determined by combining the endianness character with the format character, but rather than
give an exhaustive list a single example should explain:

>h Big-endian 16 bit signed integer intbe:16
<h Little-endian 16 bit signed integer intle:16
@h Native-endian 16 bit signed integer intne:16

As you can see all three are signed integers in 16 bits, the only difference is the endianness. The native-endian @h
will equal the big-endian >h on big-endian systems, and equal the little-endian <h on little-endian systems. For
the single byte codes b and B the endianness doesn’t make any difference, but you still need to specify one so that
the format string can be parsed correctly.

An example:

s = bitstring.pack('>qqqq', 10, 11, 12, 13)

is equivalent to

4.1. Compact format strings 19

bitstring Documentation, Release 3.1.6

s = bitstring.pack('intbe:64, intbe:64, intbe:64, intbe:64', 10, 11, 12, 13)

Just as in the struct module you can also give a multiplicative factor before the format character, so the previous
example could be written even more concisely as

s = bitstring.pack('>4q', 10, 11, 12, 13)

You can of course combine these format strings with other initialisers, even mixing endiannesses (although I’m
not sure why you’d want to):

s = bitstring.pack('>6h3b, 0b1, <9L', *range(18))

This rather contrived example takes the numbers 0 to 17 and packs the first 6 as signed big-endian 2-byte integers,
the next 3 as single bytes, then inserts a single 1 bit, before packing the remaining 9 as little-endian 4-byte unsigned
integers.

20 Chapter 4. Packing

CHAPTER 5

Interpreting Bitstrings

Bitstrings don’t know or care how they were created; they are just collections of bits. This means that you are
quite free to interpret them in any way that makes sense.

Several Python properties are used to create interpretations for the bitstring. These properties call private functions
which will calculate and return the appropriate interpretation. These don’t change the bitstring in any way and it
remains just a collection of bits. If you use the property again then the calculation will be repeated.

Note that these properties can potentially be very expensive in terms of both computation and memory require-
ments. For example if you have initialised a bitstring from a 10 GB file object and ask for its binary string
representation then that string will be around 80 GB in size!

For the properties described below we will use these:

>>> a = BitArray('0x123')
>>> b = BitArray('0b111')

5.1 bin

The most fundamental interpretation is perhaps as a binary string (a ‘bitstring’). The bin property returns a string
of the binary representation of the bitstring. All bitstrings can use this property and it is used to test equality
between bitstrings.

>>> a.bin
'000100100011'
>>> b.bin
'111'

Note that the initial zeros are significant; for bitstrings the zeros are just as important as the ones!

5.2 hex

For whole-byte bitstrings the most natural interpretation is often as hexadecimal, with each byte represented by
two hex digits.

If the bitstring does not have a length that is a multiple of four bits then an InterpretError exception will be
raised. This is done in preference to truncating or padding the value, which could hide errors in user code.

21

bitstring Documentation, Release 3.1.6

>>> a.hex
'123'
>>> b.hex
ValueError: Cannot convert to hex unambiguously - not multiple of 4 bits.

5.3 oct

For an octal interpretation use the oct property.

If the bitstring does not have a length that is a multiple of three then an InterpretError exception will be
raised.

>>> a.oct
'0443'
>>> b.oct
'7'
>>> (b + '0b0').oct
ValueError: Cannot convert to octal unambiguously - not multiple of 3 bits.

5.4 uint / uintbe / uintle / uintne

To interpret the bitstring as a binary (base-2) bit-wise big-endian unsigned integer (i.e. a non-negative integer) use
the uint property.

>>> a.uint
283
>>> b.uint
7

For byte-wise big-endian, little-endian and native-endian interpretations use uintbe, uintle and uintne
respectively. These will raise a ValueError if the bitstring is not a whole number of bytes long.

>>> s = BitArray('0x000001')
>>> s.uint # bit-wise big-endian
1
>>> s.uintbe # byte-wise big-endian
1
>>> s.uintle # byte-wise little-endian
65536
>>> s.uintne # byte-wise native-endian (will be 1 on a big-endian platform!)
65536

5.5 int / intbe / intle / intne

For a two’s complement interpretation as a base-2 signed integer use the int property. If the first bit of the
bitstring is zero then the int and uint interpretations will be equal, otherwise the int will represent a negative
number.

>>> a.int
283
>>> b.int
-1

For byte-wise big, little and native endian signed integer interpretations use intbe, intle and intne respec-
tively. These work in the same manner as their unsigned counterparts described above.

22 Chapter 5. Interpreting Bitstrings

bitstring Documentation, Release 3.1.6

5.6 float / floatbe / floatle / floatne

For a floating point interpretation use the float property. This uses your machine’s underlying floating point
representation and will only work if the bitstring is 32 or 64 bits long.

Different endiannesses are provided via floatle and floatne. Note that as floating point interpretations
are only valid on whole-byte bitstrings there is no difference between the bit-wise big-endian float and the
byte-wise big-endian floatbe.

Note also that standard floating point numbers in Python are stored in 64 bits, so use this size if you wish to avoid
rounding errors.

5.7 bytes

A common need is to retrieve the raw bytes from a bitstring for further processing or for writing to a file. For this
use the bytes interpretation, which returns a bytes object (which is equivalent to an ordinary str in Python
2.6/2.7).

If the length of the bitstring isn’t a multiple of eight then a ValueError will be raised. This is because there
isn’t an unequivocal representation as bytes. You may prefer to use the method tobytes as this will be pad
with between one and seven zero bits up to a byte boundary if necessary.

>>> open('somefile', 'wb').write(a.tobytes())
>>> open('anotherfile', 'wb').write(('0x0'+a).bytes)
>>> a1 = BitArray(filename='somefile')
>>> a1.hex
'1230'
>>> a2 = BitArray(filename='anotherfile')
>>> a2.hex
'0123'

Note that the tobytesmethod automatically padded with four zero bits at the end, whereas for the other example
we explicitly padded at the start to byte align before using the bytes property.

5.8 ue

The ue property interprets the bitstring as a single unsigned exponential-Golomb code and returns an integer.
If the bitstring is not exactly one code then an InterpretError is raised instead. If you instead wish to
read the next bits in the stream and interpret them as a code use the read function with a ue format string. See
Exponential-Golomb Codes for a short explanation of this type of integer representation.

>>> s = BitArray(ue=12)
>>> s.bin
'0001101'
>>> s.append(BitArray(ue=3))
>>> print(s.readlist('2*ue'))
[12, 3]

5.9 se

The se property does much the same as ue and the provisos there all apply. The obvious difference is that it
interprets the bitstring as a signed exponential-Golomb rather than unsigned - see Exponential-Golomb Codes for
more information.

5.6. float / floatbe / floatle / floatne 23

bitstring Documentation, Release 3.1.6

>>> s = BitArray('0x164b')
>>> s.se
InterpretError: BitArray, is not a single exponential-Golomb code.
>>> while s.pos < s.length:
... print(s.read('se'))
-5
2
0
-1

5.10 uie / sie

A slightly different type, interleaved exponential-Golomb codes are also supported. The principles are the same
as with ue and se - see Exponential-Golomb Codes for detail of the differences.

24 Chapter 5. Interpreting Bitstrings

CHAPTER 6

Slicing, Dicing and Splicing

Manipulating binary data can be a bit of a challenge in Python. One of its strengths is that you don’t have to worry
about the low level data, but this can make life difficult when what you care about is precisely the thing that is
safely hidden by high level abstractions.

In this section some more methods are described that treat data as a series of bits, rather than bytes.

6.1 Slicing

Slicing takes three arguments: the first position you want, one past the last position you want and a multiplicative
factor which defaults to 1.

The third argument (the ‘step’) will be described shortly, but most of the time you’ll probably just need the bit-
wise slice, where for example a[10:12] will return a 2-bit bitstring of the 10th and 11th bits in a, and a[32]
will return just the 32nd bit.

>>> a = BitArray('0b00011110')
>>> b = a[3:7]
>>> print(a, b)
0x1e 0xf

For single bit indices (as opposed to slices) a boolean is returned; that is True for ‘1’ bits and False for ‘0’ bits:

>>> a[0]
False
>>> a[4]
True

If you want a single bit as a new bitstring then use a one-bit slice instead:

>>> a[0:1]
BitArray('0b0')

Indexing also works for missing and negative arguments, just as it does for other containers.

>>> a = BitArray('0b00011110')
>>> print(a[:5]) # first 5 bits
0b00011

(continues on next page)

25

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> print(a[3:]) # everything except first 3 bits
0b11110
>>> print(a[-4:]) # final 4 bits
0xe
>>> print(a[:-1]) # everything except last bit
0b0001111
>>> print(a[-6:-4]) # from 6 from the end to 4 from the end
0b01

6.1.1 Stepping in slices

The step parameter (also known as the stride) can be used in slices and has the same meaning as in the built-in
containers:

>>> s = BitArray(16)
>>> s[::2] = [1]*8
>>> s.bin
'1010101010101010'
>>> del s[8::2]
>>> s.bin
'101010100000'
>>> s[::3].bin
'1010'

Negative slices are also allowed, and should do what you’d expect. So for example s[::-1] returns a bit-reversed
copy of s (which is similar to using s.reverse(), which does the same operation on s in-place).

6.2 Joining

To join together a couple of bitstring objects use the + or += operators, or the append and prepend methods.

Six ways of creating the same BitArray:
a1 = BitArray(bin='000') + BitArray(hex='f')
a2 = BitArray('0b000') + BitArray('0xf')
a3 = BitArray('0b000') + '0xf'
a4 = BitArray('0b000')
a4.append('0xf')
a5 = BitArray('0xf')
a5.prepend('0b000')
a6 = BitArray('0b000')
a6 += '0xf'

Note that the final three methods all modify a bitstring, and so will only work with BitArray objects, not the
immutable Bits objects.

If you want to join a large number of bitstrings then the method join can be used to improve efficiency and
readability. It works like the ordinary string join function in that it uses the bitstring that it is called on as a
separator when joining the list of bitstring objects it is given. If you don’t want a separator then it can be called on
an empty bitstring.

bslist = [BitArray(uint=n, length=12) for n in xrange(1000)]
s = BitArray('0b1111').join(bslist)

26 Chapter 6. Slicing, Dicing and Splicing

bitstring Documentation, Release 3.1.6

6.3 Truncating, inserting, deleting and overwriting

The functions in this section all modify the bitstring that they operate on and so are not available for Bits objects.

6.3.1 Deleting and truncating

To delete bits just use del as you would with any other container:

>>> a = BitArray('0b00011000')
>>> del a[3:5] # remove 2 bits at pos 3
>>> a.bin
‘000000’
>>> b = BitArray('0x112233445566')
>>> del b[24:40]
>>> b.hex
'11223366'

You can of course use this to truncate the start or end bits just as easily:

>>> a = BitArray('0x001122')
>>> del a[-8:] # remove last 8 bits
>>> del a[:8] # remove first 8 bits
>>> a == '0x11'
True

6.3.2 insert

As you might expect, insert takes one BitArray and inserts it into another. A bit position must be specified
for BitArray and Bits, but for BitStreams if not present then the current pos is used.

>>> a = BitArray('0x00112233')
>>> a.insert('0xffff', 16)
>>> a.hex
'0011ffff2233'

6.3.3 overwrite

overwrite does much the same as insert, but predictably the BitArray object’s data is overwritten by the
new data.

>>> a = BitStream('0x00112233')
>>> a.pos = 4
>>> a.overwrite('0b1111') # Uses current pos as default
>>> a.hex
'0f112233'

6.4 The bitstring as a list

If you treat a bitstring object as a list whose elements are all either ‘1’ or ‘0’ then you won’t go far wrong. The
table below gives some of the equivalent ways of using methods and the standard slice notation.

6.3. Truncating, inserting, deleting and overwriting 27

bitstring Documentation, Release 3.1.6

Using functions Using slices
s.insert(bs, pos) s[pos:pos] = bs
s.overwrite(bs, pos) s[pos:pos + bs.len] = bs
s.append(bs) s[s.len:s.len] = bs
s.prepend(bs) s[0:0] = bs

6.5 Splitting

6.5.1 split

Sometimes it can be very useful to use a delimiter to split a bitstring into sections. The split method returns a
generator for the sections.

>>> a = BitArray('0x4700004711472222')
>>> for s in a.split('0x47', bytealigned=True):
... print(s.hex)

470000
4711
472222

Note that the first item returned is always the bitstring before the first occurrence of the delimiter, even if it is
empty.

6.5.2 cut

If you just want to split into equal parts then use the cut method. This takes a number of bits as its first argument
and returns a generator for chunks of that size.

>>> a = BitArray('0x47001243')
>>> for byte in a.cut(8):
... print(byte.hex)
47
00
12
43

28 Chapter 6. Slicing, Dicing and Splicing

CHAPTER 7

Reading, Parsing and Unpacking

7.1 Reading and parsing

The BitStream and ConstBitStream classes contain number of methods for reading the bitstring as if it
were a file or stream. Depending on how it was constructed the bitstream might actually be contained in a file
rather than stored in memory, but these methods work for either case.

In order to behave like a file or stream, every bitstream has a property pos which is the current position from
which reads occur. pos can range from zero (its value on construction) to the length of the bitstream, a position
from which all reads will fail as it is past the last bit. Note that the pos property isn’t considered a part of the
bitstream’s identity; this allows it to vary for immutable ConstBitStream objects and means that it doesn’t
affect equality or hash values.

The property bytepos is also available, and is useful if you are only dealing with byte data and don’t want to
always have to divide the bit position by eight. Note that if you try to use bytepos and the bitstring isn’t byte
aligned (i.e. pos isn’t a multiple of 8) then a ByteAlignError exception will be raised.

7.1.1 read / readlist

For simple reading of a number of bits you can use read with an integer argument. A new bitstring object gets
returned, which can be interpreted using one of its properties or used for further reads. The following example does
some simple parsing of an MPEG-1 video stream (the stream is provided in the test directory if you downloaded
the source archive).

>>> s = ConstBitStream(filename='test/test.m1v')
>>> print(s.pos)
0
>>> start_code = s.read(32).hex
>>> width = s.read(12).uint
>>> height = s.read(12).uint
>>> print(start_code, width, height, s.pos)
000001b3 352 288 56
>>> s.pos += 37
>>> flags = s.read(2)
>>> constrained_parameters_flag = flags.read(1)
>>> load_intra_quantiser_matrix = flags.read(1)

(continues on next page)

29

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> print(s.pos, flags.pos)
95 2

If you want to read multiple items in one go you can use readlist. This can take an iterable of bit lengths and
return a list of bitstring objects. So for example instead of writing:

a = s.read(32)
b = s.read(8)
c = s.read(24)

you can equivalently use just:

a, b, c = s.readlist([32, 8, 24])

7.1.2 Reading using format strings

The read / readlist methods can also take a format string similar to that used in the auto initialiser. Only one
token should be provided to read and a single value is returned. To read multiple tokens use readlist, which
unsurprisingly returns a list.

The format string consists of comma separated tokens that describe how to interpret the next bits in the bitstring.
The tokens are:

int:n n bits as a signed integer.
uint:n n bits as an unsigned integer.
intbe:n n bits as a byte-wise big-endian signed integer.
uintbe:n n bits as a byte-wise big-endian unsigned integer.
intle:n n bits as a byte-wise little-endian signed integer.
uintle:n n bits as a byte-wise little-endian unsigned integer.
intne:n n bits as a byte-wise native-endian signed integer.
uintne:n n bits as a byte-wise native-endian unsigned integer.
float:n n bits as a big-endian floating point number (same as floatbe).
floatbe:n n bits as a big-endian floating point number (same as float).
floatle:n n bits as a little-endian floating point number.
floatne:n n bits as a native-endian floating point number.
hex:n n bits as a hexadecimal string.
oct:n n bits as an octal string.
bin:n n bits as a binary string.
bits:n n bits as a new bitstring.
bytes:n n bytes as a bytes object.
ue next bits as an unsigned exponential-Golomb code.
se next bits as a signed exponential-Golomb code.
uie next bits as an interleaved unsigned exponential-Golomb code.
sie next bits as an interleaved signed exponential-Golomb code.
bool[:1] next bit as a boolean (True or False).
pad:n next n bits will be ignored (padding).

So in the earlier example we could have written:

start_code = s.read('hex:32')
width = s.read('uint:12')
height = s.read('uint:12')

and we also could have combined the three reads as:

30 Chapter 7. Reading, Parsing and Unpacking

bitstring Documentation, Release 3.1.6

start_code, width, height = s.readlist('hex:32, 12, 12')

where here we are also taking advantage of the default uint interpretation for the second and third tokens.

You are allowed to use one ‘stretchy’ token in a readlist. This is a token without a length specified which will
stretch to fill encompass as many bits as possible. This is often useful when you just want to assign something to
‘the rest’ of the bitstring:

a, b, everything_else = s.readlist('intle:16, intle:24, bits')

In this example the bits token will consist of everything left after the first two tokens are read, and could be
empty.

It is an error to use more than one stretchy token, or to use a ue, se, uie or se token after a stretchy token (the
reason you can’t use exponential-Golomb codes after a stretchy token is that the codes can only be read forwards;
that is you can’t ask “if this code ends here, where did it begin?” as there could be many possible answers).

The pad token is a special case in that it just causes bits to be skipped over without anything being returned. This
can be useful for example if parts of a binary format are uninteresting:

a, b = s.readlist('pad:12, uint:4, pad:4, uint:8')

7.1.3 Peeking

In addition to the read methods there are matching peek methods. These are identical to the read except that they
do not advance the position in the bitstring to after the read elements.

s = ConstBitStream('0x4732aa34')
if s.peek(8) == '0x47':

t = s.read(16) # t is first 2 bytes '0x4732'
else:

s.find('0x47')

7.2 Unpacking

The unpack method works in a very similar way to readlist. The major difference is that it interprets the
whole bitstring from the start, and takes no account of the current pos. It’s a natural complement of the pack
function.

s = pack('uint:10, hex, int:13, 0b11', 130, '3d', -23)
a, b, c, d = s.unpack('uint:10, hex, int:13, bin:2')

7.3 Seeking

The properties pos and bytepos are available for getting and setting the position, which is zero on creation of
the bitstring.

Note that you can only use bytepos if the position is byte aligned, i.e. the bit position is a multiple of 8.
Otherwise a ByteAlignError exception is raised.

For example:

>>> s = BitStream('0x123456')
>>> s.pos
0
>>> s.bytepos += 2

(continues on next page)

7.2. Unpacking 31

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> s.pos # note pos verses bytepos
16
>>> s.pos += 4
>>> print(s.read('bin:4')) # the final nibble '0x6'
0110

7.4 Finding and replacing

7.4.1 find / rfind

To search for a sub-string use the find method. If the find succeeds it will set the position to the start of the next
occurrence of the searched for string and return a tuple containing that position, otherwise it will return an empty
tuple. By default the sub-string will be found at any bit position - to allow it to only be found on byte boundaries
set bytealigned=True.

>>> s = ConstBitStream('0x00123400001234')
>>> found = s.find('0x1234', bytealigned=True)
>>> print(found, s.bytepos)
(8,) 1
>>> found = s.find('0xff', bytealigned=True)
>>> print(found, s.bytepos)
() 1

The reason for returning the bit position in a tuple is so that the return value is True in a boolean sense if the
sub-string is found, and False if it is not (if just the bit position were returned there would be a problem with
finding at position 0). The effect is that you can use if s.find(...): and have it behave as you’d expect.

rfind does much the same as find, except that it will find the last occurrence, rather than the first.

>>> t = BitArray('0x0f231443e8')
>>> found = t.rfind('0xf') # Search all bit positions in reverse
>>> print(found)
(31,) # Found within the 0x3e near the end

For all of these finding functions you can optionally specify a start and / or end to narrow the search range.
Note though that because it’s searching backwards rfind will start at end and end at start (so you always
need start < end).

7.4.2 findall

To find all occurrences of a bitstring inside another (even overlapping ones), use findall. This returns a gener-
ator for the bit positions of the found strings.

>>> r = BitArray('0b011101011001')
>>> ones = r.findall([1])
>>> print(list(ones))
[1, 2, 3, 5, 7, 8, 11]

7.4.3 replace

To replace all occurrences of one BitArray with another use replace. The replacements are done in-place,
and the number of replacements made is returned. This methods changes the contents of the bitstring and so isn’t
available for the Bits or ConstBitStream classes.

32 Chapter 7. Reading, Parsing and Unpacking

bitstring Documentation, Release 3.1.6

>>> s = BitArray('0b110000110110')
>>> s.replace('0b110', '0b1111')
3 # The number of replacements made
>>> s.bin
'111100011111111'

7.5 Working with byte aligned data

The emphasis with the bitstring module is always towards not worrying if things are a whole number of bytes long
or are aligned on byte boundaries. Internally the module has to worry about this quite a lot, but the user shouldn’t
have to care. To this end methods such as find, findall, split and replace by default aren’t concerned
with looking for things only on byte boundaries and provide a parameter bytealigned which can be set to
True to change this behaviour.

This works fine, but it’s not uncommon to be working only with whole-byte data and all the
bytealigned=True can get a bit repetitive. To solve this it is possible to change the default throughout
the module by setting bitstring.bytealigned. For example:

>>> s = BitArray('0xabbb')
>>> s.find('0xbb') # look for the byte 0xbb
(4,) # found, but not on byte boundary
>>> s.find('0xbb', bytealigned=True) # try again...
(8,) # not found on any byte boundaries
>>> bitstring.bytealigned = True # change the default behaviour
>>> s.find('0xbb')
(8,) # now only finds byte aligned

7.5. Working with byte aligned data 33

bitstring Documentation, Release 3.1.6

34 Chapter 7. Reading, Parsing and Unpacking

CHAPTER 8

Miscellany

8.1 Other Functions

8.1.1 bytealign

bytealign advances between zero and seven bits to make the pos a multiple of eight. It returns the number of
bits advanced.

>>> a = BitStream('0x11223344')
>>> a.pos = 1
>>> skipped = a.bytealign()
>>> print(skipped, a.pos)
7 8
>>> skipped = a.bytealign()
>>> print(skipped, a.pos)
0 8

8.1.2 reverse

This simply reverses the bits of the BitArray in place. You can optionally specify a range of bits to reverse.

>>> a = BitArray('0b000001101')
>>> a.reverse()
>>> a.bin
'101100000'
>>> a.reverse(0, 4)
>>> a.bin
'110100000'

8.1.3 tobytes

Returns the byte data contained in the bitstring as a bytes object (equivalent to a str if you’re using Python
2.7). This differs from using the plain bytes property in that if the bitstring isn’t a whole number of bytes long
then it will be made so by appending up to seven zero bits.

35

bitstring Documentation, Release 3.1.6

>>> BitArray('0b1').tobytes()
'\x80'

8.1.4 tofile

Writes the byte data contained in the bitstring to a file. The file should have been opened in a binary write mode,
for example:

>>> f = open('newfile', 'wb')
>>> BitArray('0xffee3241fed').tofile(f)

In exactly the same manner as with tobytes, up to seven zero bits will be appended to make the file a whole
number of bytes long.

8.1.5 startswith / endswith

These act like the same named functions on strings, that is they return True if the bitstring starts or ends with the
parameter given. Optionally you can specify a range of bits to use.

>>> s = BitArray('0xef133')
>>> s.startswith('0b111011')
True
>>> s.endswith('0x4')
False

8.1.6 ror / rol

To rotate the bits in a BitArray use ror and rol for right and left rotations respectively. The changes are done
in-place.

>>> s = BitArray('0x00001')
>>> s.rol(6)
>>> s.hex
'00040'

8.2 Special Methods

A few of the special methods have already been covered, for example __add__ and __iadd__ (the + and +=
operators) and __getitem__ and __setitem__ (reading and setting slices via []). Here are some more:

8.2.1 __len__

This implements the len function and returns the length of the bitstring in bits.

It’s recommended that you use the len property instead of the function as a limitation of Python means that the
function will raise an OverflowError if the bitstring has more than sys.maxsize elements (that’s typically
256MB of data with 32-bit Python).

There’s not much more to say really, except to emphasise that it is always in bits and never bytes.

>>> len(BitArray('0x00'))
8

36 Chapter 8. Miscellany

bitstring Documentation, Release 3.1.6

8.2.2 __str__ / __repr__

These get called when you try to print a bitstring. As bitstrings have no preferred interpretation the form printed
might not be what you want - if not then use the hex, bin, int etc. properties. The main use here is in interactive
sessions when you just want a quick look at the bitstring. The __repr__ tries to give a code fragment which if
evaluated would give an equal bitstring.

The form used for the bitstring is generally the one which gives it the shortest representation. If the resulting string
is too long then it will be truncated with ... - this prevents very long bitstrings from tying up your interactive
session while they print themselves.

>>> a = BitArray('0b1111 111')
>>> print(a)
0b1111111
>>> a
BitArray('0b1111111')
>>> a += '0b1'
>>> print(a)
0xff
>>> print(a.bin)
11111111

8.2.3 __eq__ / __ne__

The equality of two bitstring objects is determined by their binary representations being equal. If you have a
different criterion you wish to use then code it explicitly, for example a.int == b.int could be true even if
a == b wasn’t (as they could be different lengths).

>>> BitArray('0b0010') == '0x2'
True
>>> BitArray('0x2') != '0o2'
True

8.2.4 __invert__

To get a bit-inverted copy of a bitstring use the ~ operator:

>>> a = BitArray('0b0001100111')
>>> print(a)
0b0001100111
>>> print(~a)
0b1110011000
>>> ~~a == a
True

8.2.5 __lshift__ / __rshift__ / __ilshift__ / __irshift__

Bitwise shifts can be achieved using <<, >>, <<= and >>=. Bits shifted off the left or right are replaced with zero
bits. If you need special behaviour, such as keeping the sign of two’s complement integers then do the shift on the
property instead, for example use a.int >>= 2.

>>> a = BitArray('0b10011001')
>>> b = a << 2
>>> print(b)
0b01100100
>>> a >>= 2

(continues on next page)

8.2. Special Methods 37

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> print(a)
0b00100110

8.2.6 __mul__ / __imul__ / __rmul__

Multiplication of a bitstring by an integer means the same as it does for ordinary strings: concatenation of multiple
copies of the bitstring.

>>> a = BitArray('0b10')*8
>>> print(a.bin)
1010101010101010

8.2.7 __copy__

This allows the bitstring to be copied via the copy module.

>>> import copy
>>> a = Bits('0x4223fbddec2231')
>>> b = copy.copy(a)
>>> b == a
True
>>> b is a
False

It’s not terribly exciting, and isn’t the only method of making a copy. Using b = BitArray(a) is another
option, but b = a[:] may be more familiar to some.

8.2.8 __and__ / __or__ / __xor__ / __iand__ / __ior__ / __ixor__

Bit-wise AND, OR and XOR are provided for bitstring objects of equal length only (otherwise a ValueError
is raised).

>>> a = BitArray('0b00001111')
>>> b = BitArray('0b01010101')
>>> print((a&b).bin)
00000101
>>> print((a|b).bin)
01011111
>>> print((a^b).bin)
01011010
>>> b &= '0x1f'
>>> print(b.bin)
00010101

38 Chapter 8. Miscellany

Part II

Reference

39

CHAPTER 9

Quick Reference

This section lists the bitstring module’s classes together with all their methods and attributes. The next section
goes into full detail with examples.

9.1 Bits

Bits(object)

A Bits is the most basic class. It is immutable, so once created its value cannot change. It is a base class for all
the other classes in the bitstring module.

9.1.1 Methods

• all – Check if all specified bits are set to 1 or 0.

• any – Check if any of specified bits are set to 1 or 0.

• count – Count the number of bits set to 1 or 0.

• cut – Create generator of constant sized chunks.

• endswith – Return whether the bitstring ends with a sub-bitstring.

• find – Find a sub-bitstring in the current bitstring.

• findall – Find all occurrences of a sub-bitstring in the current bitstring.

• join – Join bitstrings together using current bitstring.

• rfind – Seek backwards to find a sub-bitstring.

• split – Create generator of chunks split by a delimiter.

• startswith – Return whether the bitstring starts with a sub-bitstring.

• tobytes – Return bitstring as bytes, padding if needed.

• tofile – Write bitstring to file, padding if needed.

• unpack – Interpret bits using format string.

41

bitstring Documentation, Release 3.1.6

9.1.2 Special methods

Also available are the operators [], ==, !=, +, *, ~, <<, >>, &, | and ^.

9.1.3 Properties

• bin – The bitstring as a binary string.

• bool – For single bit bitstrings, interpret as True or False.

• bytes – The bitstring as a bytes object.

• float – Interpret as a floating point number.

• floatbe – Interpret as a big-endian floating point number.

• floatle – Interpret as a little-endian floating point number.

• floatne – Interpret as a native-endian floating point number.

• hex – The bitstring as a hexadecimal string.

• int – Interpret as a two’s complement signed integer.

• intbe – Interpret as a big-endian signed integer.

• intle – Interpret as a little-endian signed integer.

• intne – Interpret as a native-endian signed integer.

• len – Length of the bitstring in bits.

• oct – The bitstring as an octal string.

• se – Interpret as a signed exponential-Golomb code.

• ue – Interpret as an unsigned exponential-Golomb code.

• sie – Interpret as a signed interleaved exponential-Golomb code.

• uie – Interpret as an unsigned interleaved exponential-Golomb code.

• uint – Interpret as a two’s complement unsigned integer.

• uintbe – Interpret as a big-endian unsigned integer.

• uintle – Interpret as a little-endian unsigned integer.

• uintne – Interpret as a native-endian unsigned integer.

9.2 BitArray

BitArray(Bits)

This class adds mutating methods to Bits.

9.2.1 Additional methods

• append – Append a bitstring.

• byteswap – Change byte endianness in-place.

• clear – Remove all bits from the bitstring.

• copy – Return a copy of the bitstring.

• insert – Insert a bitstring.

42 Chapter 9. Quick Reference

bitstring Documentation, Release 3.1.6

• invert – Flip bit(s) between one and zero.

• overwrite – Overwrite a section with a new bitstring.

• prepend – Prepend a bitstring.

• replace – Replace occurrences of one bitstring with another.

• reverse – Reverse bits in-place.

• rol – Rotate bits to the left.

• ror – Rotate bits to the right.

• set – Set bit(s) to 1 or 0.

9.2.2 Additional special methods

Mutating operators are available: [], <<=, >>=, *=, &=, |= and ^=.

9.2.3 Attributes

The same as Bits, except that they are all (with the exception of len) writable as well as readable.

9.3 ConstBitStream

ConstBitStream(Bits)

This class, previously known as just Bits (which is an alias for backward-compatibility), adds a bit position and
methods to read and navigate in the bitstream.

9.3.1 Additional methods

• bytealign – Align to next byte boundary.

• peek – Peek at and interpret next bits as a single item.

• peeklist – Peek at and interpret next bits as a list of items.

• read – Read and interpret next bits as a single item.

• readlist – Read and interpret next bits as a list of items.

• readto – Read up to and including next occurrence of a bitstring.

9.3.2 Additional attributes

• bytepos – The current byte position in the bitstring.

• pos – The current bit position in the bitstring.

9.4 BitStream

BitStream(BitArray, ConstBitStream)

This class, also known as BitString, contains all of the ‘stream’ elements of ConstBitStream and adds all
of the mutating methods of BitArray.

9.3. ConstBitStream 43

bitstring Documentation, Release 3.1.6

44 Chapter 9. Quick Reference

CHAPTER 10

The bitstring module

The bitstring module provides four classes, Bits, BitArray , ConstBitStream and BitStream. Bits is
the simplest, and represents an immutable sequence of bits, while BitArray adds various methods that modify
the contents (these classes are intended to loosely mirror bytes and bytearray in Python 3). The ‘Stream’
classes have additional methods to treat the bits as a file or stream.

If you need to change the contents of a bitstring after creation then you must use either the BitArray or
BitStream classes. If you need to use bitstrings as keys in a dictionary or members of a set then you must
use either a Bits or a ConstBitStream. In this section the generic term ‘bitstring’ is used to refer to an
object of any of these classes.

Note that for the bitstream classes the bit position within the bitstream (the position from which reads occur) can
change without affecting the equality operation. This means that the pos and bytepos properties can change
even for a ConstBitStream object.

The public methods, special methods and properties of both classes are detailed in this section.

10.1 The auto initialiser

Note that in places where a bitstring can be used as a parameter, any other valid input to the auto initialiser can
also be used. This means that the parameter can also be a format string which consists of tokens:

• Starting with hex=, or simply starting with 0x implies hexadecimal. e.g. 0x013ff, hex=013ff

• Starting with oct=, or simply starting with 0o implies octal. e.g. 0o755, oct=755

• Starting with bin=, or simply starting with 0b implies binary. e.g. 0b0011010, bin=0011010

• Starting with int: or uint: followed by a length in bits and = gives base-2 integers. e.g. uint:8=255,
int:4=-7

• To get big, little and native-endian whole-byte integers append be, le or ne respectively to the uint or
int identifier. e.g. uintle:32=1, intne:16=-23

• For floating point numbers use float: followed by the length in bits and = and the number. The de-
fault is big-endian, but you can also append be, le or ne as with integers. e.g. float:64=0.2,
floatle:32=-0.3e12

• Starting with ue=, uie=, se= or sie= implies an exponential-Golomb coded integer. e.g. ue=12,
sie=-4

45

bitstring Documentation, Release 3.1.6

Multiples tokens can be joined by separating them with commas, so for example se=4, 0b1, se=-1 repre-
sents the concatenation of three elements.

Parentheses and multiplicative factors can also be used, for example 2*(0b10, 0xf) is equivalent to 0b10,
0xf, 0b10, 0xf. The multiplying factor must come before the thing it is being used to repeat.

The auto parameter also accepts other types:

• A list or tuple, whose elements will be evaluated as booleans (imagine calling bool() on each item) and
the bits set to 1 for True items and 0 for False items.

• A positive integer, used to create a bitstring of that many zero bits.

• A file object, presumably opened in read-binary mode, from which the bitstring will be formed.

• A bytearray object.

• An array object. This is used after being converted to it’s constituent byte data via its tostringmethod.

• In Python 3 only, a bytes object. Note this won’t work for Python 2.7 as bytes is just a synonym for
str.

10.2 Compact format strings

For the read, unpack, peek methods and pack function you can use compact format strings similar to those
used in the struct and array modules. These start with an endian identifier: > for big-endian, < for little-
endian or @ for native-endian. This must be followed by at least one of these codes:

Code Interpretation
b 8 bit signed integer
B 8 bit unsigned integer
h 16 bit signed integer
H 16 bit unsigned integer
l 32 bit signed integer
L 32 bit unsigned integer
q 64 bit signed integer
Q 64 bit unsigned integer
f 32 bit floating point number
d 64 bit floating point number

For more detail see Compact format strings.

10.3 Class properties

Bitstrings use a wide range of properties for getting and setting different interpretations on the binary data, as well
as accessing bit lengths and positions. For the mutable BitStream and BitArray objects the properties are all
read and write (with the exception of the len), whereas for immutable objects the only write enabled properties
are for the position in the bitstream (pos/bitpos and bytepos).

46 Chapter 10. The bitstring module

CHAPTER 11

The Bits class

class bitstring.Bits([auto, length, offset, **kwargs])
Creates a new bitstring. You must specify either no initialiser, just an auto value, or one of the keyword
arguments bytes, bin, hex, oct, uint, int, uintbe, intbe, uintle, intle, uintne, intne,
se, ue, sie, uie, float, floatbe, floatle, floatne, bool or filename. If no initialiser is
given then a zeroed bitstring of length bits is created.

The initialiser for the Bits class is precisely the same as for BitArray , BitStream and
ConstBitStream.

offset is available when using the bytes or filename initialisers. It gives a number of bits to ignore
at the start of the bitstring.

Specifying length is mandatory when using the various integer initialisers. It must be large enough that a
bitstring can contain the integer in length bits. It must also be specified for the float initialisers (the only
valid values are 32 and 64). It is optional for the bytes and filename initialisers and can be used to
truncate data from the end of the input value.

>>> s1 = Bits(hex='0x934')
>>> s2 = Bits(oct='0o4464')
>>> s3 = Bits(bin='0b001000110100')
>>> s4 = Bits(int=-1740, length=12)
>>> s5 = Bits(uint=2356, length=12)
>>> s6 = Bits(bytes=b'\x93@', length=12)
>>> s1 == s2 == s3 == s4 == s5 == s6
True

For information on the use of auto see The auto initialiser.

>>> s = Bits('uint:12=32, 0b110')
>>> t = Bits('0o755, ue:12, int:3=-1')

all(value[, pos])
Returns True if all of the specified bits are all set to value, otherwise returns False.

If value is True then 1 bits are checked for, otherwise 0 bits are checked for.

pos should be an iterable of bit positions. Negative numbers are treated in the same way as slice indices
and it will raise an IndexError if pos < -s.len or pos > s.len. It defaults to the whole
bitstring.

47

bitstring Documentation, Release 3.1.6

>>> s = Bits('int:15=-1')
>>> s.all(True, [3, 4, 12, 13])
True
>>> s.all(1)
True

any(value[, pos])
Returns True if any of the specified bits are set to value, otherwise returns False.

If value is True then 1 bits are checked for, otherwise 0 bits are checked for.

pos should be an iterable of bit positions. Negative numbers are treated in the same way as slice indices
and it will raise an IndexError if pos < -s.len or pos > s.len. It defaults to the whole
bitstring.

>>> s = Bits('0b11011100')
>>> s.any(False, range(6))
True
>>> s.any(1)
True

count(value)
Returns the number of bits set to value.

value can be True or False or anything that can be cast to a bool, so you could equally use 1 or 0.

>>> s = BitString(1000000)
>>> s.set(1, [4, 44, 444444])
>>> s.count(1)
3
>>> s.count(False)
999997

cut(bits[, start, end, count])
Returns a generator for slices of the bitstring of length bits.

At most count items are returned and the range is given by the slice [start:end], which defaults to the
whole bitstring.

>>> s = BitString('0x1234')
>>> for nibble in s.cut(4):
... s.prepend(nibble)
>>> print(s)
0x43211234

endswith(bs[, start, end])
Returns True if the bitstring ends with the sub-string bs, otherwise returns False.

A slice can be given using the start and end bit positions and defaults to the whole bitstring.

>>> s = Bits('0x35e22')
>>> s.endswith('0b10, 0x22')
True
>>> s.endswith('0x22', start=13)
False

find(bs[, start, end, bytealigned])
Searches for bs in the current bitstring and sets pos to the start of bs and returns it in a tuple if found,
otherwise it returns an empty tuple.

The reason for returning the bit position in a tuple is so that it evaluates as True even if the bit position
is zero. This allows constructs such as if s.find('0xb3'): to work as expected.

48 Chapter 11. The Bits class

bitstring Documentation, Release 3.1.6

If bytealigned is True then it will look for bs only at byte aligned positions (which is generally much
faster than searching for it in every possible bit position). start and end give the search range and
default to the whole bitstring.

>>> s = Bits('0x0023122')
>>> s.find('0b000100', bytealigned=True)
(16,)

findall(bs[, start, end, count, bytealigned])
Searches for all occurrences of bs (even overlapping ones) and returns a generator of their bit positions.

If bytealigned is True then bs will only be looked for at byte aligned positions. start and end option-
ally define a search range and default to the whole bitstring.

The count parameter limits the number of items that will be found - the default is to find all occur-
rences.

>>> s = Bits('0xab220101')*5
>>> list(s.findall('0x22', bytealigned=True))
[8, 40, 72, 104, 136]

join(sequence)
Returns the concatenation of the bitstrings in the iterable sequence joined with self as a separator.

>>> s = Bits().join(['0x0001ee', 'uint:24=13', '0b0111'])
>>> print(s)
0x0001ee00000d7

>>> s = Bits('0b1').join(['0b0']*5)
>>> print(s.bin)
010101010

rfind(bs[, start, end, bytealigned])
Searches backwards for bs in the current bitstring and sets pos to the start of bs and returns it in a
tuple if found, otherwise it returns an empty tuple.

The reason for returning the bit position in a tuple is so that it evaluates as True even if the bit position
is zero. This allows constructs such as if s.rfind('0xb3'): to work as expected.

If bytealigned is True then it will look for bs only at byte aligned positions. start and end give the
search range and default to 0 and len respectively.

Note that as it’s a reverse search it will start at end and finish at start.

>>> s = Bits('0o031544')
>>> s.rfind('0b100')
(15,)
>>> s.rfind('0b100', end=17)
(12,)

split(delimiter[, start, end, count, bytealigned])
Splits the bitstring into sections that start with delimiter. Returns a generator for bitstring objects.

The first item generated is always the bits before the first occurrence of delimiter (even if empty). A
slice can be optionally specified with start and end, while count specifies the maximum number of
items generated.

If bytealigned is True then the delimiter will only be found if it starts at a byte aligned position.

>>> s = Bits('0x42423')
>>> [bs.bin for bs in s.split('0x4')]
['', '01000', '01001000', '0100011']

startswith(bs[, start, end])
Returns True if the bitstring starts with the sub-string bs, otherwise returns False.

49

bitstring Documentation, Release 3.1.6

A slice can be given using the start and end bit positions and defaults to the whole bitstring.

tobytes()
Returns the bitstring as a bytes object (equivalent to a str in Python 2.7).

The returned value will be padded at the end with between zero and seven 0 bits to make it byte
aligned.

This method can also be used to output your bitstring to a file - just open a file in binary write mode
and write the function’s output.

>>> s = Bits(bytes=b'hello')
>>> s += '0b01'
>>> s.tobytes()
b'hello@'

tofile(f)
Writes the bitstring to the file object f, which should have been opened in binary write mode.

The data written will be padded at the end with between zero and seven 0 bits to make it byte aligned.

>>> f = open('newfile', 'wb')
>>> Bits('0x1234').tofile(f)

unpack(fmt, **kwargs)
Interprets the whole bitstring according to the fmt string or iterable and returns a list of bitstring objects.

A dictionary or keyword arguments can also be provided. These will replace length identifiers in the
format string.

fmt is an iterable or a string with comma separated tokens that describe how to interpret the next bits
in the bitstring. See the entry for read for details.

>>> s = Bits('int:4=-1, 0b1110')
>>> i, b = s.unpack('int:4, bin')

If a token doesn’t supply a length (as with bin above) then it will try to consume the rest of the
bitstring. Only one such token is allowed.

bin
Property for the representation of the bitstring as a binary string.

bool
Property for representing the bitstring as a boolean (True or False).

If the bitstring is not a single bit then the getter will raise an InterpretError.

bytes
Property representing the underlying byte data that contains the bitstring.

When used as a getter the bitstring must be a whole number of byte long or a InterpretError
will be raised.

An alternative is to use the tobytes method, which will pad with between zero and seven 0 bits to
make it byte aligned if needed.

>>> s = Bits('0x12345678')
>>> s.bytes
b'\x124Vx'

hex
Property representing the hexadecimal value of the bitstring.

If the bitstring is not a multiple of four bits long then getting its hex value will raise an
InterpretError.

50 Chapter 11. The Bits class

bitstring Documentation, Release 3.1.6

>>> s = Bits(bin='1111 0000')
>>> s.hex
'f0'

int
Property for the signed two’s complement integer representation of the bitstring.

intbe
Property for the byte-wise big-endian signed two’s complement integer representation of the bitstring.

Only valid for whole-byte bitstrings, in which case it is equal to s.int, otherwise an
InterpretError is raised.

intle
Property for the byte-wise little-endian signed two’s complement integer representation of the bit-
string.

Only valid for whole-byte bitstring, in which case it is equal to s[::-8].int, i.e. the integer
representation of the byte-reversed bitstring.

intne
Property for the byte-wise native-endian signed two’s complement integer representation of the bit-
string.

Only valid for whole-byte bitstrings, and will equal either the big-endian or the little-endian integer
representation depending on the platform being used.

float

floatbe
Property for the floating point representation of the bitstring.

The bitstring must be either 32 or 64 bits long to support the floating point interpretations, otherwise
an InterpretError will be raised.

If the underlying floating point methods on your machine are not IEEE 754 compliant then using the
float interpretations is undefined (this is unlikely unless you’re on some very unusual hardware).

The float property is bit-wise big-endian, which as all floats must be whole-byte is exactly equiva-
lent to the byte-wise big-endian floatbe.

floatle
Property for the byte-wise little-endian floating point representation of the bitstring.

floatne
Property for the byte-wise native-endian floating point representation of the bitstring.

len

length
Read-only property that give the length of the bitstring in bits (len and length are equivalent).

This is almost equivalent to using the len() built-in function, except that for large bitstrings len()
may fail with an OverflowError, whereas the len property continues to work.

oct
Property for the octal representation of the bitstring.

If the bitstring is not a multiple of three bits long then getting its octal value will raise a
InterpretError.

>>> s = BitString('0b111101101')
>>> s.oct
'755'
>>> s.oct = '01234567'
>>> s.oct
'01234567'

51

bitstring Documentation, Release 3.1.6

se
Property for the signed exponential-Golomb code representation of the bitstring.

When used as a getter an InterpretError will be raised if the bitstring is not a single code.

>>> s = BitString(se=-40)
>>> s.bin
0000001010001
>>> s += '0b1'
>>> s.se
Error: BitString is not a single exponential-Golomb code.

ue
Property for the unsigned exponential-Golomb code representation of the bitstring.

When used as a getter an InterpretError will be raised if the bitstring is not a single code.

sie
Property for the signed interleaved exponential-Golomb code representation of the bitstring.

When used as a getter an InterpretError will be raised if the bitstring is not a single code.

uie
Property for the unsigned interleaved exponential-Golomb code representation of the bitstring.

When used as a getter an InterpretError will be raised if the bitstring is not a single code.

uint
Property for the unsigned base-2 integer representation of the bitstring.

uintbe
Property for the byte-wise big-endian unsigned base-2 integer representation of the bitstring.

uintle
Property for the byte-wise little-endian unsigned base-2 integer representation of the bitstring.

uintne
Property for the byte-wise native-endian unsigned base-2 integer representation of the bitstring.

__add__(bs)

__radd__(bs)
s1 + s2

Concatenate two bitstring objects and return the result. Either bitstring can be ‘auto’ initialised.

s = Bits(ue=132) + '0xff'
s2 = '0b101' + s

__and__(bs)

__rand__(bs)
s1 & s2

Returns the bit-wise AND between two bitstrings, which must have the same length otherwise a
ValueError is raised.

>>> print(Bits('0x33') & '0x0f')
0x03

__bool__()
if s:

Returns True if at least one bit is set to 1, otherwise returns False.

This special method is used in Python 3 only; for Python 2.7 the equivalent is called __nonzero__,
but the details are exactly the same.

52 Chapter 11. The Bits class

bitstring Documentation, Release 3.1.6

>>> bool(Bits())
False
>>> bool(Bits('0b0000010000'))
True
>>> bool(Bits('0b0000000000'))
False

__contains__(bs)
bs in s

Returns True if bs can be found in the bitstring, otherwise returns False.

Similar to using find, except that you are only told if it is found, and not where it was found.

>>> '0b11' in Bits('0x06')
True
>>> '0b111' in Bits('0x06')
False

__copy__()
s2 = copy.copy(s1)

This allows the copy module to correctly copy bitstrings. Other equivalent methods are to initialise a
new bitstring with the old one or to take a complete slice.

>>> import copy
>>> s = Bits('0o775')
>>> s_copy1 = copy.copy(s)
>>> s_copy2 = Bits(s)
>>> s_copy3 = s[:]
>>> s == s_copy1 == s_copy2 == s_copy3
True

__eq__(bs)
s1 == s2

Compares two bitstring objects for equality, returning True if they have the same binary representa-
tion, otherwise returning False.

>>> Bits('0o7777') == '0xfff'
True
>>> a = Bits(uint=13, length=8)
>>> b = Bits(uint=13, length=10)
>>> a == b
False

__getitem__(key)
s[start:end:step]

Returns a slice of the bitstring.

The usual slice behaviour applies.

>>> s = Bits('0x0123456')
>>> s[4:8]
Bits('0x1')
>>> s[1::8] # 1st, 9th, 17th and 25th bits
Bits('0x3')

If a single element is asked for then either True or False will be returned.

>>> s[0]
False

(continues on next page)

53

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> s[-1]
True

__hash__()
hash(s)

Returns an integer hash of the Bits.

This method is not available for the BitArray or BitStream classes, as only immutable objects
should be hashed. You typically won’t need to call it directly, instead it is used for dictionary keys and
in sets.

__invert__()
~s

Returns the bitstring with every bit inverted, that is all zeros replaced with ones, and all ones replaced
with zeros.

If the bitstring is empty then an Error will be raised.

>>> s = ConstBitStream(‘0b1110010’)
>>> print(~s)
0b0001101
>>> print(~s & s)
0b0000000

__len__()
len(s)

Returns the length of the bitstring in bits if it is less than sys.maxsize, otherwise raises
OverflowError.

It’s recommended that you use the len property rather than the len function because of the function’s
behaviour for large bitstring objects, although calling the special function directly will always work.

>>> s = Bits(filename='11GB.mkv')
>>> s.len
93944160032
>>> len(s)
OverflowError: long int too large to convert to int
>>> s.__len__()
93944160032

__lshift__(n)
s << n

Returns the bitstring with its bits shifted n places to the left. The n right-most bits will become zeros.

>>> s = Bits('0xff')
>>> s << 4
Bits('0xf0')

__mul__(n)

__rmul__(n)
s * n / n * s

Return bitstring consisting of n concatenations of another.

>>> a = Bits('0x34')
>>> b = a*5
>>> print(b)
0x3434343434

54 Chapter 11. The Bits class

bitstring Documentation, Release 3.1.6

__ne__(bs)
s1 != s2

Compares two bitstring objects for inequality, returning False if they have the same binary represen-
tation, otherwise returning True.

__nonzero__()
See __bool__.

__or__(bs)

__ror__(bs)
s1 | s2

Returns the bit-wise OR between two bitstring, which must have the same length otherwise a
ValueError is raised.

>>> print(Bits('0x33') | '0x0f')
0x3f

__repr__()
repr(s)

A representation of the bitstring that could be used to create it (which will often not be the form used
to create it).

If the result is too long then it will be truncated with ... and the length of the whole will be given.

>>> Bits(‘0b11100011’)
Bits(‘0xe3’)

__rshift__(n)
s >> n

Returns the bitstring with its bits shifted n places to the right. The n left-most bits will become zeros.

>>> s = Bits(‘0xff’)
>>> s >> 4
Bits(‘0x0f’)

__str__()
print(s)

Used to print a representation of the bitstring, trying to be as brief as possible.

If the bitstring is a multiple of 4 bits long then hex will be used, otherwise either binary or a mix of
hex and binary will be used. Very long strings will be truncated with

>>> s = Bits('0b1')*7
>>> print(s)
0b1111111
>>> print(s + '0b1')
0xff

__xor__(bs)

__rxor__(bs)
s1 ^ s2

Returns the bit-wise XOR between two bitstrings, which must have the same length otherwise a
ValueError is raised.

>>> print(Bits('0x33') ^ '0x0f')
0x3c

55

bitstring Documentation, Release 3.1.6

56 Chapter 11. The Bits class

CHAPTER 12

The BitArray class

class bitstring.BitArray([auto, length, offset, **kwargs])
The Bits class is the base class for BitArray and so (with the exception of __hash__) all of its
methods are also available for BitArray objects. The initialiser is also the same as for Bits and so
won’t be repeated here.

A BitArray is a mutable Bits, and so the one thing all of the methods listed here have in common is
that they can modify the contents of the bitstring.

append(bs)
Join a BitArray to the end of the current BitArray .

>>> s = BitArray('0xbad')
>>> s.append('0xf00d')
>>> s
BitArray('0xbadf00d')

byteswap([fmt, start, end, repeat=True])
Change the endianness of the BitArray in-place according to fmt. Return the number of swaps
done.

The fmt can be an integer, an iterable of integers or a compact format string similar to those used in
pack (described in Compact format strings). It defaults to 0, which means reverse as many bytes as
possible. The fmt gives a pattern of byte sizes to use to swap the endianness of the BitArray . Note
that if you use a compact format string then the endianness identifier (<, > or @) is not needed, and if
present it will be ignored.

start and end optionally give a slice to apply the transformation to (it defaults to the whole
BitArray). If repeat is True then the byte swapping pattern given by the fmt is repeated in its
entirety as many times as possible.

>>> s = BitArray('0x00112233445566')
>>> s.byteswap(2)
3
>>> s
BitArray('0x11003322554466')
>>> s.byteswap('h')
3
>>> s
BitArray('0x00112233445566')

(continues on next page)

57

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> s.byteswap([2, 5])
1
>>> s
BitArray('0x11006655443322')

It can also be used to swap the endianness of the whole BitArray .

>>> s = BitArray('uintle:32=1234')
>>> s.byteswap()
>>> print(s.uintbe)
1234

clear()
Removes all bits from the bitstring.

s.clear() is equivalent to del s[:] and simply makes the bitstring empty.

copy()
Returns a copy of the bitstring.

s.copy() is equivalent to the shallow copy s[:] and creates a new copy of the bitstring in memory.

insert(bs, pos)
Inserts bs at pos.

When used with the BitStream class the pos is optional, and if not present the current bit position
will be used. After insertion the property pos will be immediately after the inserted bitstring.

>>> s = BitStream('0xccee')
>>> s.insert('0xd', 8)
>>> s
BitStream('0xccdee')
>>> s.insert('0x00')
>>> s
BitStream('0xccd00ee')

invert([pos])
Inverts one or many bits from 1 to 0 or vice versa.

pos can be either a single bit position or an iterable of bit positions. Negative numbers are treated in
the same way as slice indices and it will raise IndexError if pos < -s.len or pos > s.len.
The default is to invert the entire BitArray .

>>> s = BitArray('0b111001')
>>> s.invert(0)
>>> s.bin
'011001'
>>> s.invert([-2, -1])
>>> s.bin
'011010'
>>> s.invert()
>>> s.bin
'100101'

overwrite(bs, pos)
Replaces the contents of the current BitArray with bs at pos.

When used with the BitStream class the pos is optional, and if not present the current bit position
will be used. After insertion the property pos will be immediately after the overwritten bitstring.

>>> s = BitArray(length=10)
>>> s.overwrite('0b111', 3)
>>> s

(continues on next page)

58 Chapter 12. The BitArray class

bitstring Documentation, Release 3.1.6

(continued from previous page)

BitArray('0b0001110000')
>>> s.pos
6

prepend(bs)
Inserts bs at the beginning of the current BitArray .

>>> s = BitArray('0b0')
>>> s.prepend('0xf')
>>> s
BitArray('0b11110')

replace(old, new[, start, end, count, bytealigned])
Finds occurrences of old and replaces them with new. Returns the number of replacements made.

If bytealigned is True then replacements will only be made on byte boundaries. start and end give
the search range and default to 0 and len respectively. If count is specified then no more than this
many replacements will be made.

>>> s = BitArray('0b0011001')
>>> s.replace('0b1', '0xf')
3
>>> print(s.bin)
0011111111001111
>>> s.replace('0b1', '', count=6)
6
>>> print(s.bin)
0011001111

reverse([start, end])
Reverses bits in the BitArray in-place.

start and end give the range and default to 0 and len respectively.

>>> a = BitArray('0b10111')
>>> a.reverse()
>>> a.bin
'11101'

rol(bits[, start, end])
Rotates the contents of the BitArray in-place by bits bits to the left.

start and end define the slice to use and default to 0 and len respectively.

Raises ValueError if bits < 0.

>>> s = BitArray('0b01000001')
>>> s.rol(2)
>>> s.bin
'00000101'

ror(bits[, start, end])
Rotates the contents of the BitArray in-place by bits bits to the right.

start and end define the slice to use and default to 0 and len respectively.

Raises ValueError if bits < 0.

set(value[, pos])
Sets one or many bits to either 1 (if value is True) or 0 (if value isn’t True). pos can be either a
single bit position or an iterable of bit positions. Negative numbers are treated in the same way as slice
indices and it will raise IndexError if pos < -s.len or pos > s.len. The default is to set
every bit in the BitArray .

59

bitstring Documentation, Release 3.1.6

Using s.set(True, x) can be more efficient than other equivalent methods such as s[x] = 1,
s[x] = "0b1" or s.overwrite('0b1', x), especially if many bits are being set.

>>> s = BitArray('0x0000')
>>> s.set(True, -1)
>>> print(s)
0x0001
>>> s.set(1, (0, 4, 5, 7, 9))
>>> s.bin
'1000110101000001'
>>> s.set(0)
>>> s.bin
'0000000000000000'

bin
Writable version of Bits.bin.

bool
Writable version of Bits.bool.

bytes
Writable version of Bits.bytes.

hex
Writable version of Bits.hex.

int
Writable version of Bits.int.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

>>> s = BitArray('0xf3')
>>> s.int
-13
>>> s.int = 1232
ValueError: int 1232 is too large for a BitArray of length 8.

intbe
Writable version of Bits.intbe.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

intle
Writable version of Bits.intle.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

intne
Writable version of Bits.intne.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

float

floatbe
Writable version of Bits.float.

floatle
Writable version of Bits.floatle.

floatne
Writable version of Bits.floatne.

60 Chapter 12. The BitArray class

bitstring Documentation, Release 3.1.6

oct
Writable version of Bits.oct.

se
Writable version of Bits.se.

ue
Writable version of Bits.uie.

sie
Writable version of Bits.sie.

uie
Writable version of Bits.ue.

uint
Writable version of Bits.uint.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

uintbe
Writable version of Bits.uintbe.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

uintle
Writable version of Bits.uintle.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

uintne
Writable version of Bits.uintne.

When used as a setter the value must fit into the current length of the BitArray , else a ValueError
will be raised.

__delitem__(key)
del s[start:end:step]

Deletes the slice specified.

__iadd__(bs)
s1 += s2

Appends bs to the current bitstring.

Note that for BitArray objects this will be an in-place change, whereas for Bits objects using
+= will not call this method - instead a new object will be created (it is equivalent to a copy and an
__add__).

>>> s = BitArray(ue=423)
>>> s += BitArray(ue=12)
>>> s.read('ue')
423
>>> s.read('ue')
12

__iand__(bs)
s &= bs

In-place bit-wise AND between two bitstrings. If the two bitstrings are not the same length then a
ValueError is raised.

__ilshift__(n)
s <<= n

61

bitstring Documentation, Release 3.1.6

Shifts the bits in-place n bits to the left. The n right-most bits will become zeros and bits shifted off
the left will be lost.

__imul__(n)
s *= n

In-place concatenation of n copies of the current bitstring.

>>> s = BitArray('0xbad')
>>> s *= 3
>>> s.hex
'badbadbad'

__ior__(bs)
s |= bs

In-place bit-wise OR between two bitstrings. If the two bitstrings are not the same length then a
ValueError is raised.

__irshift__(n)
s >>= n

Shifts the bits in-place n bits to the right. The n left-most bits will become zeros and bits shifted off
the right will be lost.

__ixor__(bs)
s ^= bs

In-place bit-wise XOR between two bitstrings. If the two bitstrings are not the same length then a
ValueError is raised.

__setitem__(key, value)
s1[start:end:step] = s2

Replaces the slice specified with a new value.

>>> s = BitArray('0x00000000')
>>> s[::8] = '0xf'
>>> print(s)
0x80808080
>>> s[-12:] = '0xf'
>>> print(s)
0x80808f

62 Chapter 12. The BitArray class

CHAPTER 13

The ConstBitStream class

class bitstring.ConstBitStream([auto, length, offset, **kwargs])
The Bits class is the base class for ConstBitStream and so all of its methods are also available for
ConstBitStream objects. The initialiser is also the same as for Bits and so won’t be repeated here.

A ConstBitStream is a Bits with added methods and properties that allow it to be parsed as a stream
of bits.

bytealign()
Aligns to the start of the next byte (so that pos is a multiple of 8) and returns the number of bits
skipped.

If the current position is already byte aligned then it is unchanged.

>>> s = ConstBitStream('0xabcdef')
>>> s.pos += 3
>>> s.bytealign()
5
>>> s.pos
8

peek(fmt)
Reads from the current bit position pos in the bitstring according to the fmt string or integer and
returns the result.

The bit position is unchanged.

For information on the format string see the entry for the read method.

>>> s = ConstBitStream('0x123456')
>>> s.peek(16)
ConstBitStream('0x1234')
>>> s.peek('hex:8')
'12'

peeklist(fmt, **kwargs)
Reads from current bit position pos in the bitstring according to the fmt string or iterable and returns
a list of results.

A dictionary or keyword arguments can also be provided. These will replace length identifiers in the
format string. The position is not advanced to after the read items.

63

bitstring Documentation, Release 3.1.6

See the entries for read and readlist for more information.

read(fmt)
Reads from current bit position pos in the bitstring according the format string and returns a single
result. If not enough bits are available then a ReadError is raised.

fmt is either a token string that describes how to interpret the next bits in the bitstring or an integer.
If it’s an integer then that number of bits will be read, and returned as a new bitstring. Otherwise the
tokens are:

int:n n bits as a signed integer.
uint:n n bits as an unsigned integer.
float:n n bits as a floating point number.
intbe:n n bits as a big-endian signed integer.
uintbe:n n bits as a big-endian unsigned integer.
floatbe:n n bits as a big-endian float.
intle:n n bits as a little-endian signed int.
uintle:n n bits as a little-endian unsigned int.
floatle:n n bits as a little-endian float.
intne:n n bits as a native-endian signed int.
uintne:n n bits as a native-endian unsigned int.
floatne:n n bits as a native-endian float.
hex:n n bits as a hexadecimal string.
oct:n n bits as an octal string.
bin:n n bits as a binary string.
ue next bits as an unsigned exp-Golomb.
se next bits as a signed exp-Golomb.
uie next bits as an interleaved unsigned exp-Golomb.
sie next bits as an interleaved signed exp-Golomb.
bits:n n bits as a new bitstring.
bytes:n n bytes as bytes object.
bool[:1] next bit as a boolean (True or False).
pad:n next n bits will be skipped.

For example:

>>> s = ConstBitStream('0x23ef55302')
>>> s.read('hex:12')
'23e'
>>> s.read('bin:4')
'1111'
>>> s.read('uint:5')
10
>>> s.read('bits:4')
ConstBitStream('0xa')

The read method is useful for reading exponential-Golomb codes.

>>> s = ConstBitStream('se=-9, ue=4')
>>> s.read('se')
-9
>>> s.read('ue')
4

The pad token is not very useful when used in read as it just skips a number of bits and returns
None. However when used within readlist or unpack it allows unimportant part of the bitstring
to be simply ignored.

readlist(fmt, **kwargs)
Reads from current bit position pos in the bitstring according to the fmt string or iterable and returns

64 Chapter 13. The ConstBitStream class

bitstring Documentation, Release 3.1.6

a list of results. If not enough bits are available then a ReadError is raised.

A dictionary or keyword arguments can also be provided. These will replace length identifiers in the
format string. The position is advanced to after the read items.

See the entry for read for information on the format strings.

For multiple items you can separate using commas or given multiple parameters:

>>> s = ConstBitStream('0x43fe01ff21')
>>> s.readlist('hex:8, uint:6')
['43', 63]
>>> s.readlist(['bin:3', 'intle:16'])
['100', -509]
>>> s.pos = 0
>>> s.readlist('hex:b, uint:d', b=8, d=6)
['43', 63]

readto(bs, bytealigned)
Reads up to and including the next occurrence of the bitstring bs and returns the results. If bytealigned
is True it will look for the bitstring starting only at whole-byte positions.

Raises a ReadError if bs is not found, and ValueError if bs is empty.

>>> s = ConstBitStream('0x47000102034704050647')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x47')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x0001020347')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x04050647')

bytepos
Property for setting and getting the current byte position in the bitstring.

When used as a getter will raise a ByteAlignError if the current position in not byte aligned.

pos

bitpos
Read and write property for setting and getting the current bit position in the bitstring. Can be set to
any value from 0 to len.

The pos and bitpos properties are exactly equivalent - you can use whichever you prefer.

if s.pos < 100:
s.pos += 10

65

bitstring Documentation, Release 3.1.6

66 Chapter 13. The ConstBitStream class

CHAPTER 14

The BitStream class

class bitstring.BitStream([auto, length, offset, **kwargs])
Both the BitArray and the ConstBitStream classes are base classes for BitStream and so all of
their methods are also available for BitStream objects. The initialiser is also the same as for Bits and
so won’t be repeated here.

A BitStream is a mutable container of bits with methods and properties that allow it to be parsed as a
stream of bits. There are no additional methods or properties in this class - see its base classes (Bits,
BitArray and ConstBitStream) for details.

67

bitstring Documentation, Release 3.1.6

68 Chapter 14. The BitStream class

CHAPTER 15

Functions

bitstring.pack(format[, *values, **kwargs])
Packs the values and keyword arguments according to the format string and returns a new BitStream.

Parameters

• format – string with comma separated tokens

• values – extra values used to construct the BitStream

• kwargs – a dictionary of token replacements

Return type BitStream

The format string consists of comma separated tokens of the form name:length=value. See the entry for
read for more details.

The tokens can be ‘literals’, like 0xef, 0b110, uint:8=55, etc. which just represent a set sequence of bits.

They can also have the value missing, in which case the values contained in *values will be used.

>>> a = pack('bin:3, hex:4', '001', 'f')
>>> b = pack('uint:10', 33)

A dictionary or keyword arguments can also be provided. These will replace items in the format string.

>>> c = pack('int:a=b', a=10, b=20)
>>> d = pack('int:8=a, bin=b, int:4=a', a=7, b='0b110')

Plain names can also be used as follows:

>>> e = pack('a, b, b, a', a='0b11', b='0o2')

Tokens starting with an endianness identifier (<, > or @) implies a struct-like compact format string (see Compact
format strings). For example this packs three little-endian 16-bit integers:

>>> f = pack('<3h', 12, 3, 108)

And of course you can combine the different methods in a single pack.

A ValueError will be raised if the *values are not all used up by the format string, and if a value provided
doesn’t match the length specified by a token.

69

bitstring Documentation, Release 3.1.6

70 Chapter 15. Functions

CHAPTER 16

Exceptions

exception bitstring.Error(Exception)
Base class for all module exceptions.

exception bitstring.InterpretError(Error, ValueError)
Inappropriate interpretation of binary data. For example using the ‘bytes’ property on a bitstring that isn’t a
whole number of bytes long.

exception bitstring.ByteAlignError(Error)
Whole-byte position or length needed.

exception bitstring.CreationError(Error, ValueError)
Inappropriate argument during bitstring creation.

exception bitstring.ReadError(Error, IndexError)
Reading or peeking past the end of a bitstring.

71

bitstring Documentation, Release 3.1.6

72 Chapter 16. Exceptions

Part III

Appendices

73

bitstring Documentation, Release 3.1.6

Gathered together here are a few odds and ends that didn’t fit well into either the user manual or the reference
section. The only unifying theme is that none of them provide any vital knowledge about bitstring, and so
they can all be safely ignored.

75

bitstring Documentation, Release 3.1.6

76

CHAPTER 17

Examples

17.1 Creation

There are lots of ways of creating new bitstrings. The most flexible is via the auto parameter, which is used in
this example.

Multiple parts can be joined with a single expression...
s = BitArray('0x000001b3, uint:12=352, uint:12=288, 0x1, 0x3')

and extended just as easily
s += 'uint:18=48000, 0b1, uint:10=4000, 0b100'

To covert to an ordinary string use the bytes property
open('video.m2v', 'wb').write(s.bytes)

The information can be read back with a similar syntax
start_code, width, height = s.readlist('hex:32, uint:12, uint:12')
aspect_ratio, frame_rate = s.readlist('2*bin:4')

17.2 Manipulation

s = BitArray('0x0123456789abcdef')

del s[4:8] # deletes the '1'
s.insert('0xcc', 12) # inserts 'cc' between the '3' and '4'
s.overwrite('0b01', 30) # changes the '6' to a '5'

This replaces every '1' bit with a 5 byte Ascii string!
s.replace('0b1', BitArray(bytes='hello'))

del s[-1001:] # deletes final 1001 bits
s.reverse() # reverses whole BitString
s.prepend('uint:12=44') # prepend a 12 bit integer

77

bitstring Documentation, Release 3.1.6

17.3 Parsing

This example creates a class that parses a structure that is part of the H.264 video standard.

class seq_parameter_set_data(object):
def __init__(self, s):

"""Interpret next bits in BitString s as an SPS."""
Read and interpret bits in a single expression:
self.profile_idc = s.read('uint:8')
Multiple reads in one go returns a list:
self.constraint_flags = s.readlist('4*uint:1')
self.reserved_zero_4bits = s.read('bin:4')
self.level_idc = s.read('uint:8')
self.seq_parameter_set_id = s.read('ue')
if self.profile_idc in [100, 110, 122, 244, 44, 83, 86]:

self.chroma_format_idc = s.read('ue')
if self.chroma_format_idc == 3:

self.separate_colour_plane_flag = s.read('uint:1')
self.bit_depth_luma_minus8 = s.read('ue')
self.bit_depth_chroma_minus8 = s.read('ue')
etc.

>>> s = BitStream('0x6410281bc0')
>>> sps = seq_parameter_set_data(s)
>>> print(sps.profile_idc)
100
>>> print(sps.level_idc)
40
>>> print(sps.reserved_zero_4bits)
0b0000
>>> print(sps.constraint_flags)
[0, 0, 0, 1]

17.4 Sieve of Eratosthenes

This classic (though inefficient) method of calculating prime numbers uses a bitstring to store whether each bit
position represents a prime number. This takes much less memory than an ordinary array.

def prime_sieve(top=1000000):
b = BitArray(top) # bitstring of '0' bits
for i in xrange(2, top):

if not b[i]:
yield i
i is prime, so set all its multiples to '1'.
b.set(True, xrange(i*i, top, i))

78 Chapter 17. Examples

CHAPTER 18

Exponential-Golomb Codes

As this type of representation of integers isn’t as well known as the standard base-2 representation I thought that
a short explanation of them might be welcome. This section can be safely skipped if you’re not interested.

Exponential-Golomb codes represent integers using bit patterns that get longer for larger numbers. For unsigned
and signed numbers (the bitstring properties ue and se respectively) the patterns start like this:

Bit pattern Unsigned Signed
1 0 0
010 1 1
011 2 -1
00100 3 2
00101 4 -2
00110 5 3
00111 6 -3
0001000 7 4
0001001 8 -4
0001010 9 5
0001011 10 -5
0001100 11 6
...

They consist of a sequence of n ‘0’ bits, followed by a ‘1’ bit, followed by n more bits. The bits after the first ‘1’
bit count upwards as ordinary base-2 binary numbers until they run out of space and an extra ‘0’ bit needs to get
included at the start.

The advantage of this method of representing integers over many other methods is that it can be quite efficient at
representing small numbers without imposing a limit on the maximum number that can be represented.

Exercise: Using the table above decode this sequence of unsigned Exponential Golomb codes:

001001101101101011000100100101

The answer is that it decodes to 3, 0, 0, 2, 2, 1, 0, 0, 8, 4. Note how you don’t need to know how many bits are
used for each code in advance - there’s only one way to decode it. To create this bitstring you could have written
something like:

a = BitStream().join([BitArray(ue=i) for i in [3,0,0,2,2,1,0,0,8,4]])

79

bitstring Documentation, Release 3.1.6

and to read it back:

while a.pos != a.len:
print(a.read('ue'))

The notation ue and se for the exponential-Golomb code properties comes from the H.264 video standard, which
uses these types of code a lot. There are other ways to map the bitstrings to integers:

18.1 Interleaved exponential-Golomb codes

This type of code is used in the Dirac video standard, and is represented by the attributes uie and sie. For the
interleaved codes the pattern is very similar to before for the unsigned case:

Bit pattern Unsigned
1 0
001 1
011 2
00001 3
00011 4
01001 5
01011 6
0000001 7
0000011 8
0001001 9
... . . .

For the signed code it looks a little different:

Bit pattern Signed
1 0
0010 1
0011 -1
0110 2
0111 -2
000010 3
000011 -3
000110 4
000111 -4
010010 5
010011 -5
... . . .

I’m sure you can work out the pattern yourself from here!

80 Chapter 18. Exponential-Golomb Codes

CHAPTER 19

Optimisation Techniques

The bitstring module aims to be as fast as reasonably possible, and although there is more work to be done
optimising some operations it is currently quite well optimised without resorting to C extensions.

There are however some pointers you should follow to make your code efficient, so if you need things to run faster
then this is the section for you.

19.1 Use combined read and interpretation

When parsing a bitstring one way to write code is in the following style:

width = s.read(12).uint
height = s.read(12).uint
flags = s.read(4).bin

This works fine, but is not very quick. The problem is that the call to read constructs and returns a new bitstring,
which then has to be interpreted. The new bitstring isn’t used for anything else and so creating it is wasted effort.
Instead it is better to use a string parameter that does the read and interpretation together:

width = s.read('uint:12')
height = s.read('uint:12')
flags = s.read('bin:4')

This is much faster, although probably not as fast as the combined call:

width, height, flags = s.readlist('uint:12, uint:12, bin:4')

19.2 Choose the simplest class you can

If you don’t need to modify your bitstring after creation then prefer the immutable Bits over the mutable
BitArray . This is typically the case when parsing, or when creating directly from files.

The speed difference between the classes is noticeable, and there are also memory usage optimisations that are
made if objects are known to be immutable.

You should also prefer ConstBitStream to BitStream if you won’t need to modify any bits.

81

bitstring Documentation, Release 3.1.6

One anti-pattern to watch out for is using += on a Bits object. For example, don’t do this:

s = Bits()
for i in range(1000):

s += '0xab'

Now this is inefficient for a few reasons, but the one I’m highlighting is that as the immutable bitstring doesn’t
have an __iadd__ special method the ordinary __add__ gets used instead. In other words s += '0xab'
gets converted to s = s + '0xab', which creates a new Bits from the old on every iteration. This isn’t what
you’d want or possibly expect. If s had been a BitArray then the addition would have been done in-place, and
have been much more efficient.

19.3 Use dedicated functions for bit setting and checking

If you need to set or check individual bits then there are special functions for this. For example one way to set bits
would be:

s = BitArray(1000)
for p in [14, 34, 501]:

s[p] = '0b1'

This creates a 1000 bit bitstring and sets three of the bits to ‘1’. Unfortunately the crucial line spends most of its
time creating a new bitstring from the ‘0b1’ string. You could make it slightly quicker by using s[p] = True,
but it is much faster (and I mean at least an order of magnitude) to use the set method:

s = BitArray(1000)
s.set(True, [14, 34, 501])

As well as set and invert there are also checking methods all and any . So rather than using

if s[100] and s[200]:
do_something()

it’s better to say

if s.all(True, (100, 200)):
do_something()

82 Chapter 19. Optimisation Techniques

CHAPTER 20

Release Notes

20.1 Full Version History

20.1.1 July 9th 2019: version 3.1.6 released

A long overdue maintenace release with some fixes.

• Fixed immutability bug. Bug 176.

• Fixed failure of __contains__ in some circumstances. Bug 180.

• Better handling of open files. Bug 186.

• Better Python 2/3 check.

• Making unit tests easier to run.

• Allowing length of 1 to be specified for bools. (Thanks to LemonPi)

20.1.2 May 17th 2016: version 3.1.5 released

• Support initialisation from an array.

• Added a separate LICENSE file.

20.1.3 March 19th 2016: version 3.1.4 released

This is another bug fix release.

• Fix for bitstring types when created directly from other bitstring types.

• Updating contact, website details.

20.1.4 March 4th 2014: version 3.1.3 released

This is another bug fix release.

• Fix for problem with prepend for bitstrings with byte offsets in their data store.

83

bitstring Documentation, Release 3.1.6

20.1.5 April 18th 2013: version 3.1.2 released

This is another bug fix release.

• Fix for problem where unpacking bytes would by eight times too long

20.1.6 March 21st 2013: version 3.1.1 released

This is a bug fix release.

• Fix for problem where concatenating bitstrings sometimes modified method’s arguments

20.1.7 February 26th 2013: version 3.1.0 released

This is a minor release with a couple of new features and some bug fixes.

New ‘pad’ token

This token can be used in reads and when packing/unpacking to indicate that you don’t care about the contents of
these bits. Any padding bits will just be skipped over when reading/unpacking or zero-filled when packing.

>>> a, b = s.readlist('pad:5, uint:3, pad:1, uint:3')

Here only two items are returned in the list - the padding bits are ignored.

New clear and copy convenience methods

These methods have been introduced in Python 3.3 for lists and bytearrays, as more obvious ways of clearing and
copying, and we mirror that change here.

t = s.copy() is equivalent to t = s[:], and s.clear() is equivalent to del s[:].

Other changes

• Some bug fixes.

20.1.8 November 21st 2011: version 3.0.0 released

This is a major release which breaks backward compatibility in a few places.

20.1.9 Backwardly incompatible changes

Hex, oct and bin properties don’t have leading 0x, 0o and 0b

If you ask for the hex, octal or binary representations of a bitstring then they will no longer be prefixed with 0x, 0o
or 0b. This was done as it was noticed that the first thing a lot of user code does after getting these representations
was to cut off the first two characters before further processing.

>>> a = BitArray('0x123')
>>> a.hex, a.oct, a.bin
('123', '0443', '000100100011')

Previously this would have returned ('0x123', '0o0443', '0b000100100011')

This change might require some recoding, but it should all be simplifications.

84 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

ConstBitArray renamed to Bits

Previously Bits was an alias for ConstBitStream (for backward compatibility). This has now changed so that Bits
and BitArray loosely correspond to the built-in types bytes and bytearray.

If you were using streaming/reading methods on a Bits object then you will have to change it to a ConstBitStream.

The ConstBitArray name is kept as an alias for Bits.

Stepping in slices has conventional meaning

The step parameter in __getitem__, __setitem__ and __delitem__ used to act as a multiplier for the
start and stop parameters. No one seemed to use it though and so it has now reverted to the conventional meaning
for containers.

If you are using step then recoding is simple: s[a:b:c] becomes s[a*c:b*c].

Some examples of the new usage:

>>> s = BitArray('0x0000')
s[::4] = [1, 1, 1, 1]
>>> s.hex
'8888'
>>> del s[8::2]
>>> s.hex
'880'

20.1.10 New features

New readto method

This method is a mix between a find and a read - it searches for a bitstring and then reads up to and including it.
For example:

>>> s = ConstBitStream('0x47000102034704050647')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x47')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x0001020347')
>>> s.readto('0x47', bytealigned=True)
BitStream('0x04050647')

pack function accepts an iterable as its format

Previously only a string was accepted as the format in the pack function. This was an oversight as it broke the
symmetry between pack and unpack. Now you can use formats like this:

fmt = ['hex:8', 'bin:3']
a = pack(fmt, '47', '001')
a.unpack(fmt)

20.1.11 June 18th 2011: version 2.2.0 released

This is a minor upgrade with a couple of new features.

20.1. Full Version History 85

bitstring Documentation, Release 3.1.6

New interleaved exponential-Golomb interpretations

New bit interpretations for interleaved exponential-Golomb (as used in the Dirac video codec) are supplied via
uie and sie:

>>> s = BitArray(uie=41)
>>> s.uie
41
>>> s.bin
'0b00010001001'

These are pretty similar to the non-interleaved versions - see the manual for more details. Credit goes to Paul
Sargent for the patch.

New package-level bytealigned variable

A number of methods take a bytealigned parameter to indicate that they should only work on byte bound-
aries (e.g. find, replace, split). Previously this parameter defaulted to False. Instead it now defaults
to bitstring.bytealigned, which itself defaults to False, but can be changed to modify the default
behaviour of the methods. For example:

>>> a = BitArray('0x00 ff 0f ff')
>>> a.find('0x0f')
(4,) # found first not on a byte boundary
>>> a.find('0x0f', bytealigned=True)
(16,) # forced looking only on byte boundaries
>>> bitstring.bytealigned = True # Change default behaviour
>>> a.find('0x0f')
(16,)
>>> a.find('0x0f', bytealigned=False)
(4,)

If you’re only working with bytes then this can help avoid some errors and save some typing!

Other changes

• Fix for Python 3.2, correcting for a change to the binascii module.

• Fix for bool initialisation from 0 or 1.

• Efficiency improvements, including interning strategy.

20.1.12 February 23rd 2011: version 2.1.1 released

This is a release to fix a couple of bugs that were introduced in 2.1.0.

• Bug fix: Reading using the ‘bytes’ token had been broken (Issue 102).

• Fixed problem using some methods on ConstBitArray objects.

• Better exception handling for tokens missing values.

• Some performance improvements.

20.1.13 January 23rd 2011: version 2.1.0 released

20.1.14 New class hierarchy introduced with simpler classes

Previously there were just two classes, the immutable Bitswhich was the base class for the mutable BitString
class. Both of these classes have the concept of a bit position, from which reads etc. take place so that the bitstring

86 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

could be treated as if it were a file or stream.

Two simpler classes have now been added which are purely bit containers and don’t have a bit position. These are
called ConstBitArray and BitArray. As you can guess the former is an immutable version of the latter.

The other classes have also been renamed to better reflect their capabilities. Instead of BitString you should
use BitStream, and instead of Bits you can use ConstBitStream. The old names are kept as aliases for
backward compatibility.

The classes hierarchy is:

ConstBitArray
/ \

/ \
BitArray ConstBitStream (formerly Bits)

\ /
\ /

BitStream (formerly BitString)

Other changes

A lot of internal reorganisation has taken place since the previous version, most of which won’t be noticed by the
end user. Some things you might see are:

• New package structure. Previous versions have been a single file for the module and another for the unit
tests. The module is now split into many more files so it can’t be used just by copying bitstring.py any more.

• To run the unit tests there is now a script called runtests.py in the test directory.

• File based bitstring are now implemented in terms of an mmap. This should be just an implementation
detail, but unfortunately for 32-bit versions of Python this creates a limit of 4GB on the files that can be
used. The work around is either to get a 64-bit Python, or just stick with version 2.0.

• The ConstBitArray and ConstBitStream classes no longer copy byte data when a slice or a read
takes place, they just take a reference. This is mostly a very nice optimisation, but there are occasions where
it could have an adverse effect. For example if a very large bitstring is created, a small slice taken and the
original deleted. The byte data from the large bitstring would still be retained in memory.

• Optimisations. Once again this version should be faster than the last. The module is still pure Python but
some of the reorganisation was to make it more feasible to put some of the code into Cython or similar, so
hopefully more speed will be on the way.

20.1.15 July 26th 2010: version 2.0.3 released

1. Bug fix: Using peek and read for a single bit now returns a new bitstring as was intended, rather than the
old behaviour of returning a bool.

2. Removed HTML docs from source archive - better to use the online version.

20.1.16 July 25th 2010: version 2.0.2 released

This is a major release, with a number of backwardly incompatible changes. The main change is the removal of
many methods, all of which have simple alternatives. Other changes are quite minor but may need some recoding.

There are a few new features, most of which have been made to help the stream-lining of the API. As always there
are performance improvements and some API changes were made purely with future performance in mind.

20.1. Full Version History 87

bitstring Documentation, Release 3.1.6

20.1.17 The backwardly incompatible changes are:

Methods removed

About half of the class methods have been removed from the API. They all have simple alternatives, so what
remains is more powerful and easier to remember. The removed methods are listed here on the left, with their
equivalent replacements on the right:

s.advancebit() -> s.pos += 1
s.advancebits(bits) -> s.pos += bits
s.advancebyte() -> s.pos += 8
s.advancebytes(bytes) -> s.pos += 8*bytes
s.allunset([a, b]) -> s.all(False, [a, b])
s.anyunset([a, b]) -> s.any(False, [a, b])
s.delete(bits, pos) -> del s[pos:pos+bits]
s.peekbit() -> s.peek(1)
s.peekbitlist(a, b) -> s.peeklist([a, b])
s.peekbits(bits) -> s.peek(bits)
s.peekbyte() -> s.peek(8)
s.peekbytelist(a, b) -> s.peeklist([8*a, 8*b])
s.peekbytes(bytes) -> s.peek(8*bytes)
s.readbit() -> s.read(1)
s.readbitlist(a, b) -> s.readlist([a, b])
s.readbits(bits) -> s.read(bits)
s.readbyte() -> s.read(8)
s.readbytelist(a, b) -> s.readlist([8*a, 8*b])
s.readbytes(bytes) -> s.read(8*bytes)
s.retreatbit() -> s.pos -= 1
s.retreatbits(bits) -> s.pos -= bits
s.retreatbyte() -> s.pos -= 8
s.retreatbytes(bytes) -> s.pos -= 8*bytes
s.reversebytes(start, end) -> s.byteswap(0, start, end)
s.seek(pos) -> s.pos = pos
s.seekbyte(bytepos) -> s.bytepos = bytepos
s.slice(start, end, step) -> s[start:end:step]
s.tell() -> s.pos
s.tellbyte() -> s.bytepos
s.truncateend(bits) -> del s[-bits:]
s.truncatestart(bits) -> del s[:bits]
s.unset([a, b]) -> s.set(False, [a, b])

Many of these methods have been deprecated for the last few releases, but there are some new removals too. Any
recoding needed should be quite straightforward, so while I apologise for the hassle, I had to take the opportunity
to streamline and rationalise what was becoming a bit of an overblown API.

set / unset methods combined

The set/unsetmethods have been combined in a single method, which now takes a boolean as its first argument:

s.set([a, b]) -> s.set(1, [a, b])
s.unset([a, b]) -> s.set(0, [a, b])
s.allset([a, b]) -> s.all(1, [a, b])
s.allunset([a, b]) -> s.all(0, [a, b])
s.anyset([a, b]) -> s.any(1, [a, b])
s.anyunset([a, b]) -> s.any(0, [a, b])

all / any only accept iterables

The all and any methods (previously called allset, allunset, anyset and anyunset) no longer accept
a single bit position. The recommended way of testing a single bit is just to index it, for example instead of:

88 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

>>> if s.all(True, i):

just use

>>> if s[i]:

If you really want to you can of course use an iterable with a single element, such as s.any(False, [i]),
but it’s clearer just to write not s[i].

Exception raised on reading off end of bitstring

If a read or peek goes beyond the end of the bitstring then a ReadError will be raised. The previous behaviour
was that the rest of the bitstring would be returned and no exception raised.

BitStringError renamed to Error

The base class for errors in the bitstring module is now just Error, so it will likely appears in your code as
bitstring.Error instead of the rather repetitive bitstring.BitStringError.

Single bit slices and reads return a bool

A single index slice (such as s[5]) will now return a bool (i.e. True or False) rather than a single bit bitstring.
This is partly to reflect the style of the bytearray type, which returns an integer for single items, but mostly to
avoid common errors like:

>>> if s[0]:
... do_something()

While the intent of this code snippet is quite clear (i.e. do_something if the first bit of s is set) under the old
rules s[0] would be true as long as s wasn’t empty. That’s because any one-bit bitstring was true as it was a
non-empty container. Under the new rule s[0] is True if s starts with a 1 bit and False if s starts with a 0 bit.

The change does not affect reads and peeks, so s.peek(1) will still return a single bit bitstring, which leads on
to the next item. . .

Empty bitstrings or bitstrings with only zero bits are considered False

Previously a bitstring was False if it had no elements, otherwise it was True. This is standard behaviour for
containers, but wasn’t very useful for a container of just 0s and 1s. The new behaviour means that the bitstring is
False if it has no 1 bits. This means that code like this:

>>> if s.peek(1):
... do_something()

should work as you’d expect. It also means that Bits(1000), Bits(0x00) and Bits('uint:12=0') are
all also False. If you need to check for the emptiness of a bitstring then instead check the len property:

if s -> if s.len
if not s -> if not s.len

Length and offset disallowed for some initialisers

Previously you could create bitstring using expressions like:

>>> s = Bits(hex='0xabcde', offset=4, length=13)

20.1. Full Version History 89

bitstring Documentation, Release 3.1.6

This has now been disallowed, and the offset and length parameters may only be used when initialising with bytes
or a file. To replace the old behaviour you could instead use

>>> s = Bits(hex='0xabcde')[4:17]

Renamed format parameter fmt

Methods with a format parameter have had it renamed to fmt, to prevent hiding the built-in format. Affects
methods unpack, read, peek, readlist, peeklist and byteswap and the pack function.

Iterables instead of * format accepted for some methods

This means that for the affected methods (unpack, readlist and peeklist) you will need to use an iterable
to specify multiple items. This is easier to show than to describe, so instead of

>>> a, b, c, d = s.readlist('uint:12', 'hex:4', 'bin:7')

you would instead write

>>> a, b, c, d = s.readlist(['uint:12', 'hex:4', 'bin:7'])

Note that you could still use the single string 'uint:12, hex:4, bin:7' if you preferred.

Bool auto-initialisation removed

You can no longer use True and False to initialise single bit bitstrings. The reasoning behind this is that as
bool is a subclass of int, it really is bad practice to have Bits(False) be different to Bits(0) and to have
Bits(True) different to Bits(1).

If you have used bool auto-initialisation then you will have to be careful to replace it as the bools will now be
interpreted as ints, so Bits(False) will be empty (a bitstring of length 0), and Bits(True) will be a single
zero bit (a bitstring of length 1). Sorry for the confusion, but I think this will prevent bigger problems in the future.

There are a few alternatives for creating a single bit bitstring. My favourite is to use a list with a single item:

Bits(False) -> Bits([0])
Bits(True) -> Bits([1])

New creation from file strategy

Previously if you created a bitstring from a file, either by auto-initialising with a file object or using the filename
parameter, the file would not be read into memory unless you tried to modify it, at which point the whole file
would be read.

The new behaviour depends on whether you create a Bits or a BitString from the file. If you create a Bits (which is
immutable) then the file will never be read into memory. This allows very large files to be opened for examination
even if they could never fit in memory.

If however you create a BitString, the whole of the referenced file will be read to store in memory. If the file is
very big this could take a long time, or fail, but the idea is that in saying you want the mutable BitString you are
implicitly saying that you want to make changes and so (for now) we need to load it into memory.

The new strategy is a bit more predictable in terms of performance than the old. The main point to remember is
that if you want to open a file and don’t plan to alter the bitstring then use the Bits class rather than BitString.

Just to be clear, in neither case will the contents of the file ever be changed - if you want to output the modified
BitString then use the tofile method, for example.

90 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

find and rfind return a tuple instead of a bool

If a find is unsuccessful then an empty tuple is returned (which is False in a boolean sense) otherwise a single item
tuple with the bit position is returned (which is True in a boolean sense). You shouldn’t need to recode unless you
explicitly compared the result of a find to True or False, for example this snippet doesn’t need to be altered:

>>> if s.find('0x23'):
... print(s.bitpos)

but you could now instead use

>>> found = s.find('0x23')
>>> if found:
... print(found[0])

The reason for returning the bit position in a tuple is so that finding at position zero can still be True - it’s the tuple
(0,) - whereas not found can be False - the empty tuple ().

20.1.18 The new features in this release are:

New count method

This method just counts the number of 1 or 0 bits in the bitstring.

>>> s = Bits('0x31fff4')
>>> s.count(1)
16

read and peek methods accept integers

The read, readlist, peek and peeklist methods now accept integers as parameters to mean “read this
many bits and return a bitstring”. This has allowed a number of methods to be removed from this release, so for
example instead of:

>>> a, b, c = s.readbits(5, 6, 7)
>>> if s.peekbit():
... do_something()

you should write:

>>> a, b, c = s.readlist([5, 6, 7])
>>> if s.peek(1):
... do_something()

byteswap used to reverse all bytes

The byteswap method now allows a format specifier of 0 (the default) to signify that all of the whole bytes
should be reversed. This means that calling just byteswap() is almost equivalent to the now removed
bytereverse() method (a small difference is that byteswap won’t raise an exception if the bitstring isn’t a
whole number of bytes long).

Auto initialise with bytearray or (for Python 3 only) bytes

So rather than writing:

20.1. Full Version History 91

bitstring Documentation, Release 3.1.6

>>> a = Bits(bytes=some_bytearray)

you can just write

>>> a = Bits(some_bytearray)

This also works for the bytes type, but only if you’re using Python 3. For Python 2.7 it’s not possible to distinguish
between a bytes object and a str. For this reason this method should be used with some caution as it will make you
code behave differently with the different major Python versions.

>>> b = Bits(b'abcd\x23\x00') # Only Python 3!

set, invert, all and any default to whole bitstring

This means that you can for example write:

>>> a = BitString(100) # 100 zero bits
>>> a.set(1) # set all bits to 1
>>> a.all(1) # are all bits set to 1?
True
>>> a.any(0) # are any set to 0?
False
>>> a.invert() # invert every bit

New exception types

As well as renaming BitStringError to just Error there are also new exceptions which use Error as a
base class.

These can be caught in preference to Error if you need finer control. The new exceptions sometimes also derive
from built-in exceptions:

3. ByteAlignError(Error) - whole byte position or length needed.

4. ReadError(Error, IndexError) - reading or peeking off the end of the bitstring.

5. CreationError(Error, ValueError) - inappropriate argument during bitstring creation.

6. InterpretError(Error, ValueError) - inappropriate interpretation of binary data.

20.1.19 March 18th 2010: version 1.3.0 for Python 2.6 and 3.x released

20.1.20 New features

byteswap method for changing endianness

Changes the endianness in-place according to a format string or integer(s) giving the byte pattern. See the manual
for details.

>>> s = BitString('0x00112233445566')
>>> s.byteswap(2)
3
>>> s
BitString('0x11003322554466')
>>> s.byteswap('h')
3
>>> s
BitString('0x00112233445566')

(continues on next page)

92 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> s.byteswap([2, 5])
1
>>> s
BitString('0x11006655443322')

Multiplicative factors in bitstring creation and reading

For example:

>>> s = Bits('100*0x123')

Token grouping using parenthesis

For example:

>>> s = Bits('3*(uint:6=3, 0b1)')

Negative slice indices allowed

The start and end parameters of many methods may now be negative, with the same meaning as for negative slice
indices. Affects all methods with these parameters.

Sequence ABCs used

The Bits class now derives from collections.Sequence, while the BitString class derives from
collections.MutableSequence.

Keywords allowed in readlist, peeklist and unpack

Keywords for token lengths are now permitted when reading. So for example, you can write

>>> s = bitstring.pack('4*(uint:n)', 2, 3, 4, 5, n=7)
>>> s.unpack('4*(uint:n)', n=7)
[2, 3, 4, 5]

start and end parameters added to rol and ror

join function accepts other iterables

Also its parameter has changed from ‘bitstringlist’ to ‘sequence’. This is technically a backward incompatibility
in the unlikely event that you are referring to the parameter by name.

__init__ method accepts keywords

Rather than a long list of initialisers the __init__ methods now use a **kwargs dictionary for all initialisers
except ‘auto’. This should have no effect, except that this is a small backward incompatibility if you use positional
arguments when initialising with anything other than auto (which would be rather unusual).

More optimisations

A number of methods have been speeded up.

20.1. Full Version History 93

bitstring Documentation, Release 3.1.6

Bug fixed in replace method

(it could fail if start != 0).

20.1.21 January 19th 2010: version 1.2.0 for Python 2.6 and 3.x released

20.1.22 New ‘Bits’ class

Introducing a brand new class, Bits, representing an immutable sequence of bits.

The Bits class is the base class for the mutable BitString. The differences between Bits and BitStrings are:

• Bits are immutable, so once they have been created their value cannot change. This of course means that
mutating methods (append, replace, del etc.) are not available for Bits.

• Bits are hashable, so they can be used in sets and as keys in dictionaries.

• Bits are potentially more efficient than BitStrings, both in terms of computation and memory. The current
implementation is only marginally more efficient though - this should improve in future versions.

You can switch from Bits to a BitString or vice versa by constructing a new object from the old.

>>> s = Bits('0xabcd')
>>> t = BitString(s)
>>> t.append('0xe')
>>> u = Bits(t)

The relationship between Bits and BitString is supposed to loosely mirror that between bytes and bytearray in
Python 3.

Deprecation messages turned on

A number of methods have been flagged for removal in version 2. Deprecation warnings will now be given,
which include an alternative way to do the same thing. All of the deprecated methods have simpler equivalent
alternatives.

>>> t = s.slice(0, 2)
__main__:1: DeprecationWarning: Call to deprecated function slice.
Instead of 's.slice(a, b, c)' use 's[a:b:c]'.

The deprecated methods are: advancebit, advancebits, advancebyte, advancebytes,
retreatbit, retreatbits, retreatbyte, retreatbytes, tell, seek, slice, delete,
tellbyte, seekbyte, truncatestart and truncateend.

Initialise from bool

Booleans have been added to the list of types that can ‘auto’ initialise a bitstring.

>>> zerobit = BitString(False)
>>> onebit = BitString(True)

Improved efficiency

More methods have been speeded up, in particular some deletions and insertions.

94 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

Bug fixes

A rare problem with truncating the start of bitstrings was fixed.

A possible problem outputting the final byte in tofile() was fixed.

20.1.23 December 22nd 2009: version 1.1.3 for Python 2.6 and 3.x released

This version hopefully fixes an installation problem for platforms with case-sensitive file systems. There are no
new features or other bug fixes.

20.1.24 December 18th 2009: version 1.1.2 for Python 2.6 and 3.x released

This is a minor update with (almost) no new features.

Improved efficiency

The speed of many typical operations has been increased, some substantially.

Initialise from integer

A BitString of ‘0’ bits can be created using just an integer to give the length in bits. So instead of

>>> s = BitString(length=100)

you can write just

>>> s = BitString(100)

This matches the behaviour of bytearrays and (in Python 3) bytes.

• A defect related to using the set / unset functions on !BitStrings initialised from a file has been fixed.

20.1.25 November 24th 2009: version 1.1.0 for Python 2.6 and 3.x released

Note that this version will not work for Python 2.4 or 2.5. There may be an update for these Python versions some
time next year, but it’s not a priority quite yet. Also note that only one version is now provided, which works for
Python 2.6 and 3.x (done with the minimum of hackery!)

20.1.26 New features

Improved efficiency

A fair number of functions have improved efficiency, some quite dramatically.

New bit setting and checking functions

Although these functions don’t do anything that couldn’t be done before, they do make some common use cases
much more efficient. If you need to set or check single bits then these are the functions you need.

• set / unset : Set bit(s) to 1 or 0 respectively.

• allset / allunset : Check if all bits are 1 or all 0.

• anyset / anyunset : Check if any bits are 1 or any 0.

20.1. Full Version History 95

bitstring Documentation, Release 3.1.6

>>> s = BitString(length=1000)
>>> s.set((10, 100, 44, 12, 1))
>>> s.allunset((2, 22, 222))
True
>>> s.anyset(range(7, 77))
True

New rotate functions

ror / rol : Rotate bits to the right or left respectively.

>>> s = BitString('0b100000000')
>>> s.ror(2)
>>> s.bin
'0b001000000'
>>> s.rol(5)
>>> s.bin
'0b000000100'

Floating point interpretations

New float initialisations and interpretations are available. These only work for BitStrings of length 32 or 64 bits.

>>> s = BitString(float=0.2, length=64)
>>> s.float
0.200000000000000001
>>> t = bitstring.pack('<3f', -0.4, 1e34, 17.0)
>>> t.hex
'0xcdccccbedf84f67700008841'

‘bytes’ token reintroduced

This token returns a bytes object (equivalent to a str in Python 2.7).

>>> s = BitString('0x010203')
>>> s.unpack('bytes:2, bytes:1')
['\x01\x02', '\x03']

‘uint’ is now the default token type

So for example these are equivalent:

a, b = s.readlist('uint:12, uint:12')
a, b = s.readlist('12, 12')

20.1.27 October 10th 2009: version 1.0.1 for Python 3.x released

This is a straight port of version 1.0.0 to Python 3.

For changes since the last Python 3 release read all the way down in this document to version 0.4.3.

This version will also work for Python 2.6, but there’s no advantage to using it over the 1.0.0 release. It won’t
work for anything before 2.6.

96 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

20.1.28 October 9th 2009: version 1.0.0 for Python 2.x released

Version 1 is here!

This is the first release not to carry the ‘beta’ tag. It contains a couple of minor new features but is principally a
release to fix the API. If you’ve been using an older version then you almost certainly will have to recode a bit. If
you’re not ready to do that then you may wish to delay updating.

So the bad news is that there are lots of small changes to the API. The good news is that all the changes are pretty
trivial, the new API is cleaner and more ‘Pythonic’, and that by making it version 1.0 I’m promising not to tweak
it again for some time.

20.1.29 API Changes

New read / peek functions for returning multiple items

The functions read, readbits, readbytes, peek, peekbits and peekbytes now only ever return a single item, never a
list.

The new functions readlist, readbitlist, readbytelist, peeklist, peekbitlist and peekbytelist can be used to read
multiple items and will always return a list.

So a line like:

>>> a, b = s.read('uint:12, hex:32')

becomes

>>> a, b = s.readlist('uint:12, hex:32')

Renaming / removing functions

Functions have been renamed as follows:

``seekbit`` -> ``seek``

``tellbit`` -> ``tell``

``reversebits`` -> ``reverse``

``deletebits`` -> ``delete``

``tostring`` -> ``tobytes``

and a couple have been removed altogether:

• deletebytes - use delete instead.

• empty - use not s rather than s.empty().

Renaming parameters

The parameters ‘startbit’ and ‘endbit’ have been renamed ‘start’ and ‘end’. This affects the methods slice,
find, findall, rfind, reverse, cut and split.

The parameter ‘bitpos’ has been renamed to ‘pos’. The affects the methods seek, tell, insert, overwrite
and delete.

20.1. Full Version History 97

bitstring Documentation, Release 3.1.6

Mutating methods return None rather than self

This means that you can’t chain functions together so

>>> s.append('0x00').prepend('0xff')
>>> t = s.reverse()

Needs to be rewritten

>>> s.append('0x00')
>>> s.prepend('0xff')
>>> s.reverse()
>>> t = s

Affects truncatestart, truncateend, insert, overwrite, delete, append, prepend, reverse
and reversebytes.

Properties renamed

The ‘data’ property has been renamed to ‘bytes’. Also if the BitString is not a whole number of bytes then a
ValueError exception will be raised when using ‘bytes’ as a ‘getter’.

Properties ‘len’ and ‘pos’ have been added to replace ‘length’ and ‘bitpos’, although the longer names have not
been removed so you can continue to use them if you prefer.

Other changes

• The unpack method now always returns a list, never a single item.

• BitStrings are now ‘unhashable’, so calling hash on one or making a set will fail.

• The colon separating the token name from its length is now mandatory. So for example
BitString('uint12=100') becomes BitString('uint:12=100').

• Removed support for the ‘bytes’ token in format strings. Instead of s.read('bytes:4') use s.
read('bits:32').

20.1.30 New features

Added endswith and startswith functions

These do much as you’d expect; they return True or False depending on whether the BitString starts or ends with
the parameter.

>>> BitString('0xef342').startswith('0b11101')
True

20.1.31 September 11th 2009: version 0.5.2 for Python 2.x released

Finally some tools for dealing with endianness!

New interpretations are now available for whole-byte BitStrings that treat them as big, little, or native-endian

>>> big = BitString(intbe=1, length=16) # or BitString('intbe:16=1') if you prefer.
>>> little = BitString(intle=1, length=16)
>>> print big.hex, little.hex
0x0001 0x0100

(continues on next page)

98 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

(continued from previous page)

>>> print big.intbe, little.intle
1 1

‘Struct’-like compact format codes

To save some typing when using pack, unpack, read and peek, compact format codes based on those used in
the struct and array modules have been added. These must start with a character indicating the endianness (>, <
or @ for big, little and native-endian), followed by characters giving the format:

b 1-byte signed int
B 1-byte unsigned int
h 2-byte signed int
H 2-byte unsigned int
l 4-byte signed int
L 4-byte unsigned int
q 8-byte signed int
Q 8-byte unsigned int

For example:

>>> s = bitstring.pack('<4h', 0, 1, 2, 3)

creates a BitString with four little-endian 2-byte integers. While

>>> x, y, z = s.read('>hhl')

reads them back as two big-endian two-byte integers and one four-byte big endian integer.

Of course you can combine this new format with the old ones however you like:

>>> s.unpack('<h, intle:24, uint:5, bin')
[0, 131073, 0, '0b0000000001100000000']

20.1.32 August 26th 2009: version 0.5.1 for Python 2.x released

This update introduces pack and unpack functions for creating and dissembling BitStrings.

New pack() and unpack() functions

The pack function provides a flexible new method for creating BitStrings. Tokens for BitString ‘literals’ can be
used in the same way as in the constructor.

>>> from bitstring import BitString, pack
>>> a = pack('0b11, 0xff, 0o77, int:5=-1, se=33')

You can also leave placeholders in the format, which will be filled in by the values provided.

>>> b = pack('uint:10, hex:4', 33, 'f')

Finally you can use a dictionary or keywords.

>>> c = pack('bin=a, hex=b, bin=a', a='010', b='ef')

The unpack method is similar to the read method except that it always unpacks from the start of the BitString.

>>> x, y = b.unpack('uint:10, hex')

20.1. Full Version History 99

bitstring Documentation, Release 3.1.6

If a token is given without a length (as above) then it will expand to fill the remaining bits in the BitString. This
also now works with read and peek.

New tostring() and tofile() methods

The tostring method just returns the data as a string, with up to seven zero bits appended to byte align. The
tofile method does the same except writes to a file object.

>>> f = open('myfile', 'wb')
>>> BitString('0x1234ff').tofile(f)

Other changes

The use of = is now mandatory in ‘auto’ initialisers. Tokens like uint12 100 will no longer work. Also the
use of a : before the length is encouraged, but not yet mandated. So the previous example should be written as
uint:12=100.

The ‘auto’ initialiser will now take a file object.

>>> f = open('myfile', 'rb')
>>> s = BitString(f)

20.1.33 July 19th 2009: version 0.5.0 for Python 2.x released

This update breaks backward compatibility in a couple of areas. The only one you probably need to be concerned
about is the change to the default for bytealigned in find, replace, split, etc.

See the user manual for more details on each of these items.

Expanded abilities of ‘auto’ initialiser

More types can be initialised through the ‘auto’ initialiser. For example instead of

>>> a = BitString(uint=44, length=16)

you can write

>>> a = BitString('uint16=44')

Also, different comma-separated tokens will be joined together, e.g.

>>> b = BitString('0xff') + 'int8=-5'

can be written

>>> b = BitString('0xff, int8=-5')

New formatted read and peek methods

These takes a format string similar to that used in the auto initialiser. If only one token is provided then a single
value is returned, otherwise a list of values is returned.

>>> start_code, width, height = s.read('hex32, uint12, uint12')

is equivalent to

100 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

>>> start_code = s.readbits(32).hex
>>> width = s.readbits(12).uint
>>> height = s.readbits(12).uint

The tokens are:

int n : n bits as an unsigned integer.
uint n : n bits as a signed integer.
hex n : n bits as a hexadecimal string.
oct n : n bits as an octal string.
bin n : n bits as a binary string.
ue : next bits as an unsigned exp-Golomb.
se : next bits as a signed exp-Golomb.
bits n : n bits as a new BitString.
bytes n : n bytes as a new BitString.

See the user manual for more details.

hex and oct methods removed

The special methods for hex and oct have been removed. Please use the hex and oct properties instead.

>>> hex(s)

becomes

>>> s.hex

join made a method

The join function must now be called on a BitString object, which will be used to join the list together. You may
need to recode slightly:

>>> s = bitstring.join('0x34', '0b1001', '0b1')

becomes

>>> s = BitString().join('0x34', '0b1001', '0b1')

More than one value allowed in readbits, readbytes, peekbits and peekbytes

If you specify more than one bit or byte length then a list of BitStrings will be returned.

>>> a, b, c = s.readbits(10, 5, 5)

is equivalent to

>>> a = readbits(10)
>>> b = readbits(5)
>>> c = readbits(5)

bytealigned defaults to False, and is at the end of the parameter list

Functions that have a bytealigned parameter have changed so that it now defaults to False rather than True. Also
its position in the parameter list has changed to be at the end. You may need to recode slightly (sorry!)

20.1. Full Version History 101

bitstring Documentation, Release 3.1.6

readue and readse methods have been removed

Instead you should use the new read function with a ‘ue’ or ‘se’ token:

>>> i = s.readue()

becomes

>>> i = s.read('ue')

This is more flexible as you can read multiple items in one go, plus you can now also use the peek method with
ue and se.

Minor bugs fixed

See the issue tracker for more details.

20.1.34 June 15th 2009: version 0.4.3 for Python 2.x released

This is a minor update. This release is the first to bundle the bitstring manual. This is a PDF and you can find it in
the docs directory.

New ‘cut’ method

This method returns a generator for constant sized chunks of a BitString.

>>> for byte in s.cut(8):
... do_something_with(byte)

You can also specify a startbit and endbit, as well as a count, which limits the number of items generated:

>>> first100TSPackets = list(s.cut(188*8, count=100))

‘slice’ method now equivalent to __getitem__

This means that a step can also be given to the slice method so that the following are now the same thing, and it’s
just a personal preference which to use:

>>> s1 = s[a:b:c]
>>> s2 = s.slice(a, b, c)

findall gets a ‘count’ parameter

So now

>>> list(a.findall(s, count=n))

is equivalent to

>>> list(a.findall(s))[:n]

except that it won’t need to generate the whole list and so is much more efficient.

102 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

Changes to ‘split’

The split method now has a ‘count’ parameter rather than ‘maxsplit’. This makes the interface closer to that for
cut, replace and findall. The final item generated is now no longer the whole of the rest of the BitString.

• A couple of minor bugs were fixed. See the issue tracker for details.

20.1.35 May 25th 2009: version 0.4.2 for Python 2.x released

This is a minor update, and almost doesn’t break compatibility with version 0.4.0, but with the slight exception of
findall() returning a generator, detailed below.

Stepping in slices

The use of the step parameter (also known as the stride) in slices has been added. Its use is a little non-standard as
it effectively gives a multiplicative factor to apply to the start and stop parameters, rather than skipping over bits.

For example this makes it much more convenient if you want to give slices in terms of bytes instead of bits. Instead
of writing s[a*8:b*8] you can use s[a:b:8].

When using a step the BitString is effectively truncated to a multiple of the step, so s[::8] is equal to s if s
is an integer number of bytes, otherwise it is truncated by up to 7 bits. So the final seven complete 16-bit words
could be written as s[-7::16].

Negative slices are also allowed, and should do what you’d expect. So for example s[::-1] returns a bit-reversed
copy of s (which is similar to s.reversebits(), which does the same operation on s in-place). As another
example, to get the first 10 bytes in reverse byte order you could use s_bytereversed = s[0:10:-8].

Removed restrictions on offset

You can now specify an offset of greater than 7 bits when creating a BitString, and the use of offset is also now
permitted when using the filename initialiser. This is useful when you want to create a BitString from the middle
of a file without having to read the file into memory.

>>> f = BitString(filename='reallybigfile', offset=8000000, length=32)

Integers can be assigned to slices

You can now assign an integer to a slice of a BitString. If the integer doesn’t fit in the size of slice given then a
ValueError exception is raised. So this is now allowed and works as expected:

>>> s[8:16] = 106

and is equivalent to

>>> s[8:16] = BitString(uint=106, length=8)

Less exceptions raised

Some changes have been made to slicing so that less exceptions are raised, bringing the interface closer to that
for lists. So for example trying to delete past the end of the BitString will now just delete to the end, rather than
raising a ValueError.

20.1. Full Version History 103

bitstring Documentation, Release 3.1.6

Initialisation from lists and tuples

A new option for the auto initialiser is to pass it a list or tuple. The items in the list or tuple are evaluated as
booleans and the bits in the BitString are set to 1 for True items and 0 for False items. This can be used anywhere
the auto initialiser can currently be used. For example:

>>> a = BitString([True, 7, False, 0, ()]) # 0b11000
>>> b = a + ['Yes', ''] # Adds '0b10'
>>> (True, True, False) in a
True

Miscellany

• reversebits now has optional startbit and endbit parameters.

• As an optimisation findall will return a generator, rather than a list. If you still want the whole list then
of course you can just call list() on the generator.

• Improved efficiency of rfind.

• A couple of minor bugs were fixed. See the issue tracker for details.

20.1.36 April 23rd 2009: Python 3 only version 0.4.1 released

This version is just a port of version 0.4.0 to Python 3. All the unit tests pass, but beyond that only limited ad hoc
testing has been done and so it should be considered an experimental release. That said, the unit test coverage is
very good - I’m just not sure if anyone even wants a Python 3 version!

20.1.37 April 11th 2009: version 0.4.0 released

New methods

Added rfind, findall and replace. These do pretty much what you’d expect - see the docstrings or the
wiki for more information.

More special methods

Some missing methods were added: __repr__, __contains__, __rand__, __ror__, __rxor__ and
__delitem__.

Miscellany

A couple of small bugs were fixed (see the issue tracker).

There are some small backward incompatibilities relative to version 0.3.2:

Combined find and findbytealigned

findbytealigned has been removed, and becomes part of find. The default start position has changed on
both find and split to be the start of the BitString. You may need to recode:

>>> s1.find(bs)
>>> s2.findbytealigned(bs)
>>> s2.split(bs)

becomes

104 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

>>> s1.find(bs, bytealigned=False, startbit=s1.bitpos)
>>> s2.find(bs, startbit=s1.bitpos) # bytealigned defaults to True
>>> s2.split(bs, startbit=s2.bitpos)

Reading off end of BitString no longer raises exception

Previously a read or peek function that encountered the end of the BitString would raise a ValueError. It will now
instead return the remainder of the BitString, which could be an empty BitString. This is closer to the file object
interface.

Removed visibility of offset

The offset property was previously read-only, and has now been removed from public view altogether. As it is
used internally for efficiency reasons you shouldn’t really have needed to use it. If you do then use the _offset
parameter instead (with caution).

20.1.38 March 11th 2009: version 0.3.2 released

Better performance

A number of methods (especially find and findbytealigned) have been sped up considerably.

Bit-wise operations

Added support for bit-wise AND (&), OR (|) and XOR (^). For example:

>>> a = BitString('0b00111')
>>> print a & '0b10101'
0b00101

Miscellany

Added seekbit and seekbyte methods. These complement the ‘advance’ and ‘retreat’ functions, although
you can still just use bitpos and bytepos properties directly.

>>> a.seekbit(100) # Equivalent to a.bitpos = 100

Allowed comparisons between BitString objects and strings. For example this will now work:

>>> a = BitString('0b00001111')
>>> a == '0x0f'
True

20.1.39 February 26th 2009: version 0.3.1 released

This version only adds features and fixes bugs relative to 0.3.0, and doesn’t break backwards compatibility.

Octal interpretation and initialisation

The oct property now joins bin and hex. Just prefix octal numbers with ‘0o’:

20.1. Full Version History 105

bitstring Documentation, Release 3.1.6

>>> a = BitString('0o755')
>>> print a.bin
0b111101101

Simpler copying

Rather than using b = copy.copy(a) to create a copy of a BitString, now you can just use b =
BitString(a).

More special methods

Lots of new special methods added, for example bit-shifting via << and >>, equality testing via == and !=, bit
inversion (~) and concatenation using *.

Also __setitem__ is now supported so BitString objects can be modified using standard index notation.

Proper installer

Finally got round to writing the distutils script. To install just python setup.py install.

20.1.40 February 15th 2009: version 0.3.0 released

Simpler initialisation from binary and hexadecimal

The first argument in the BitString constructor is now called ‘auto’ and will attempt to interpret the type of a string.
Prefix binary numbers with ‘0b’ and hexadecimals with ‘0x’:

>>> a = BitString('0b0') # single zero bit
>>> b = BitString('0xffff') # two bytes

Previously the first argument was ‘data’, so if you relied on this then you will need to recode:

>>> a = BitString('\x00\x00\x01\xb3') # Don't do this any more!

becomes

>>> a = BitString(data='\x00\x00\x01\xb3')

or just

>>> a = BitString('0x000001b3')

This new notation can also be used in functions that take a BitString as an argument. For example:

>>> a = BitString('0x0011') + '0xff'
>>> a.insert('0b001', 6)
>>> a.find('0b1111')

BitString made more mutable

The methods append, deletebits, insert, overwrite, truncatestart and truncateend now
modify the BitString that they act upon. This allows for cleaner and more efficient code, but you may need to
rewrite slightly if you depended upon the old behaviour:

106 Chapter 20. Release Notes

bitstring Documentation, Release 3.1.6

>>> a = BitString(hex='0xffff')
>>> a = a.append(BitString(hex='0x00'))
>>> b = a.deletebits(10, 10)

becomes

>>> a = BitString('0xffff')
>>> a.append('0x00')
>>> b = copy.copy(a)
>>> b.deletebits(10, 10)

Thanks to Frank Aune for suggestions in this and other areas.

Changes to printing

The binary interpretation of a BitString is now prepended with ‘0b’. This is in keeping with the Python 2.6 (and
3.0) bin function. The prefix is optional when initialising using bin=.

Also, if you just print a BitString with no interpretation it will pick something appropriate - hex if it is an integer
number of bytes, otherwise binary. If the BitString representation is very long it will be truncated by ‘. . . ’ so it is
only an approximate interpretation.

>>> a = BitString('0b0011111')
>>> print a
0b0011111
>>> a += '0b0'
>>> print a
0x3e

More convenience functions

Some missing methods such as advancebit and deletebytes have been added. Also a number of ‘peek’
methods make an appearance as have prepend and reversebits. See the Tutorial for more details.

20.1.41 January 13th 2009: version 0.2.0 released

Some fairly minor updates, not really deserving of a whole version point update.

20.1.42 December 29th 2008: version 0.1.0 released

First release!

20.1. Full Version History 107

bitstring Documentation, Release 3.1.6

108 Chapter 20. Release Notes

Python Module Index

b
bitstring, 43

109

bitstring Documentation, Release 3.1.6

110 Python Module Index

Index

Symbols
__add__() (bitstring.Bits method), 52
__and__() (bitstring.Bits method), 52
__bool__() (bitstring.Bits method), 52
__contains__() (bitstring.Bits method), 53
__copy__() (bitstring.Bits method), 53
__delitem__() (bitstring.BitArray method), 61
__eq__() (bitstring.Bits method), 53
__getitem__() (bitstring.Bits method), 53
__hash__() (bitstring.Bits method), 54
__iadd__() (bitstring.BitArray method), 61
__iand__() (bitstring.BitArray method), 61
__ilshift__() (bitstring.BitArray method), 61
__imul__() (bitstring.BitArray method), 62
__invert__() (bitstring.Bits method), 54
__ior__() (bitstring.BitArray method), 62
__irshift__() (bitstring.BitArray method), 62
__ixor__() (bitstring.BitArray method), 62
__len__() (bitstring.Bits method), 54
__lshift__() (bitstring.Bits method), 54
__mul__() (bitstring.Bits method), 54
__ne__() (bitstring.Bits method), 54
__nonzero__() (bitstring.Bits method), 55
__or__() (bitstring.Bits method), 55
__radd__() (bitstring.Bits method), 52
__rand__() (bitstring.Bits method), 52
__repr__() (bitstring.Bits method), 55
__rmul__() (bitstring.Bits method), 54
__ror__() (bitstring.Bits method), 55
__rshift__() (bitstring.Bits method), 55
__rxor__() (bitstring.Bits method), 55
__setitem__() (bitstring.BitArray method), 62
__str__() (bitstring.Bits method), 55
__xor__() (bitstring.Bits method), 55

A
all() (bitstring.Bits method), 47
any() (bitstring.Bits method), 48
append() (bitstring.BitArray method), 57

B
bin (bitstring.BitArray attribute), 60
bin (bitstring.Bits attribute), 50

BitArray (class in bitstring), 57
bitpos (bitstring.ConstBitStream attribute), 65
Bits (class in bitstring), 47
BitStream (class in bitstring), 67
bitstring (module), 43
bool (bitstring.BitArray attribute), 60
bool (bitstring.Bits attribute), 50
bytealign() (bitstring.ConstBitStream method), 63
ByteAlignError, 71
bytepos (bitstring.ConstBitStream attribute), 65
bytes (bitstring.BitArray attribute), 60
bytes (bitstring.Bits attribute), 50
byteswap() (bitstring.BitArray method), 57

C
clear() (bitstring.BitArray method), 58
ConstBitStream (class in bitstring), 63
copy() (bitstring.BitArray method), 58
count() (bitstring.Bits method), 48
CreationError, 71
cut() (bitstring.Bits method), 48

E
endswith() (bitstring.Bits method), 48
Error, 71

F
find() (bitstring.Bits method), 48
findall() (bitstring.Bits method), 49
float (bitstring.BitArray attribute), 60
float (bitstring.Bits attribute), 51
floatbe (bitstring.BitArray attribute), 60
floatbe (bitstring.Bits attribute), 51
floatle (bitstring.BitArray attribute), 60
floatle (bitstring.Bits attribute), 51
floatne (bitstring.BitArray attribute), 60
floatne (bitstring.Bits attribute), 51

H
hex (bitstring.BitArray attribute), 60
hex (bitstring.Bits attribute), 50

I
insert() (bitstring.BitArray method), 58

111

bitstring Documentation, Release 3.1.6

int (bitstring.BitArray attribute), 60
int (bitstring.Bits attribute), 51
intbe (bitstring.BitArray attribute), 60
intbe (bitstring.Bits attribute), 51
InterpretError, 71
intle (bitstring.BitArray attribute), 60
intle (bitstring.Bits attribute), 51
intne (bitstring.BitArray attribute), 60
intne (bitstring.Bits attribute), 51
invert() (bitstring.BitArray method), 58

J
join() (bitstring.Bits method), 49

L
len (bitstring.Bits attribute), 51
length (bitstring.Bits attribute), 51

O
oct (bitstring.BitArray attribute), 60
oct (bitstring.Bits attribute), 51
overwrite() (bitstring.BitArray method), 58

P
pack() (in module bitstring), 69
peek() (bitstring.ConstBitStream method), 63
peeklist() (bitstring.ConstBitStream method), 63
pos (bitstring.ConstBitStream attribute), 65
prepend() (bitstring.BitArray method), 59

R
read() (bitstring.ConstBitStream method), 64
ReadError, 71
readlist() (bitstring.ConstBitStream method), 64
readto() (bitstring.ConstBitStream method), 65
replace() (bitstring.BitArray method), 59
reverse() (bitstring.BitArray method), 59
rfind() (bitstring.Bits method), 49
rol() (bitstring.BitArray method), 59
ror() (bitstring.BitArray method), 59

S
se (bitstring.BitArray attribute), 61
se (bitstring.Bits attribute), 51
set() (bitstring.BitArray method), 59
sie (bitstring.BitArray attribute), 61
sie (bitstring.Bits attribute), 52
split() (bitstring.Bits method), 49
startswith() (bitstring.Bits method), 49

T
tobytes() (bitstring.Bits method), 50
tofile() (bitstring.Bits method), 50

U
ue (bitstring.BitArray attribute), 61
ue (bitstring.Bits attribute), 52

uie (bitstring.BitArray attribute), 61
uie (bitstring.Bits attribute), 52
uint (bitstring.BitArray attribute), 61
uint (bitstring.Bits attribute), 52
uintbe (bitstring.BitArray attribute), 61
uintbe (bitstring.Bits attribute), 52
uintle (bitstring.BitArray attribute), 61
uintle (bitstring.Bits attribute), 52
uintne (bitstring.BitArray attribute), 61
uintne (bitstring.Bits attribute), 52
unpack() (bitstring.Bits method), 50

112 Index

	I User Manual
	Walkthrough
	A Brief Introduction
	Prerequisites
	Getting started
	Modifying bitstrings
	Finding and Replacing
	Constructing a bitstring
	Parsing bitstreams

	Worked examples
	Hamming distance
	Sieve of Eratosthenes

	Introduction
	Getting Started

	Creation
	The bitstring classes
	Using the constructor
	From a hexadecimal string
	From a binary string
	From an octal string
	From an integer
	Big and little-endian integers
	From a floating point number
	Exponential-Golomb codes
	From raw byte data
	From a file

	The auto initialiser

	Packing
	Compact format strings

	Interpreting Bitstrings
	bin
	hex
	oct
	uint / uintbe / uintle / uintne
	int / intbe / intle / intne
	float / floatbe / floatle / floatne
	bytes
	ue
	se
	uie / sie

	Slicing, Dicing and Splicing
	Slicing
	Stepping in slices

	Joining
	Truncating, inserting, deleting and overwriting
	Deleting and truncating
	insert
	overwrite

	The bitstring as a list
	Splitting
	split
	cut

	Reading, Parsing and Unpacking
	Reading and parsing
	read / readlist
	Reading using format strings
	Peeking

	Unpacking
	Seeking
	Finding and replacing
	find / rfind
	findall
	replace

	Working with byte aligned data

	Miscellany
	Other Functions
	bytealign
	reverse
	tobytes
	tofile
	startswith / endswith
	ror / rol

	Special Methods
	__len__
	__str__ / __repr__
	__eq__ / __ne__
	__invert__
	__lshift__ / __rshift__ / __ilshift__ / __irshift__
	__mul__ / __imul__ / __rmul__
	__copy__
	__and__ / __or__ / __xor__ / __iand__ / __ior__ / __ixor__

	II Reference
	Quick Reference
	Bits
	Methods
	Special methods
	Properties

	BitArray
	Additional methods
	Additional special methods
	Attributes

	ConstBitStream
	Additional methods
	Additional attributes

	BitStream

	The bitstring module
	The auto initialiser
	Compact format strings
	Class properties

	The Bits class
	The BitArray class
	The ConstBitStream class
	The BitStream class
	Functions
	Exceptions

	III Appendices
	Examples
	Creation
	Manipulation
	Parsing
	Sieve of Eratosthenes

	Exponential-Golomb Codes
	Interleaved exponential-Golomb codes

	Optimisation Techniques
	Use combined read and interpretation
	Choose the simplest class you can
	Use dedicated functions for bit setting and checking

	Release Notes
	Full Version History
	July 9th 2019: version 3.1.6 released
	May 17th 2016: version 3.1.5 released
	March 19th 2016: version 3.1.4 released
	March 4th 2014: version 3.1.3 released
	April 18th 2013: version 3.1.2 released
	March 21st 2013: version 3.1.1 released
	February 26th 2013: version 3.1.0 released
	November 21st 2011: version 3.0.0 released
	Backwardly incompatible changes
	New features
	June 18th 2011: version 2.2.0 released
	February 23rd 2011: version 2.1.1 released
	January 23rd 2011: version 2.1.0 released
	New class hierarchy introduced with simpler classes
	July 26th 2010: version 2.0.3 released
	July 25th 2010: version 2.0.2 released
	The backwardly incompatible changes are:
	The new features in this release are:
	March 18th 2010: version 1.3.0 for Python 2.6 and 3.x released
	New features
	January 19th 2010: version 1.2.0 for Python 2.6 and 3.x released
	New ‘Bits’ class
	December 22nd 2009: version 1.1.3 for Python 2.6 and 3.x released
	December 18th 2009: version 1.1.2 for Python 2.6 and 3.x released
	November 24th 2009: version 1.1.0 for Python 2.6 and 3.x released
	New features
	October 10th 2009: version 1.0.1 for Python 3.x released
	October 9th 2009: version 1.0.0 for Python 2.x released
	API Changes
	New features
	September 11th 2009: version 0.5.2 for Python 2.x released
	August 26th 2009: version 0.5.1 for Python 2.x released
	July 19th 2009: version 0.5.0 for Python 2.x released
	June 15th 2009: version 0.4.3 for Python 2.x released
	May 25th 2009: version 0.4.2 for Python 2.x released
	April 23rd 2009: Python 3 only version 0.4.1 released
	April 11th 2009: version 0.4.0 released
	March 11th 2009: version 0.3.2 released
	February 26th 2009: version 0.3.1 released
	February 15th 2009: version 0.3.0 released
	January 13th 2009: version 0.2.0 released
	December 29th 2008: version 0.1.0 released

	Python Module Index
	Index

