/* Copyright 2008 - 2016 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "qman_priv.h" #define DQRR_MAXFILL 15 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */ #define IRQNAME "QMan portal %d" #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */ #define QMAN_POLL_LIMIT 32 #define QMAN_PIRQ_DQRR_ITHRESH 12 #define QMAN_PIRQ_MR_ITHRESH 4 #define QMAN_PIRQ_IPERIOD 100 /* Portal register assists */ #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) /* Cache-inhibited register offsets */ #define QM_REG_EQCR_PI_CINH 0x3000 #define QM_REG_EQCR_CI_CINH 0x3040 #define QM_REG_EQCR_ITR 0x3080 #define QM_REG_DQRR_PI_CINH 0x3100 #define QM_REG_DQRR_CI_CINH 0x3140 #define QM_REG_DQRR_ITR 0x3180 #define QM_REG_DQRR_DCAP 0x31C0 #define QM_REG_DQRR_SDQCR 0x3200 #define QM_REG_DQRR_VDQCR 0x3240 #define QM_REG_DQRR_PDQCR 0x3280 #define QM_REG_MR_PI_CINH 0x3300 #define QM_REG_MR_CI_CINH 0x3340 #define QM_REG_MR_ITR 0x3380 #define QM_REG_CFG 0x3500 #define QM_REG_ISR 0x3600 #define QM_REG_IER 0x3640 #define QM_REG_ISDR 0x3680 #define QM_REG_IIR 0x36C0 #define QM_REG_ITPR 0x3740 /* Cache-enabled register offsets */ #define QM_CL_EQCR 0x0000 #define QM_CL_DQRR 0x1000 #define QM_CL_MR 0x2000 #define QM_CL_EQCR_PI_CENA 0x3000 #define QM_CL_EQCR_CI_CENA 0x3040 #define QM_CL_DQRR_PI_CENA 0x3100 #define QM_CL_DQRR_CI_CENA 0x3140 #define QM_CL_MR_PI_CENA 0x3300 #define QM_CL_MR_CI_CENA 0x3340 #define QM_CL_CR 0x3800 #define QM_CL_RR0 0x3900 #define QM_CL_RR1 0x3940 #else /* Cache-inhibited register offsets */ #define QM_REG_EQCR_PI_CINH 0x0000 #define QM_REG_EQCR_CI_CINH 0x0004 #define QM_REG_EQCR_ITR 0x0008 #define QM_REG_DQRR_PI_CINH 0x0040 #define QM_REG_DQRR_CI_CINH 0x0044 #define QM_REG_DQRR_ITR 0x0048 #define QM_REG_DQRR_DCAP 0x0050 #define QM_REG_DQRR_SDQCR 0x0054 #define QM_REG_DQRR_VDQCR 0x0058 #define QM_REG_DQRR_PDQCR 0x005c #define QM_REG_MR_PI_CINH 0x0080 #define QM_REG_MR_CI_CINH 0x0084 #define QM_REG_MR_ITR 0x0088 #define QM_REG_CFG 0x0100 #define QM_REG_ISR 0x0e00 #define QM_REG_IER 0x0e04 #define QM_REG_ISDR 0x0e08 #define QM_REG_IIR 0x0e0c #define QM_REG_ITPR 0x0e14 /* Cache-enabled register offsets */ #define QM_CL_EQCR 0x0000 #define QM_CL_DQRR 0x1000 #define QM_CL_MR 0x2000 #define QM_CL_EQCR_PI_CENA 0x3000 #define QM_CL_EQCR_CI_CENA 0x3100 #define QM_CL_DQRR_PI_CENA 0x3200 #define QM_CL_DQRR_CI_CENA 0x3300 #define QM_CL_MR_PI_CENA 0x3400 #define QM_CL_MR_CI_CENA 0x3500 #define QM_CL_CR 0x3800 #define QM_CL_RR0 0x3900 #define QM_CL_RR1 0x3940 #endif /* * BTW, the drivers (and h/w programming model) already obtain the required * synchronisation for portal accesses and data-dependencies. Use of barrier()s * or other order-preserving primitives simply degrade performance. Hence the * use of the __raw_*() interfaces, which simply ensure that the compiler treats * the portal registers as volatile */ /* Cache-enabled ring access */ #define qm_cl(base, idx) ((void *)base + ((idx) << 6)) /* * Portal modes. * Enum types; * pmode == production mode * cmode == consumption mode, * dmode == h/w dequeue mode. * Enum values use 3 letter codes. First letter matches the portal mode, * remaining two letters indicate; * ci == cache-inhibited portal register * ce == cache-enabled portal register * vb == in-band valid-bit (cache-enabled) * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only * As for "enum qm_dqrr_dmode", it should be self-explanatory. */ enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */ qm_eqcr_pci = 0, /* PI index, cache-inhibited */ qm_eqcr_pce = 1, /* PI index, cache-enabled */ qm_eqcr_pvb = 2 /* valid-bit */ }; enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */ qm_dqrr_dpush = 0, /* SDQCR + VDQCR */ qm_dqrr_dpull = 1 /* PDQCR */ }; enum qm_dqrr_pmode { /* s/w-only */ qm_dqrr_pci, /* reads DQRR_PI_CINH */ qm_dqrr_pce, /* reads DQRR_PI_CENA */ qm_dqrr_pvb /* reads valid-bit */ }; enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */ qm_dqrr_cci = 0, /* CI index, cache-inhibited */ qm_dqrr_cce = 1, /* CI index, cache-enabled */ qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */ }; enum qm_mr_pmode { /* s/w-only */ qm_mr_pci, /* reads MR_PI_CINH */ qm_mr_pce, /* reads MR_PI_CENA */ qm_mr_pvb /* reads valid-bit */ }; enum qm_mr_cmode { /* matches QCSP_CFG::MM */ qm_mr_cci = 0, /* CI index, cache-inhibited */ qm_mr_cce = 1 /* CI index, cache-enabled */ }; /* --- Portal structures --- */ #define QM_EQCR_SIZE 8 #define QM_DQRR_SIZE 16 #define QM_MR_SIZE 8 /* "Enqueue Command" */ struct qm_eqcr_entry { u8 _ncw_verb; /* writes to this are non-coherent */ u8 dca; __be16 seqnum; u8 __reserved[4]; __be32 fqid; /* 24-bit */ __be32 tag; struct qm_fd fd; u8 __reserved3[32]; } __packed; #define QM_EQCR_VERB_VBIT 0x80 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */ #define QM_EQCR_VERB_CMD_ENQUEUE 0x01 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */ #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */ #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */ struct qm_eqcr { struct qm_eqcr_entry *ring, *cursor; u8 ci, available, ithresh, vbit; #ifdef CONFIG_FSL_DPAA_CHECKING u32 busy; enum qm_eqcr_pmode pmode; #endif }; struct qm_dqrr { const struct qm_dqrr_entry *ring, *cursor; u8 pi, ci, fill, ithresh, vbit; #ifdef CONFIG_FSL_DPAA_CHECKING enum qm_dqrr_dmode dmode; enum qm_dqrr_pmode pmode; enum qm_dqrr_cmode cmode; #endif }; struct qm_mr { union qm_mr_entry *ring, *cursor; u8 pi, ci, fill, ithresh, vbit; #ifdef CONFIG_FSL_DPAA_CHECKING enum qm_mr_pmode pmode; enum qm_mr_cmode cmode; #endif }; /* MC (Management Command) command */ /* "FQ" command layout */ struct qm_mcc_fq { u8 _ncw_verb; u8 __reserved1[3]; __be32 fqid; /* 24-bit */ u8 __reserved2[56]; } __packed; /* "CGR" command layout */ struct qm_mcc_cgr { u8 _ncw_verb; u8 __reserved1[30]; u8 cgid; u8 __reserved2[32]; }; #define QM_MCC_VERB_VBIT 0x80 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */ #define QM_MCC_VERB_INITFQ_PARKED 0x40 #define QM_MCC_VERB_INITFQ_SCHED 0x41 #define QM_MCC_VERB_QUERYFQ 0x44 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */ #define QM_MCC_VERB_QUERYWQ 0x46 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */ #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */ #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */ #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */ #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */ #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */ #define QM_MCC_VERB_INITCGR 0x50 #define QM_MCC_VERB_MODIFYCGR 0x51 #define QM_MCC_VERB_CGRTESTWRITE 0x52 #define QM_MCC_VERB_QUERYCGR 0x58 #define QM_MCC_VERB_QUERYCONGESTION 0x59 union qm_mc_command { struct { u8 _ncw_verb; /* writes to this are non-coherent */ u8 __reserved[63]; }; struct qm_mcc_initfq initfq; struct qm_mcc_initcgr initcgr; struct qm_mcc_fq fq; struct qm_mcc_cgr cgr; }; /* MC (Management Command) result */ /* "Query FQ" */ struct qm_mcr_queryfq { u8 verb; u8 result; u8 __reserved1[8]; struct qm_fqd fqd; /* the FQD fields are here */ u8 __reserved2[30]; } __packed; /* "Alter FQ State Commands" */ struct qm_mcr_alterfq { u8 verb; u8 result; u8 fqs; /* Frame Queue Status */ u8 __reserved1[61]; }; #define QM_MCR_VERB_RRID 0x80 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS #define QM_MCR_RESULT_NULL 0x00 #define QM_MCR_RESULT_OK 0xf0 #define QM_MCR_RESULT_ERR_FQID 0xf1 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */ #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4 #define QM_MCR_RESULT_PENDING 0xf8 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ #define QM_MCR_TIMEOUT 10000 /* us */ union qm_mc_result { struct { u8 verb; u8 result; u8 __reserved1[62]; }; struct qm_mcr_queryfq queryfq; struct qm_mcr_alterfq alterfq; struct qm_mcr_querycgr querycgr; struct qm_mcr_querycongestion querycongestion; struct qm_mcr_querywq querywq; struct qm_mcr_queryfq_np queryfq_np; }; struct qm_mc { union qm_mc_command *cr; union qm_mc_result *rr; u8 rridx, vbit; #ifdef CONFIG_FSL_DPAA_CHECKING enum { /* Can be _mc_start()ed */ qman_mc_idle, /* Can be _mc_commit()ed or _mc_abort()ed */ qman_mc_user, /* Can only be _mc_retry()ed */ qman_mc_hw } state; #endif }; struct qm_addr { void *ce; /* cache-enabled */ __be32 *ce_be; /* same value as above but for direct access */ void __iomem *ci; /* cache-inhibited */ }; struct qm_portal { /* * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to * and including 'mc' fits within a cacheline (yay!). The 'config' part * is setup-only, so isn't a cause for a concern. In other words, don't * rearrange this structure on a whim, there be dragons ... */ struct qm_addr addr; struct qm_eqcr eqcr; struct qm_dqrr dqrr; struct qm_mr mr; struct qm_mc mc; } ____cacheline_aligned; /* Cache-inhibited register access. */ static inline u32 qm_in(struct qm_portal *p, u32 offset) { return ioread32be(p->addr.ci + offset); } static inline void qm_out(struct qm_portal *p, u32 offset, u32 val) { iowrite32be(val, p->addr.ci + offset); } /* Cache Enabled Portal Access */ static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset) { dpaa_invalidate(p->addr.ce + offset); } static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset) { dpaa_touch_ro(p->addr.ce + offset); } static inline u32 qm_ce_in(struct qm_portal *p, u32 offset) { return be32_to_cpu(*(p->addr.ce_be + (offset/4))); } /* --- EQCR API --- */ #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry)) #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT) /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */ static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p) { uintptr_t addr = (uintptr_t)p; addr &= ~EQCR_CARRY; return (struct qm_eqcr_entry *)addr; } /* Bit-wise logic to convert a ring pointer to a ring index */ static int eqcr_ptr2idx(struct qm_eqcr_entry *e) { return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1); } /* Increment the 'cursor' ring pointer, taking 'vbit' into account */ static inline void eqcr_inc(struct qm_eqcr *eqcr) { /* increment to the next EQCR pointer and handle overflow and 'vbit' */ struct qm_eqcr_entry *partial = eqcr->cursor + 1; eqcr->cursor = eqcr_carryclear(partial); if (partial != eqcr->cursor) eqcr->vbit ^= QM_EQCR_VERB_VBIT; } static inline int qm_eqcr_init(struct qm_portal *portal, enum qm_eqcr_pmode pmode, unsigned int eq_stash_thresh, int eq_stash_prio) { struct qm_eqcr *eqcr = &portal->eqcr; u32 cfg; u8 pi; eqcr->ring = portal->addr.ce + QM_CL_EQCR; eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); eqcr->cursor = eqcr->ring + pi; eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ? QM_EQCR_VERB_VBIT : 0; eqcr->available = QM_EQCR_SIZE - 1 - dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi); eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR); #ifdef CONFIG_FSL_DPAA_CHECKING eqcr->busy = 0; eqcr->pmode = pmode; #endif cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) | (eq_stash_thresh << 28) | /* QCSP_CFG: EST */ (eq_stash_prio << 26) | /* QCSP_CFG: EP */ ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */ qm_out(portal, QM_REG_CFG, cfg); return 0; } static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal) { return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7; } static inline void qm_eqcr_finish(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); DPAA_ASSERT(!eqcr->busy); if (pi != eqcr_ptr2idx(eqcr->cursor)) pr_crit("losing uncommitted EQCR entries\n"); if (ci != eqcr->ci) pr_crit("missing existing EQCR completions\n"); if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor)) pr_crit("EQCR destroyed unquiesced\n"); } static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; DPAA_ASSERT(!eqcr->busy); if (!eqcr->available) return NULL; #ifdef CONFIG_FSL_DPAA_CHECKING eqcr->busy = 1; #endif dpaa_zero(eqcr->cursor); return eqcr->cursor; } static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; u8 diff, old_ci; DPAA_ASSERT(!eqcr->busy); if (!eqcr->available) { old_ci = eqcr->ci; eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1); diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); eqcr->available += diff; if (!diff) return NULL; } #ifdef CONFIG_FSL_DPAA_CHECKING eqcr->busy = 1; #endif dpaa_zero(eqcr->cursor); return eqcr->cursor; } static inline void eqcr_commit_checks(struct qm_eqcr *eqcr) { DPAA_ASSERT(eqcr->busy); DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK)); DPAA_ASSERT(eqcr->available >= 1); } static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb) { struct qm_eqcr *eqcr = &portal->eqcr; struct qm_eqcr_entry *eqcursor; eqcr_commit_checks(eqcr); DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb); dma_wmb(); eqcursor = eqcr->cursor; eqcursor->_ncw_verb = myverb | eqcr->vbit; dpaa_flush(eqcursor); eqcr_inc(eqcr); eqcr->available--; #ifdef CONFIG_FSL_DPAA_CHECKING eqcr->busy = 0; #endif } static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal) { qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA); } static inline u8 qm_eqcr_cce_update(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; u8 diff, old_ci = eqcr->ci; eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1); qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); eqcr->available += diff; return diff; } static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh) { struct qm_eqcr *eqcr = &portal->eqcr; eqcr->ithresh = ithresh; qm_out(portal, QM_REG_EQCR_ITR, ithresh); } static inline u8 qm_eqcr_get_avail(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; return eqcr->available; } static inline u8 qm_eqcr_get_fill(struct qm_portal *portal) { struct qm_eqcr *eqcr = &portal->eqcr; return QM_EQCR_SIZE - 1 - eqcr->available; } /* --- DQRR API --- */ #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry)) #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT) static const struct qm_dqrr_entry *dqrr_carryclear( const struct qm_dqrr_entry *p) { uintptr_t addr = (uintptr_t)p; addr &= ~DQRR_CARRY; return (const struct qm_dqrr_entry *)addr; } static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e) { return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1); } static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e) { return dqrr_carryclear(e + 1); } static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf) { qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) | ((mf & (QM_DQRR_SIZE - 1)) << 20)); } static inline int qm_dqrr_init(struct qm_portal *portal, const struct qm_portal_config *config, enum qm_dqrr_dmode dmode, enum qm_dqrr_pmode pmode, enum qm_dqrr_cmode cmode, u8 max_fill) { struct qm_dqrr *dqrr = &portal->dqrr; u32 cfg; /* Make sure the DQRR will be idle when we enable */ qm_out(portal, QM_REG_DQRR_SDQCR, 0); qm_out(portal, QM_REG_DQRR_VDQCR, 0); qm_out(portal, QM_REG_DQRR_PDQCR, 0); dqrr->ring = portal->addr.ce + QM_CL_DQRR; dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1); dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1); dqrr->cursor = dqrr->ring + dqrr->ci; dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi); dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ? QM_DQRR_VERB_VBIT : 0; dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR); #ifdef CONFIG_FSL_DPAA_CHECKING dqrr->dmode = dmode; dqrr->pmode = pmode; dqrr->cmode = cmode; #endif /* Invalidate every ring entry before beginning */ for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++) dpaa_invalidate(qm_cl(dqrr->ring, cfg)); cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) | ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */ ((dmode & 1) << 18) | /* DP */ ((cmode & 3) << 16) | /* DCM */ 0xa0 | /* RE+SE */ (0 ? 0x40 : 0) | /* Ignore RP */ (0 ? 0x10 : 0); /* Ignore SP */ qm_out(portal, QM_REG_CFG, cfg); qm_dqrr_set_maxfill(portal, max_fill); return 0; } static inline void qm_dqrr_finish(struct qm_portal *portal) { #ifdef CONFIG_FSL_DPAA_CHECKING struct qm_dqrr *dqrr = &portal->dqrr; if (dqrr->cmode != qm_dqrr_cdc && dqrr->ci != dqrr_ptr2idx(dqrr->cursor)) pr_crit("Ignoring completed DQRR entries\n"); #endif } static inline const struct qm_dqrr_entry *qm_dqrr_current( struct qm_portal *portal) { struct qm_dqrr *dqrr = &portal->dqrr; if (!dqrr->fill) return NULL; return dqrr->cursor; } static inline u8 qm_dqrr_next(struct qm_portal *portal) { struct qm_dqrr *dqrr = &portal->dqrr; DPAA_ASSERT(dqrr->fill); dqrr->cursor = dqrr_inc(dqrr->cursor); return --dqrr->fill; } static inline void qm_dqrr_pvb_update(struct qm_portal *portal) { struct qm_dqrr *dqrr = &portal->dqrr; struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi); DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb); #ifndef CONFIG_FSL_PAMU /* * If PAMU is not available we need to invalidate the cache. * When PAMU is available the cache is updated by stash */ dpaa_invalidate_touch_ro(res); #endif if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) { dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1); if (!dqrr->pi) dqrr->vbit ^= QM_DQRR_VERB_VBIT; dqrr->fill++; } } static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal, const struct qm_dqrr_entry *dq, int park) { __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; int idx = dqrr_ptr2idx(dq); DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); DPAA_ASSERT((dqrr->ring + idx) == dq); DPAA_ASSERT(idx < QM_DQRR_SIZE); qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */ ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */ idx); /* DQRR_DCAP::DCAP_CI */ } static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask) { __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */ (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */ } static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr) { qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr); } static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr) { qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr); } static inline void qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh) { qm_out(portal, QM_REG_DQRR_ITR, ithresh); } /* --- MR API --- */ #define MR_SHIFT ilog2(sizeof(union qm_mr_entry)) #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT) static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p) { uintptr_t addr = (uintptr_t)p; addr &= ~MR_CARRY; return (union qm_mr_entry *)addr; } static inline int mr_ptr2idx(const union qm_mr_entry *e) { return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1); } static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e) { return mr_carryclear(e + 1); } static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode, enum qm_mr_cmode cmode) { struct qm_mr *mr = &portal->mr; u32 cfg; mr->ring = portal->addr.ce + QM_CL_MR; mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1); mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1); mr->cursor = mr->ring + mr->ci; mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi); mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE) ? QM_MR_VERB_VBIT : 0; mr->ithresh = qm_in(portal, QM_REG_MR_ITR); #ifdef CONFIG_FSL_DPAA_CHECKING mr->pmode = pmode; mr->cmode = cmode; #endif cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) | ((cmode & 1) << 8); /* QCSP_CFG:MM */ qm_out(portal, QM_REG_CFG, cfg); return 0; } static inline void qm_mr_finish(struct qm_portal *portal) { struct qm_mr *mr = &portal->mr; if (mr->ci != mr_ptr2idx(mr->cursor)) pr_crit("Ignoring completed MR entries\n"); } static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal) { struct qm_mr *mr = &portal->mr; if (!mr->fill) return NULL; return mr->cursor; } static inline int qm_mr_next(struct qm_portal *portal) { struct qm_mr *mr = &portal->mr; DPAA_ASSERT(mr->fill); mr->cursor = mr_inc(mr->cursor); return --mr->fill; } static inline void qm_mr_pvb_update(struct qm_portal *portal) { struct qm_mr *mr = &portal->mr; union qm_mr_entry *res = qm_cl(mr->ring, mr->pi); DPAA_ASSERT(mr->pmode == qm_mr_pvb); if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) { mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1); if (!mr->pi) mr->vbit ^= QM_MR_VERB_VBIT; mr->fill++; res = mr_inc(res); } dpaa_invalidate_touch_ro(res); } static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num) { struct qm_mr *mr = &portal->mr; DPAA_ASSERT(mr->cmode == qm_mr_cci); mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1); qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); } static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal) { struct qm_mr *mr = &portal->mr; DPAA_ASSERT(mr->cmode == qm_mr_cci); mr->ci = mr_ptr2idx(mr->cursor); qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); } static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh) { qm_out(portal, QM_REG_MR_ITR, ithresh); } /* --- Management command API --- */ static inline int qm_mc_init(struct qm_portal *portal) { struct qm_mc *mc = &portal->mc; mc->cr = portal->addr.ce + QM_CL_CR; mc->rr = portal->addr.ce + QM_CL_RR0; mc->rridx = (mc->cr->_ncw_verb & QM_MCC_VERB_VBIT) ? 0 : 1; mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0; #ifdef CONFIG_FSL_DPAA_CHECKING mc->state = qman_mc_idle; #endif return 0; } static inline void qm_mc_finish(struct qm_portal *portal) { #ifdef CONFIG_FSL_DPAA_CHECKING struct qm_mc *mc = &portal->mc; DPAA_ASSERT(mc->state == qman_mc_idle); if (mc->state != qman_mc_idle) pr_crit("Losing incomplete MC command\n"); #endif } static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal) { struct qm_mc *mc = &portal->mc; DPAA_ASSERT(mc->state == qman_mc_idle); #ifdef CONFIG_FSL_DPAA_CHECKING mc->state = qman_mc_user; #endif dpaa_zero(mc->cr); return mc->cr; } static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb) { struct qm_mc *mc = &portal->mc; union qm_mc_result *rr = mc->rr + mc->rridx; DPAA_ASSERT(mc->state == qman_mc_user); dma_wmb(); mc->cr->_ncw_verb = myverb | mc->vbit; dpaa_flush(mc->cr); dpaa_invalidate_touch_ro(rr); #ifdef CONFIG_FSL_DPAA_CHECKING mc->state = qman_mc_hw; #endif } static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal) { struct qm_mc *mc = &portal->mc; union qm_mc_result *rr = mc->rr + mc->rridx; DPAA_ASSERT(mc->state == qman_mc_hw); /* * The inactive response register's verb byte always returns zero until * its command is submitted and completed. This includes the valid-bit, * in case you were wondering... */ if (!rr->verb) { dpaa_invalidate_touch_ro(rr); return NULL; } mc->rridx ^= 1; mc->vbit ^= QM_MCC_VERB_VBIT; #ifdef CONFIG_FSL_DPAA_CHECKING mc->state = qman_mc_idle; #endif return rr; } static inline int qm_mc_result_timeout(struct qm_portal *portal, union qm_mc_result **mcr) { int timeout = QM_MCR_TIMEOUT; do { *mcr = qm_mc_result(portal); if (*mcr) break; udelay(1); } while (--timeout); return timeout; } static inline void fq_set(struct qman_fq *fq, u32 mask) { fq->flags |= mask; } static inline void fq_clear(struct qman_fq *fq, u32 mask) { fq->flags &= ~mask; } static inline int fq_isset(struct qman_fq *fq, u32 mask) { return fq->flags & mask; } static inline int fq_isclear(struct qman_fq *fq, u32 mask) { return !(fq->flags & mask); } struct qman_portal { struct qm_portal p; /* PORTAL_BITS_*** - dynamic, strictly internal */ unsigned long bits; /* interrupt sources processed by portal_isr(), configurable */ unsigned long irq_sources; u32 use_eqcr_ci_stashing; /* only 1 volatile dequeue at a time */ struct qman_fq *vdqcr_owned; u32 sdqcr; /* probing time config params for cpu-affine portals */ const struct qm_portal_config *config; /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */ struct qman_cgrs *cgrs; /* linked-list of CSCN handlers. */ struct list_head cgr_cbs; /* list lock */ spinlock_t cgr_lock; struct work_struct congestion_work; struct work_struct mr_work; char irqname[MAX_IRQNAME]; }; static cpumask_t affine_mask; static DEFINE_SPINLOCK(affine_mask_lock); static u16 affine_channels[NR_CPUS]; static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal); struct qman_portal *affine_portals[NR_CPUS]; static inline struct qman_portal *get_affine_portal(void) { return &get_cpu_var(qman_affine_portal); } static inline void put_affine_portal(void) { put_cpu_var(qman_affine_portal); } static struct workqueue_struct *qm_portal_wq; int qman_wq_alloc(void) { qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1); if (!qm_portal_wq) return -ENOMEM; return 0; } /* * This is what everything can wait on, even if it migrates to a different cpu * to the one whose affine portal it is waiting on. */ static DECLARE_WAIT_QUEUE_HEAD(affine_queue); static struct qman_fq **fq_table; static u32 num_fqids; int qman_alloc_fq_table(u32 _num_fqids) { num_fqids = _num_fqids; fq_table = vzalloc(array3_size(sizeof(struct qman_fq *), num_fqids, 2)); if (!fq_table) return -ENOMEM; pr_debug("Allocated fq lookup table at %p, entry count %u\n", fq_table, num_fqids * 2); return 0; } static struct qman_fq *idx_to_fq(u32 idx) { struct qman_fq *fq; #ifdef CONFIG_FSL_DPAA_CHECKING if (WARN_ON(idx >= num_fqids * 2)) return NULL; #endif fq = fq_table[idx]; DPAA_ASSERT(!fq || idx == fq->idx); return fq; } /* * Only returns full-service fq objects, not enqueue-only * references (QMAN_FQ_FLAG_NO_MODIFY). */ static struct qman_fq *fqid_to_fq(u32 fqid) { return idx_to_fq(fqid * 2); } static struct qman_fq *tag_to_fq(u32 tag) { #if BITS_PER_LONG == 64 return idx_to_fq(tag); #else return (struct qman_fq *)tag; #endif } static u32 fq_to_tag(struct qman_fq *fq) { #if BITS_PER_LONG == 64 return fq->idx; #else return (u32)fq; #endif } static u32 __poll_portal_slow(struct qman_portal *p, u32 is); static inline unsigned int __poll_portal_fast(struct qman_portal *p, unsigned int poll_limit); static void qm_congestion_task(struct work_struct *work); static void qm_mr_process_task(struct work_struct *work); static irqreturn_t portal_isr(int irq, void *ptr) { struct qman_portal *p = ptr; u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources; u32 clear = 0; if (unlikely(!is)) return IRQ_NONE; /* DQRR-handling if it's interrupt-driven */ if (is & QM_PIRQ_DQRI) { __poll_portal_fast(p, QMAN_POLL_LIMIT); clear = QM_DQAVAIL_MASK | QM_PIRQ_DQRI; } /* Handling of anything else that's interrupt-driven */ clear |= __poll_portal_slow(p, is) & QM_PIRQ_SLOW; qm_out(&p->p, QM_REG_ISR, clear); return IRQ_HANDLED; } static int drain_mr_fqrni(struct qm_portal *p) { const union qm_mr_entry *msg; loop: msg = qm_mr_current(p); if (!msg) { /* * if MR was full and h/w had other FQRNI entries to produce, we * need to allow it time to produce those entries once the * existing entries are consumed. A worst-case situation * (fully-loaded system) means h/w sequencers may have to do 3-4 * other things before servicing the portal's MR pump, each of * which (if slow) may take ~50 qman cycles (which is ~200 * processor cycles). So rounding up and then multiplying this * worst-case estimate by a factor of 10, just to be * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume * one entry at a time, so h/w has an opportunity to produce new * entries well before the ring has been fully consumed, so * we're being *really* paranoid here. */ msleep(1); msg = qm_mr_current(p); if (!msg) return 0; } if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) { /* We aren't draining anything but FQRNIs */ pr_err("Found verb 0x%x in MR\n", msg->verb); return -1; } qm_mr_next(p); qm_mr_cci_consume(p, 1); goto loop; } static int qman_create_portal(struct qman_portal *portal, const struct qm_portal_config *c, const struct qman_cgrs *cgrs) { struct qm_portal *p; int ret; u32 isdr; p = &portal->p; #ifdef CONFIG_FSL_PAMU /* PAMU is required for stashing */ portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0); #else portal->use_eqcr_ci_stashing = 0; #endif /* * prep the low-level portal struct with the mapped addresses from the * config, everything that follows depends on it and "config" is more * for (de)reference */ p->addr.ce = c->addr_virt_ce; p->addr.ce_be = c->addr_virt_ce; p->addr.ci = c->addr_virt_ci; /* * If CI-stashing is used, the current defaults use a threshold of 3, * and stash with high-than-DQRR priority. */ if (qm_eqcr_init(p, qm_eqcr_pvb, portal->use_eqcr_ci_stashing ? 3 : 0, 1)) { dev_err(c->dev, "EQCR initialisation failed\n"); goto fail_eqcr; } if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb, qm_dqrr_cdc, DQRR_MAXFILL)) { dev_err(c->dev, "DQRR initialisation failed\n"); goto fail_dqrr; } if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) { dev_err(c->dev, "MR initialisation failed\n"); goto fail_mr; } if (qm_mc_init(p)) { dev_err(c->dev, "MC initialisation failed\n"); goto fail_mc; } /* static interrupt-gating controls */ qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH); qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH); qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD); portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL); if (!portal->cgrs) goto fail_cgrs; /* initial snapshot is no-depletion */ qman_cgrs_init(&portal->cgrs[1]); if (cgrs) portal->cgrs[0] = *cgrs; else /* if the given mask is NULL, assume all CGRs can be seen */ qman_cgrs_fill(&portal->cgrs[0]); INIT_LIST_HEAD(&portal->cgr_cbs); spin_lock_init(&portal->cgr_lock); INIT_WORK(&portal->congestion_work, qm_congestion_task); INIT_WORK(&portal->mr_work, qm_mr_process_task); portal->bits = 0; portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 | QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS | QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED; isdr = 0xffffffff; qm_out(p, QM_REG_ISDR, isdr); portal->irq_sources = 0; qm_out(p, QM_REG_IER, 0); qm_out(p, QM_REG_ISR, 0xffffffff); snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu); if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) { dev_err(c->dev, "request_irq() failed\n"); goto fail_irq; } if (c->cpu != -1 && irq_can_set_affinity(c->irq) && irq_set_affinity(c->irq, cpumask_of(c->cpu))) { dev_err(c->dev, "irq_set_affinity() failed\n"); goto fail_affinity; } /* Need EQCR to be empty before continuing */ isdr &= ~QM_PIRQ_EQCI; qm_out(p, QM_REG_ISDR, isdr); ret = qm_eqcr_get_fill(p); if (ret) { dev_err(c->dev, "EQCR unclean\n"); goto fail_eqcr_empty; } isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI); qm_out(p, QM_REG_ISDR, isdr); if (qm_dqrr_current(p)) { dev_err(c->dev, "DQRR unclean\n"); qm_dqrr_cdc_consume_n(p, 0xffff); } if (qm_mr_current(p) && drain_mr_fqrni(p)) { /* special handling, drain just in case it's a few FQRNIs */ const union qm_mr_entry *e = qm_mr_current(p); dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n", e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd)); goto fail_dqrr_mr_empty; } /* Success */ portal->config = c; qm_out(p, QM_REG_ISDR, 0); qm_out(p, QM_REG_IIR, 0); /* Write a sane SDQCR */ qm_dqrr_sdqcr_set(p, portal->sdqcr); return 0; fail_dqrr_mr_empty: fail_eqcr_empty: fail_affinity: free_irq(c->irq, portal); fail_irq: kfree(portal->cgrs); fail_cgrs: qm_mc_finish(p); fail_mc: qm_mr_finish(p); fail_mr: qm_dqrr_finish(p); fail_dqrr: qm_eqcr_finish(p); fail_eqcr: return -EIO; } struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c, const struct qman_cgrs *cgrs) { struct qman_portal *portal; int err; portal = &per_cpu(qman_affine_portal, c->cpu); err = qman_create_portal(portal, c, cgrs); if (err) return NULL; spin_lock(&affine_mask_lock); cpumask_set_cpu(c->cpu, &affine_mask); affine_channels[c->cpu] = c->channel; affine_portals[c->cpu] = portal; spin_unlock(&affine_mask_lock); return portal; } static void qman_destroy_portal(struct qman_portal *qm) { const struct qm_portal_config *pcfg; /* Stop dequeues on the portal */ qm_dqrr_sdqcr_set(&qm->p, 0); /* * NB we do this to "quiesce" EQCR. If we add enqueue-completions or * something related to QM_PIRQ_EQCI, this may need fixing. * Also, due to the prefetching model used for CI updates in the enqueue * path, this update will only invalidate the CI cacheline *after* * working on it, so we need to call this twice to ensure a full update * irrespective of where the enqueue processing was at when the teardown * began. */ qm_eqcr_cce_update(&qm->p); qm_eqcr_cce_update(&qm->p); pcfg = qm->config; free_irq(pcfg->irq, qm); kfree(qm->cgrs); qm_mc_finish(&qm->p); qm_mr_finish(&qm->p); qm_dqrr_finish(&qm->p); qm_eqcr_finish(&qm->p); qm->config = NULL; } const struct qm_portal_config *qman_destroy_affine_portal(void) { struct qman_portal *qm = get_affine_portal(); const struct qm_portal_config *pcfg; int cpu; pcfg = qm->config; cpu = pcfg->cpu; qman_destroy_portal(qm); spin_lock(&affine_mask_lock); cpumask_clear_cpu(cpu, &affine_mask); spin_unlock(&affine_mask_lock); put_affine_portal(); return pcfg; } /* Inline helper to reduce nesting in __poll_portal_slow() */ static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq, const union qm_mr_entry *msg, u8 verb) { switch (verb) { case QM_MR_VERB_FQRL: DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL)); fq_clear(fq, QMAN_FQ_STATE_ORL); break; case QM_MR_VERB_FQRN: DPAA_ASSERT(fq->state == qman_fq_state_parked || fq->state == qman_fq_state_sched); DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING)); fq_clear(fq, QMAN_FQ_STATE_CHANGING); if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY) fq_set(fq, QMAN_FQ_STATE_NE); if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT) fq_set(fq, QMAN_FQ_STATE_ORL); fq->state = qman_fq_state_retired; break; case QM_MR_VERB_FQPN: DPAA_ASSERT(fq->state == qman_fq_state_sched); DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING)); fq->state = qman_fq_state_parked; } } static void qm_congestion_task(struct work_struct *work) { struct qman_portal *p = container_of(work, struct qman_portal, congestion_work); struct qman_cgrs rr, c; union qm_mc_result *mcr; struct qman_cgr *cgr; spin_lock(&p->cgr_lock); qm_mc_start(&p->p); qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION); if (!qm_mc_result_timeout(&p->p, &mcr)) { spin_unlock(&p->cgr_lock); dev_crit(p->config->dev, "QUERYCONGESTION timeout\n"); qman_p_irqsource_add(p, QM_PIRQ_CSCI); return; } /* mask out the ones I'm not interested in */ qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state, &p->cgrs[0]); /* check previous snapshot for delta, enter/exit congestion */ qman_cgrs_xor(&c, &rr, &p->cgrs[1]); /* update snapshot */ qman_cgrs_cp(&p->cgrs[1], &rr); /* Invoke callback */ list_for_each_entry(cgr, &p->cgr_cbs, node) if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid)) cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid)); spin_unlock(&p->cgr_lock); qman_p_irqsource_add(p, QM_PIRQ_CSCI); } static void qm_mr_process_task(struct work_struct *work) { struct qman_portal *p = container_of(work, struct qman_portal, mr_work); const union qm_mr_entry *msg; struct qman_fq *fq; u8 verb, num = 0; preempt_disable(); while (1) { qm_mr_pvb_update(&p->p); msg = qm_mr_current(&p->p); if (!msg) break; verb = msg->verb & QM_MR_VERB_TYPE_MASK; /* The message is a software ERN iff the 0x20 bit is clear */ if (verb & 0x20) { switch (verb) { case QM_MR_VERB_FQRNI: /* nada, we drop FQRNIs on the floor */ break; case QM_MR_VERB_FQRN: case QM_MR_VERB_FQRL: /* Lookup in the retirement table */ fq = fqid_to_fq(qm_fqid_get(&msg->fq)); if (WARN_ON(!fq)) break; fq_state_change(p, fq, msg, verb); if (fq->cb.fqs) fq->cb.fqs(p, fq, msg); break; case QM_MR_VERB_FQPN: /* Parked */ fq = tag_to_fq(be32_to_cpu(msg->fq.context_b)); fq_state_change(p, fq, msg, verb); if (fq->cb.fqs) fq->cb.fqs(p, fq, msg); break; case QM_MR_VERB_DC_ERN: /* DCP ERN */ pr_crit_once("Leaking DCP ERNs!\n"); break; default: pr_crit("Invalid MR verb 0x%02x\n", verb); } } else { /* Its a software ERN */ fq = tag_to_fq(be32_to_cpu(msg->ern.tag)); fq->cb.ern(p, fq, msg); } num++; qm_mr_next(&p->p); } qm_mr_cci_consume(&p->p, num); qman_p_irqsource_add(p, QM_PIRQ_MRI); preempt_enable(); } static u32 __poll_portal_slow(struct qman_portal *p, u32 is) { if (is & QM_PIRQ_CSCI) { qman_p_irqsource_remove(p, QM_PIRQ_CSCI); queue_work_on(smp_processor_id(), qm_portal_wq, &p->congestion_work); } if (is & QM_PIRQ_EQRI) { qm_eqcr_cce_update(&p->p); qm_eqcr_set_ithresh(&p->p, 0); wake_up(&affine_queue); } if (is & QM_PIRQ_MRI) { qman_p_irqsource_remove(p, QM_PIRQ_MRI); queue_work_on(smp_processor_id(), qm_portal_wq, &p->mr_work); } return is; } /* * remove some slowish-path stuff from the "fast path" and make sure it isn't * inlined. */ static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq) { p->vdqcr_owned = NULL; fq_clear(fq, QMAN_FQ_STATE_VDQCR); wake_up(&affine_queue); } /* * The only states that would conflict with other things if they ran at the * same time on the same cpu are: * * (i) setting/clearing vdqcr_owned, and * (ii) clearing the NE (Not Empty) flag. * * Both are safe. Because; * * (i) this clearing can only occur after qman_volatile_dequeue() has set the * vdqcr_owned field (which it does before setting VDQCR), and * qman_volatile_dequeue() blocks interrupts and preemption while this is * done so that we can't interfere. * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as * with (i) that API prevents us from interfering until it's safe. * * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett * advantage comes from this function not having to "lock" anything at all. * * Note also that the callbacks are invoked at points which are safe against the * above potential conflicts, but that this function itself is not re-entrant * (this is because the function tracks one end of each FIFO in the portal and * we do *not* want to lock that). So the consequence is that it is safe for * user callbacks to call into any QMan API. */ static inline unsigned int __poll_portal_fast(struct qman_portal *p, unsigned int poll_limit) { const struct qm_dqrr_entry *dq; struct qman_fq *fq; enum qman_cb_dqrr_result res; unsigned int limit = 0; do { qm_dqrr_pvb_update(&p->p); dq = qm_dqrr_current(&p->p); if (!dq) break; if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) { /* * VDQCR: don't trust context_b as the FQ may have * been configured for h/w consumption and we're * draining it post-retirement. */ fq = p->vdqcr_owned; /* * We only set QMAN_FQ_STATE_NE when retiring, so we * only need to check for clearing it when doing * volatile dequeues. It's one less thing to check * in the critical path (SDQCR). */ if (dq->stat & QM_DQRR_STAT_FQ_EMPTY) fq_clear(fq, QMAN_FQ_STATE_NE); /* * This is duplicated from the SDQCR code, but we * have stuff to do before *and* after this callback, * and we don't want multiple if()s in the critical * path (SDQCR). */ res = fq->cb.dqrr(p, fq, dq); if (res == qman_cb_dqrr_stop) break; /* Check for VDQCR completion */ if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED) clear_vdqcr(p, fq); } else { /* SDQCR: context_b points to the FQ */ fq = tag_to_fq(be32_to_cpu(dq->context_b)); /* Now let the callback do its stuff */ res = fq->cb.dqrr(p, fq, dq); /* * The callback can request that we exit without * consuming this entry nor advancing; */ if (res == qman_cb_dqrr_stop) break; } /* Interpret 'dq' from a driver perspective. */ /* * Parking isn't possible unless HELDACTIVE was set. NB, * FORCEELIGIBLE implies HELDACTIVE, so we only need to * check for HELDACTIVE to cover both. */ DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) || (res != qman_cb_dqrr_park)); /* just means "skip it, I'll consume it myself later on" */ if (res != qman_cb_dqrr_defer) qm_dqrr_cdc_consume_1ptr(&p->p, dq, res == qman_cb_dqrr_park); /* Move forward */ qm_dqrr_next(&p->p); /* * Entry processed and consumed, increment our counter. The * callback can request that we exit after consuming the * entry, and we also exit if we reach our processing limit, * so loop back only if neither of these conditions is met. */ } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop); return limit; } void qman_p_irqsource_add(struct qman_portal *p, u32 bits) { unsigned long irqflags; local_irq_save(irqflags); p->irq_sources |= bits & QM_PIRQ_VISIBLE; qm_out(&p->p, QM_REG_IER, p->irq_sources); local_irq_restore(irqflags); } EXPORT_SYMBOL(qman_p_irqsource_add); void qman_p_irqsource_remove(struct qman_portal *p, u32 bits) { unsigned long irqflags; u32 ier; /* * Our interrupt handler only processes+clears status register bits that * are in p->irq_sources. As we're trimming that mask, if one of them * were to assert in the status register just before we remove it from * the enable register, there would be an interrupt-storm when we * release the IRQ lock. So we wait for the enable register update to * take effect in h/w (by reading it back) and then clear all other bits * in the status register. Ie. we clear them from ISR once it's certain * IER won't allow them to reassert. */ local_irq_save(irqflags); bits &= QM_PIRQ_VISIBLE; p->irq_sources &= ~bits; qm_out(&p->p, QM_REG_IER, p->irq_sources); ier = qm_in(&p->p, QM_REG_IER); /* * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a * data-dependency, ie. to protect against re-ordering. */ qm_out(&p->p, QM_REG_ISR, ~ier); local_irq_restore(irqflags); } EXPORT_SYMBOL(qman_p_irqsource_remove); const cpumask_t *qman_affine_cpus(void) { return &affine_mask; } EXPORT_SYMBOL(qman_affine_cpus); u16 qman_affine_channel(int cpu) { if (cpu < 0) { struct qman_portal *portal = get_affine_portal(); cpu = portal->config->cpu; put_affine_portal(); } WARN_ON(!cpumask_test_cpu(cpu, &affine_mask)); return affine_channels[cpu]; } EXPORT_SYMBOL(qman_affine_channel); struct qman_portal *qman_get_affine_portal(int cpu) { return affine_portals[cpu]; } EXPORT_SYMBOL(qman_get_affine_portal); int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit) { return __poll_portal_fast(p, limit); } EXPORT_SYMBOL(qman_p_poll_dqrr); void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools) { unsigned long irqflags; local_irq_save(irqflags); pools &= p->config->pools; p->sdqcr |= pools; qm_dqrr_sdqcr_set(&p->p, p->sdqcr); local_irq_restore(irqflags); } EXPORT_SYMBOL(qman_p_static_dequeue_add); /* Frame queue API */ static const char *mcr_result_str(u8 result) { switch (result) { case QM_MCR_RESULT_NULL: return "QM_MCR_RESULT_NULL"; case QM_MCR_RESULT_OK: return "QM_MCR_RESULT_OK"; case QM_MCR_RESULT_ERR_FQID: return "QM_MCR_RESULT_ERR_FQID"; case QM_MCR_RESULT_ERR_FQSTATE: return "QM_MCR_RESULT_ERR_FQSTATE"; case QM_MCR_RESULT_ERR_NOTEMPTY: return "QM_MCR_RESULT_ERR_NOTEMPTY"; case QM_MCR_RESULT_PENDING: return "QM_MCR_RESULT_PENDING"; case QM_MCR_RESULT_ERR_BADCOMMAND: return "QM_MCR_RESULT_ERR_BADCOMMAND"; } return ""; } int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq) { if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) { int ret = qman_alloc_fqid(&fqid); if (ret) return ret; } fq->fqid = fqid; fq->flags = flags; fq->state = qman_fq_state_oos; fq->cgr_groupid = 0; /* A context_b of 0 is allegedly special, so don't use that fqid */ if (fqid == 0 || fqid >= num_fqids) { WARN(1, "bad fqid %d\n", fqid); return -EINVAL; } fq->idx = fqid * 2; if (flags & QMAN_FQ_FLAG_NO_MODIFY) fq->idx++; WARN_ON(fq_table[fq->idx]); fq_table[fq->idx] = fq; return 0; } EXPORT_SYMBOL(qman_create_fq); void qman_destroy_fq(struct qman_fq *fq) { /* * We don't need to lock the FQ as it is a pre-condition that the FQ be * quiesced. Instead, run some checks. */ switch (fq->state) { case qman_fq_state_parked: case qman_fq_state_oos: if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID)) qman_release_fqid(fq->fqid); DPAA_ASSERT(fq_table[fq->idx]); fq_table[fq->idx] = NULL; return; default: break; } DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!"); } EXPORT_SYMBOL(qman_destroy_fq); u32 qman_fq_fqid(struct qman_fq *fq) { return fq->fqid; } EXPORT_SYMBOL(qman_fq_fqid); int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p; u8 res, myverb; int ret = 0; myverb = (flags & QMAN_INITFQ_FLAG_SCHED) ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED; if (fq->state != qman_fq_state_oos && fq->state != qman_fq_state_parked) return -EINVAL; #ifdef CONFIG_FSL_DPAA_CHECKING if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) return -EINVAL; #endif if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) { /* And can't be set at the same time as TDTHRESH */ if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH) return -EINVAL; } /* Issue an INITFQ_[PARKED|SCHED] management command */ p = get_affine_portal(); if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || (fq->state != qman_fq_state_oos && fq->state != qman_fq_state_parked)) { ret = -EBUSY; goto out; } mcc = qm_mc_start(&p->p); if (opts) mcc->initfq = *opts; qm_fqid_set(&mcc->fq, fq->fqid); mcc->initfq.count = 0; /* * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a * demux pointer. Otherwise, the caller-provided value is allowed to * stand, don't overwrite it. */ if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) { dma_addr_t phys_fq; mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB); mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq)); /* * and the physical address - NB, if the user wasn't trying to * set CONTEXTA, clear the stashing settings. */ if (!(be16_to_cpu(mcc->initfq.we_mask) & QM_INITFQ_WE_CONTEXTA)) { mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); memset(&mcc->initfq.fqd.context_a, 0, sizeof(mcc->initfq.fqd.context_a)); } else { struct qman_portal *p = qman_dma_portal; phys_fq = dma_map_single(p->config->dev, fq, sizeof(*fq), DMA_TO_DEVICE); if (dma_mapping_error(p->config->dev, phys_fq)) { dev_err(p->config->dev, "dma_mapping failed\n"); ret = -EIO; goto out; } qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq); } } if (flags & QMAN_INITFQ_FLAG_LOCAL) { int wq = 0; if (!(be16_to_cpu(mcc->initfq.we_mask) & QM_INITFQ_WE_DESTWQ)) { mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); wq = 4; } qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq); } qm_mc_commit(&p->p, myverb); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_err(p->config->dev, "MCR timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb); res = mcr->result; if (res != QM_MCR_RESULT_OK) { ret = -EIO; goto out; } if (opts) { if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) { if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE) fq_set(fq, QMAN_FQ_STATE_CGR_EN); else fq_clear(fq, QMAN_FQ_STATE_CGR_EN); } if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID) fq->cgr_groupid = opts->fqd.cgid; } fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ? qman_fq_state_sched : qman_fq_state_parked; out: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_init_fq); int qman_schedule_fq(struct qman_fq *fq) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p; int ret = 0; if (fq->state != qman_fq_state_parked) return -EINVAL; #ifdef CONFIG_FSL_DPAA_CHECKING if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) return -EINVAL; #endif /* Issue a ALTERFQ_SCHED management command */ p = get_affine_portal(); if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || fq->state != qman_fq_state_parked) { ret = -EBUSY; goto out; } mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fq->fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_err(p->config->dev, "ALTER_SCHED timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED); if (mcr->result != QM_MCR_RESULT_OK) { ret = -EIO; goto out; } fq->state = qman_fq_state_sched; out: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_schedule_fq); int qman_retire_fq(struct qman_fq *fq, u32 *flags) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p; int ret; u8 res; if (fq->state != qman_fq_state_parked && fq->state != qman_fq_state_sched) return -EINVAL; #ifdef CONFIG_FSL_DPAA_CHECKING if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) return -EINVAL; #endif p = get_affine_portal(); if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || fq->state == qman_fq_state_retired || fq->state == qman_fq_state_oos) { ret = -EBUSY; goto out; } mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fq->fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_crit(p->config->dev, "ALTER_RETIRE timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE); res = mcr->result; /* * "Elegant" would be to treat OK/PENDING the same way; set CHANGING, * and defer the flags until FQRNI or FQRN (respectively) show up. But * "Friendly" is to process OK immediately, and not set CHANGING. We do * friendly, otherwise the caller doesn't necessarily have a fully * "retired" FQ on return even if the retirement was immediate. However * this does mean some code duplication between here and * fq_state_change(). */ if (res == QM_MCR_RESULT_OK) { ret = 0; /* Process 'fq' right away, we'll ignore FQRNI */ if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) fq_set(fq, QMAN_FQ_STATE_NE); if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT) fq_set(fq, QMAN_FQ_STATE_ORL); if (flags) *flags = fq->flags; fq->state = qman_fq_state_retired; if (fq->cb.fqs) { /* * Another issue with supporting "immediate" retirement * is that we're forced to drop FQRNIs, because by the * time they're seen it may already be "too late" (the * fq may have been OOS'd and free()'d already). But if * the upper layer wants a callback whether it's * immediate or not, we have to fake a "MR" entry to * look like an FQRNI... */ union qm_mr_entry msg; msg.verb = QM_MR_VERB_FQRNI; msg.fq.fqs = mcr->alterfq.fqs; qm_fqid_set(&msg.fq, fq->fqid); msg.fq.context_b = cpu_to_be32(fq_to_tag(fq)); fq->cb.fqs(p, fq, &msg); } } else if (res == QM_MCR_RESULT_PENDING) { ret = 1; fq_set(fq, QMAN_FQ_STATE_CHANGING); } else { ret = -EIO; } out: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_retire_fq); int qman_oos_fq(struct qman_fq *fq) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p; int ret = 0; if (fq->state != qman_fq_state_retired) return -EINVAL; #ifdef CONFIG_FSL_DPAA_CHECKING if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) return -EINVAL; #endif p = get_affine_portal(); if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) || fq->state != qman_fq_state_retired) { ret = -EBUSY; goto out; } mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fq->fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS); if (mcr->result != QM_MCR_RESULT_OK) { ret = -EIO; goto out; } fq->state = qman_fq_state_oos; out: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_oos_fq); int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p = get_affine_portal(); int ret = 0; mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fq->fqid); qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); if (mcr->result == QM_MCR_RESULT_OK) *fqd = mcr->queryfq.fqd; else ret = -EIO; out: put_affine_portal(); return ret; } int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p = get_affine_portal(); int ret = 0; mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fq->fqid); qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); if (mcr->result == QM_MCR_RESULT_OK) *np = mcr->queryfq_np; else if (mcr->result == QM_MCR_RESULT_ERR_FQID) ret = -ERANGE; else ret = -EIO; out: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_query_fq_np); static int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *cgrd) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p = get_affine_portal(); int ret = 0; mcc = qm_mc_start(&p->p); mcc->cgr.cgid = cgr->cgrid; qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR); if (mcr->result == QM_MCR_RESULT_OK) *cgrd = mcr->querycgr; else { dev_err(p->config->dev, "QUERY_CGR failed: %s\n", mcr_result_str(mcr->result)); ret = -EIO; } out: put_affine_portal(); return ret; } int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result) { struct qm_mcr_querycgr query_cgr; int err; err = qman_query_cgr(cgr, &query_cgr); if (err) return err; *result = !!query_cgr.cgr.cs; return 0; } EXPORT_SYMBOL(qman_query_cgr_congested); /* internal function used as a wait_event() expression */ static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr) { unsigned long irqflags; int ret = -EBUSY; local_irq_save(irqflags); if (p->vdqcr_owned) goto out; if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) goto out; fq_set(fq, QMAN_FQ_STATE_VDQCR); p->vdqcr_owned = fq; qm_dqrr_vdqcr_set(&p->p, vdqcr); ret = 0; out: local_irq_restore(irqflags); return ret; } static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr) { int ret; *p = get_affine_portal(); ret = set_p_vdqcr(*p, fq, vdqcr); put_affine_portal(); return ret; } static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr, u32 flags) { int ret = 0; if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) ret = wait_event_interruptible(affine_queue, !set_vdqcr(p, fq, vdqcr)); else wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr)); return ret; } int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr) { struct qman_portal *p; int ret; if (fq->state != qman_fq_state_parked && fq->state != qman_fq_state_retired) return -EINVAL; if (vdqcr & QM_VDQCR_FQID_MASK) return -EINVAL; if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) return -EBUSY; vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid; if (flags & QMAN_VOLATILE_FLAG_WAIT) ret = wait_vdqcr_start(&p, fq, vdqcr, flags); else ret = set_vdqcr(&p, fq, vdqcr); if (ret) return ret; /* VDQCR is set */ if (flags & QMAN_VOLATILE_FLAG_FINISH) { if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) /* * NB: don't propagate any error - the caller wouldn't * know whether the VDQCR was issued or not. A signal * could arrive after returning anyway, so the caller * can check signal_pending() if that's an issue. */ wait_event_interruptible(affine_queue, !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); else wait_event(affine_queue, !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); } return 0; } EXPORT_SYMBOL(qman_volatile_dequeue); static void update_eqcr_ci(struct qman_portal *p, u8 avail) { if (avail) qm_eqcr_cce_prefetch(&p->p); else qm_eqcr_cce_update(&p->p); } int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd) { struct qman_portal *p; struct qm_eqcr_entry *eq; unsigned long irqflags; u8 avail; p = get_affine_portal(); local_irq_save(irqflags); if (p->use_eqcr_ci_stashing) { /* * The stashing case is easy, only update if we need to in * order to try and liberate ring entries. */ eq = qm_eqcr_start_stash(&p->p); } else { /* * The non-stashing case is harder, need to prefetch ahead of * time. */ avail = qm_eqcr_get_avail(&p->p); if (avail < 2) update_eqcr_ci(p, avail); eq = qm_eqcr_start_no_stash(&p->p); } if (unlikely(!eq)) goto out; qm_fqid_set(eq, fq->fqid); eq->tag = cpu_to_be32(fq_to_tag(fq)); eq->fd = *fd; qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE); out: local_irq_restore(irqflags); put_affine_portal(); return 0; } EXPORT_SYMBOL(qman_enqueue); static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts) { union qm_mc_command *mcc; union qm_mc_result *mcr; struct qman_portal *p = get_affine_portal(); u8 verb = QM_MCC_VERB_MODIFYCGR; int ret = 0; mcc = qm_mc_start(&p->p); if (opts) mcc->initcgr = *opts; mcc->initcgr.cgid = cgr->cgrid; if (flags & QMAN_CGR_FLAG_USE_INIT) verb = QM_MCC_VERB_INITCGR; qm_mc_commit(&p->p, verb); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb); if (mcr->result != QM_MCR_RESULT_OK) ret = -EIO; out: put_affine_portal(); return ret; } #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0) /* congestion state change notification target update control */ static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val) { if (qman_ip_rev >= QMAN_REV30) cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi | QM_CGR_TARG_UDP_CTRL_WRITE_BIT); else cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi)); } static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val) { if (qman_ip_rev >= QMAN_REV30) cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi); else cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi)); } static u8 qman_cgr_cpus[CGR_NUM]; void qman_init_cgr_all(void) { struct qman_cgr cgr; int err_cnt = 0; for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) { if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL)) err_cnt++; } if (err_cnt) pr_err("Warning: %d error%s while initialising CGR h/w\n", err_cnt, (err_cnt > 1) ? "s" : ""); } int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts) { struct qm_mcr_querycgr cgr_state; int ret; struct qman_portal *p; /* * We have to check that the provided CGRID is within the limits of the * data-structures, for obvious reasons. However we'll let h/w take * care of determining whether it's within the limits of what exists on * the SoC. */ if (cgr->cgrid >= CGR_NUM) return -EINVAL; preempt_disable(); p = get_affine_portal(); qman_cgr_cpus[cgr->cgrid] = smp_processor_id(); preempt_enable(); cgr->chan = p->config->channel; spin_lock(&p->cgr_lock); if (opts) { struct qm_mcc_initcgr local_opts = *opts; ret = qman_query_cgr(cgr, &cgr_state); if (ret) goto out; qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p), be32_to_cpu(cgr_state.cgr.cscn_targ)); local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG); /* send init if flags indicate so */ if (flags & QMAN_CGR_FLAG_USE_INIT) ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT, &local_opts); else ret = qm_modify_cgr(cgr, 0, &local_opts); if (ret) goto out; } list_add(&cgr->node, &p->cgr_cbs); /* Determine if newly added object requires its callback to be called */ ret = qman_query_cgr(cgr, &cgr_state); if (ret) { /* we can't go back, so proceed and return success */ dev_err(p->config->dev, "CGR HW state partially modified\n"); ret = 0; goto out; } if (cgr->cb && cgr_state.cgr.cscn_en && qman_cgrs_get(&p->cgrs[1], cgr->cgrid)) cgr->cb(p, cgr, 1); out: spin_unlock(&p->cgr_lock); put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_create_cgr); int qman_delete_cgr(struct qman_cgr *cgr) { unsigned long irqflags; struct qm_mcr_querycgr cgr_state; struct qm_mcc_initcgr local_opts; int ret = 0; struct qman_cgr *i; struct qman_portal *p = get_affine_portal(); if (cgr->chan != p->config->channel) { /* attempt to delete from other portal than creator */ dev_err(p->config->dev, "CGR not owned by current portal"); dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n", cgr->chan, p->config->channel); ret = -EINVAL; goto put_portal; } memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr)); spin_lock_irqsave(&p->cgr_lock, irqflags); list_del(&cgr->node); /* * If there are no other CGR objects for this CGRID in the list, * update CSCN_TARG accordingly */ list_for_each_entry(i, &p->cgr_cbs, node) if (i->cgrid == cgr->cgrid && i->cb) goto release_lock; ret = qman_query_cgr(cgr, &cgr_state); if (ret) { /* add back to the list */ list_add(&cgr->node, &p->cgr_cbs); goto release_lock; } local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG); qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p), be32_to_cpu(cgr_state.cgr.cscn_targ)); ret = qm_modify_cgr(cgr, 0, &local_opts); if (ret) /* add back to the list */ list_add(&cgr->node, &p->cgr_cbs); release_lock: spin_unlock_irqrestore(&p->cgr_lock, irqflags); put_portal: put_affine_portal(); return ret; } EXPORT_SYMBOL(qman_delete_cgr); struct cgr_comp { struct qman_cgr *cgr; struct completion completion; }; static void qman_delete_cgr_smp_call(void *p) { qman_delete_cgr((struct qman_cgr *)p); } void qman_delete_cgr_safe(struct qman_cgr *cgr) { preempt_disable(); if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) { smp_call_function_single(qman_cgr_cpus[cgr->cgrid], qman_delete_cgr_smp_call, cgr, true); preempt_enable(); return; } qman_delete_cgr(cgr); preempt_enable(); } EXPORT_SYMBOL(qman_delete_cgr_safe); /* Cleanup FQs */ static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v) { const union qm_mr_entry *msg; int found = 0; qm_mr_pvb_update(p); msg = qm_mr_current(p); while (msg) { if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v) found = 1; qm_mr_next(p); qm_mr_cci_consume_to_current(p); qm_mr_pvb_update(p); msg = qm_mr_current(p); } return found; } static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s, bool wait) { const struct qm_dqrr_entry *dqrr; int found = 0; do { qm_dqrr_pvb_update(p); dqrr = qm_dqrr_current(p); if (!dqrr) cpu_relax(); } while (wait && !dqrr); while (dqrr) { if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s)) found = 1; qm_dqrr_cdc_consume_1ptr(p, dqrr, 0); qm_dqrr_pvb_update(p); qm_dqrr_next(p); dqrr = qm_dqrr_current(p); } return found; } #define qm_mr_drain(p, V) \ _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V) #define qm_dqrr_drain(p, f, S) \ _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false) #define qm_dqrr_drain_wait(p, f, S) \ _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true) #define qm_dqrr_drain_nomatch(p) \ _qm_dqrr_consume_and_match(p, 0, 0, false) static int qman_shutdown_fq(u32 fqid) { struct qman_portal *p; struct device *dev; union qm_mc_command *mcc; union qm_mc_result *mcr; int orl_empty, drain = 0, ret = 0; u32 channel, wq, res; u8 state; p = get_affine_portal(); dev = p->config->dev; /* Determine the state of the FQID */ mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fqid); qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_err(dev, "QUERYFQ_NP timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK; if (state == QM_MCR_NP_STATE_OOS) goto out; /* Already OOS, no need to do anymore checks */ /* Query which channel the FQ is using */ mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fqid); qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_err(dev, "QUERYFQ timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); /* Need to store these since the MCR gets reused */ channel = qm_fqd_get_chan(&mcr->queryfq.fqd); wq = qm_fqd_get_wq(&mcr->queryfq.fqd); switch (state) { case QM_MCR_NP_STATE_TEN_SCHED: case QM_MCR_NP_STATE_TRU_SCHED: case QM_MCR_NP_STATE_ACTIVE: case QM_MCR_NP_STATE_PARKED: orl_empty = 0; mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE); if (!qm_mc_result_timeout(&p->p, &mcr)) { dev_err(dev, "QUERYFQ_NP timeout\n"); ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE); res = mcr->result; /* Make a copy as we reuse MCR below */ if (res == QM_MCR_RESULT_PENDING) { /* * Need to wait for the FQRN in the message ring, which * will only occur once the FQ has been drained. In * order for the FQ to drain the portal needs to be set * to dequeue from the channel the FQ is scheduled on */ int found_fqrn = 0; u16 dequeue_wq = 0; /* Flag that we need to drain FQ */ drain = 1; if (channel >= qm_channel_pool1 && channel < qm_channel_pool1 + 15) { /* Pool channel, enable the bit in the portal */ dequeue_wq = (channel - qm_channel_pool1 + 1)<<4 | wq; } else if (channel < qm_channel_pool1) { /* Dedicated channel */ dequeue_wq = wq; } else { dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x", fqid, channel); ret = -EBUSY; goto out; } /* Set the sdqcr to drain this channel */ if (channel < qm_channel_pool1) qm_dqrr_sdqcr_set(&p->p, QM_SDQCR_TYPE_ACTIVE | QM_SDQCR_CHANNELS_DEDICATED); else qm_dqrr_sdqcr_set(&p->p, QM_SDQCR_TYPE_ACTIVE | QM_SDQCR_CHANNELS_POOL_CONV (channel)); do { /* Keep draining DQRR while checking the MR*/ qm_dqrr_drain_nomatch(&p->p); /* Process message ring too */ found_fqrn = qm_mr_drain(&p->p, FQRN); cpu_relax(); } while (!found_fqrn); } if (res != QM_MCR_RESULT_OK && res != QM_MCR_RESULT_PENDING) { dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n", fqid, res); ret = -EIO; goto out; } if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) { /* * ORL had no entries, no need to wait until the * ERNs come in */ orl_empty = 1; } /* * Retirement succeeded, check to see if FQ needs * to be drained */ if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) { /* FQ is Not Empty, drain using volatile DQ commands */ do { u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3); qm_dqrr_vdqcr_set(&p->p, vdqcr); /* * Wait for a dequeue and process the dequeues, * making sure to empty the ring completely */ } while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY)); } qm_dqrr_sdqcr_set(&p->p, 0); while (!orl_empty) { /* Wait for the ORL to have been completely drained */ orl_empty = qm_mr_drain(&p->p, FQRL); cpu_relax(); } mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS); if (mcr->result != QM_MCR_RESULT_OK) { dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n", fqid, mcr->result); ret = -EIO; goto out; } break; case QM_MCR_NP_STATE_RETIRED: /* Send OOS Command */ mcc = qm_mc_start(&p->p); qm_fqid_set(&mcc->fq, fqid); qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); if (!qm_mc_result_timeout(&p->p, &mcr)) { ret = -ETIMEDOUT; goto out; } DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS); if (mcr->result) { dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n", fqid, mcr->result); ret = -EIO; goto out; } break; case QM_MCR_NP_STATE_OOS: /* Done */ break; default: ret = -EIO; } out: put_affine_portal(); return ret; } const struct qm_portal_config *qman_get_qm_portal_config( struct qman_portal *portal) { return portal->config; } EXPORT_SYMBOL(qman_get_qm_portal_config); struct gen_pool *qm_fqalloc; /* FQID allocator */ struct gen_pool *qm_qpalloc; /* pool-channel allocator */ struct gen_pool *qm_cgralloc; /* CGR ID allocator */ static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt) { unsigned long addr; if (!p) return -ENODEV; addr = gen_pool_alloc(p, cnt); if (!addr) return -ENOMEM; *result = addr & ~DPAA_GENALLOC_OFF; return 0; } int qman_alloc_fqid_range(u32 *result, u32 count) { return qman_alloc_range(qm_fqalloc, result, count); } EXPORT_SYMBOL(qman_alloc_fqid_range); int qman_alloc_pool_range(u32 *result, u32 count) { return qman_alloc_range(qm_qpalloc, result, count); } EXPORT_SYMBOL(qman_alloc_pool_range); int qman_alloc_cgrid_range(u32 *result, u32 count) { return qman_alloc_range(qm_cgralloc, result, count); } EXPORT_SYMBOL(qman_alloc_cgrid_range); int qman_release_fqid(u32 fqid) { int ret = qman_shutdown_fq(fqid); if (ret) { pr_debug("FQID %d leaked\n", fqid); return ret; } gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1); return 0; } EXPORT_SYMBOL(qman_release_fqid); static int qpool_cleanup(u32 qp) { /* * We query all FQDs starting from * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs * whose destination channel is the pool-channel being released. * When a non-OOS FQD is found we attempt to clean it up */ struct qman_fq fq = { .fqid = QM_FQID_RANGE_START }; int err; do { struct qm_mcr_queryfq_np np; err = qman_query_fq_np(&fq, &np); if (err == -ERANGE) /* FQID range exceeded, found no problems */ return 0; else if (WARN_ON(err)) return err; if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { struct qm_fqd fqd; err = qman_query_fq(&fq, &fqd); if (WARN_ON(err)) return err; if (qm_fqd_get_chan(&fqd) == qp) { /* The channel is the FQ's target, clean it */ err = qman_shutdown_fq(fq.fqid); if (err) /* * Couldn't shut down the FQ * so the pool must be leaked */ return err; } } /* Move to the next FQID */ fq.fqid++; } while (1); } int qman_release_pool(u32 qp) { int ret; ret = qpool_cleanup(qp); if (ret) { pr_debug("CHID %d leaked\n", qp); return ret; } gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1); return 0; } EXPORT_SYMBOL(qman_release_pool); static int cgr_cleanup(u32 cgrid) { /* * query all FQDs starting from FQID 1 until we get an "invalid FQID" * error, looking for non-OOS FQDs whose CGR is the CGR being released */ struct qman_fq fq = { .fqid = QM_FQID_RANGE_START }; int err; do { struct qm_mcr_queryfq_np np; err = qman_query_fq_np(&fq, &np); if (err == -ERANGE) /* FQID range exceeded, found no problems */ return 0; else if (WARN_ON(err)) return err; if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { struct qm_fqd fqd; err = qman_query_fq(&fq, &fqd); if (WARN_ON(err)) return err; if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE && fqd.cgid == cgrid) { pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n", cgrid, fq.fqid); return -EIO; } } /* Move to the next FQID */ fq.fqid++; } while (1); } int qman_release_cgrid(u32 cgrid) { int ret; ret = cgr_cleanup(cgrid); if (ret) { pr_debug("CGRID %d leaked\n", cgrid); return ret; } gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1); return 0; } EXPORT_SYMBOL(qman_release_cgrid);