// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include #include #include "hclgevf_cmd.h" #include "hclgevf_main.h" #include "hclge_mbx.h" #include "hnae3.h" #define HCLGEVF_NAME "hclgevf" static int hclgevf_init_hdev(struct hclgevf_dev *hdev); static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev); static struct hnae3_ae_algo ae_algovf; static const struct pci_device_id ae_algovf_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); static inline struct hclgevf_dev *hclgevf_ae_get_hdev( struct hnae3_handle *handle) { return container_of(handle, struct hclgevf_dev, nic); } static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_queue *queue; struct hclgevf_desc desc; struct hclgevf_tqp *tqp; int status; int i; for (i = 0; i < hdev->num_tqps; i++) { queue = handle->kinfo.tqp[i]; tqp = container_of(queue, struct hclgevf_tqp, q); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_RX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); } return 0; } static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_tqp *tqp; u64 *buff = data; int i; for (i = 0; i < hdev->num_tqps; i++) { tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; } for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; } return buff; } static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->num_tqps * 2; } static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 *buff = data; int i = 0; for (i = 0; i < hdev->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } for (i = 0; i < hdev->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } return buff; } static void hclgevf_update_stats(struct hnae3_handle *handle, struct net_device_stats *net_stats) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int status; status = hclgevf_tqps_update_stats(handle); if (status) dev_err(&hdev->pdev->dev, "VF update of TQPS stats fail, status = %d.\n", status); } static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) { if (strset == ETH_SS_TEST) return -EOPNOTSUPP; else if (strset == ETH_SS_STATS) return hclgevf_tqps_get_sset_count(handle, strset); return 0; } static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, u8 *data) { u8 *p = (char *)data; if (strset == ETH_SS_STATS) p = hclgevf_tqps_get_strings(handle, p); } static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) { hclgevf_tqps_get_stats(handle, data); } static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) { u8 resp_msg; int status; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0, true, &resp_msg, sizeof(u8)); if (status) { dev_err(&hdev->pdev->dev, "VF request to get TC info from PF failed %d", status); return status; } hdev->hw_tc_map = resp_msg; return 0; } static int hclge_get_queue_info(struct hclgevf_dev *hdev) { #define HCLGEVF_TQPS_RSS_INFO_LEN 8 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; int status; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0, true, resp_msg, HCLGEVF_TQPS_RSS_INFO_LEN); if (status) { dev_err(&hdev->pdev->dev, "VF request to get tqp info from PF failed %d", status); return status; } memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16)); memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16)); memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16)); memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16)); return 0; } static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) { struct hclgevf_tqp *tqp; int i; /* if this is on going reset then we need to re-allocate the TPQs * since we cannot assume we would get same number of TPQs back from PF */ if (hclgevf_dev_ongoing_reset(hdev)) devm_kfree(&hdev->pdev->dev, hdev->htqp); hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, sizeof(struct hclgevf_tqp), GFP_KERNEL); if (!hdev->htqp) return -ENOMEM; tqp = hdev->htqp; for (i = 0; i < hdev->num_tqps; i++) { tqp->dev = &hdev->pdev->dev; tqp->index = i; tqp->q.ae_algo = &ae_algovf; tqp->q.buf_size = hdev->rx_buf_len; tqp->q.desc_num = hdev->num_desc; tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + i * HCLGEVF_TQP_REG_SIZE; tqp++; } return 0; } static int hclgevf_knic_setup(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo; u16 new_tqps = hdev->num_tqps; int i; kinfo = &nic->kinfo; kinfo->num_tc = 0; kinfo->num_desc = hdev->num_desc; kinfo->rx_buf_len = hdev->rx_buf_len; for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) if (hdev->hw_tc_map & BIT(i)) kinfo->num_tc++; kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); new_tqps = kinfo->rss_size * kinfo->num_tc; kinfo->num_tqps = min(new_tqps, hdev->num_tqps); /* if this is on going reset then we need to re-allocate the hnae queues * as well since number of TPQs from PF might have changed. */ if (hclgevf_dev_ongoing_reset(hdev)) devm_kfree(&hdev->pdev->dev, kinfo->tqp); kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, sizeof(struct hnae3_queue *), GFP_KERNEL); if (!kinfo->tqp) return -ENOMEM; for (i = 0; i < kinfo->num_tqps; i++) { hdev->htqp[i].q.handle = &hdev->nic; hdev->htqp[i].q.tqp_index = i; kinfo->tqp[i] = &hdev->htqp[i].q; } return 0; } static void hclgevf_request_link_info(struct hclgevf_dev *hdev) { int status; u8 resp_msg; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL, 0, false, &resp_msg, sizeof(u8)); if (status) dev_err(&hdev->pdev->dev, "VF failed to fetch link status(%d) from PF", status); } void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) { struct hnae3_handle *handle = &hdev->nic; struct hnae3_client *client; client = handle->client; link_state = test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; if (link_state != hdev->hw.mac.link) { client->ops->link_status_change(handle, !!link_state); hdev->hw.mac.link = link_state; } } static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; int ret; nic->ae_algo = &ae_algovf; nic->pdev = hdev->pdev; nic->numa_node_mask = hdev->numa_node_mask; nic->flags |= HNAE3_SUPPORT_VF; if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) { dev_err(&hdev->pdev->dev, "unsupported device type %d\n", hdev->ae_dev->dev_type); return -EINVAL; } ret = hclgevf_knic_setup(hdev); if (ret) dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", ret); return ret; } static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) { if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { dev_warn(&hdev->pdev->dev, "vector(vector_id %d) has been freed.\n", vector_id); return; } hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; hdev->num_msi_left += 1; hdev->num_msi_used -= 1; } static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, struct hnae3_vector_info *vector_info) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_vector_info *vector = vector_info; int alloc = 0; int i, j; vector_num = min(hdev->num_msi_left, vector_num); for (j = 0; j < vector_num; j++) { for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { vector->vector = pci_irq_vector(hdev->pdev, i); vector->io_addr = hdev->hw.io_base + HCLGEVF_VECTOR_REG_BASE + (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; hdev->vector_status[i] = 0; hdev->vector_irq[i] = vector->vector; vector++; alloc++; break; } } } hdev->num_msi_left -= alloc; hdev->num_msi_used += alloc; return alloc; } static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) { int i; for (i = 0; i < hdev->num_msi; i++) if (vector == hdev->vector_irq[i]) return i; return -EINVAL; } static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) { return HCLGEVF_RSS_KEY_SIZE; } static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) { return HCLGEVF_RSS_IND_TBL_SIZE; } static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) { const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; struct hclgevf_rss_indirection_table_cmd *req; struct hclgevf_desc desc; int status; int i, j; req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, false); req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) req->rss_result[j] = indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "VF failed(=%d) to set RSS indirection table\n", status); return status; } } return 0; } static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) { struct hclgevf_rss_tc_mode_cmd *req; u16 tc_offset[HCLGEVF_MAX_TC_NUM]; u16 tc_valid[HCLGEVF_MAX_TC_NUM]; u16 tc_size[HCLGEVF_MAX_TC_NUM]; struct hclgevf_desc desc; u16 roundup_size; int status; int i; req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; roundup_size = roundup_pow_of_two(rss_size); roundup_size = ilog2(roundup_size); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); tc_size[i] = roundup_size; tc_offset[i] = rss_size * i; } hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, (tc_valid[i] & 0x1)); hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); } status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "VF failed(=%d) to set rss tc mode\n", status); return status; } static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash, u8 *key) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_config_cmd *req; int lkup_times = key ? 3 : 1; struct hclgevf_desc desc; int key_offset; int key_size; int status; req = (struct hclgevf_rss_config_cmd *)desc.data; lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0); for (key_offset = 0; key_offset < lkup_times; key_offset++) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_GENERIC_CONFIG, true); req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "failed to get hardware RSS cfg, status = %d\n", status); return status; } if (key_offset == 2) key_size = HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2; else key_size = HCLGEVF_RSS_HASH_KEY_NUM; if (key) memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, req->hash_key, key_size); } if (hash) { if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ) *hash = ETH_RSS_HASH_TOP; else *hash = ETH_RSS_HASH_UNKNOWN; } return 0; } static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, u8 *hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i; if (indir) for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) indir[i] = rss_cfg->rss_indirection_tbl[i]; return hclgevf_get_rss_hw_cfg(handle, hfunc, key); } static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, const u8 *key, const u8 hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i; /* update the shadow RSS table with user specified qids */ for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) rss_cfg->rss_indirection_tbl[i] = indir[i]; /* update the hardware */ return hclgevf_set_rss_indir_table(hdev); } static int hclgevf_get_tc_size(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; return rss_cfg->rss_size; } static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, int vector_id, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_ring_chain_node *node; struct hclge_mbx_vf_to_pf_cmd *req; struct hclgevf_desc desc; int i = 0; int status; u8 type; req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; for (node = ring_chain; node; node = node->next) { int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM + HCLGE_MBX_RING_NODE_VARIABLE_NUM * i; if (i == 0) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : HCLGE_MBX_UNMAP_RING_TO_VECTOR; req->msg[0] = type; req->msg[1] = vector_id; } req->msg[idx_offset] = hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); req->msg[idx_offset + 1] = node->tqp_index; req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S); i++; if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM - HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) / HCLGE_MBX_RING_NODE_VARIABLE_NUM) || !node->next) { req->msg[2] = i; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Map TQP fail, status is %d.\n", status); return status; } i = 0; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); req->msg[0] = type; req->msg[1] = vector_id; } } return 0; } static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); } static int hclgevf_unmap_ring_from_vector( struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret, vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); if (ret) dev_err(&handle->pdev->dev, "Unmap ring from vector fail. vector=%d, ret =%d\n", vector_id, ret); return ret; } static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "hclgevf_put_vector get vector index fail. ret =%d\n", vector_id); return vector_id; } hclgevf_free_vector(hdev, vector_id); return 0; } static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, bool en_uc_pmc, bool en_mc_pmc) { struct hclge_mbx_vf_to_pf_cmd *req; struct hclgevf_desc desc; int status; req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE; req->msg[1] = en_uc_pmc ? 1 : 0; req->msg[2] = en_mc_pmc ? 1 : 0; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "Set promisc mode fail, status is %d.\n", status); return status; } static void hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, bool en_mc_pmc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc); } static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id, int stream_id, bool enable) { struct hclgevf_cfg_com_tqp_queue_cmd *req; struct hclgevf_desc desc; int status; req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, false); req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); req->stream_id = cpu_to_le16(stream_id); req->enable |= enable << HCLGEVF_TQP_ENABLE_B; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "TQP enable fail, status =%d.\n", status); return status; } static int hclgevf_get_queue_id(struct hnae3_queue *queue) { struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q); return tqp->index; } static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_queue *queue; struct hclgevf_tqp *tqp; int i; for (i = 0; i < hdev->num_tqps; i++) { queue = handle->kinfo.tqp[i]; tqp = container_of(queue, struct hclgevf_tqp, q); memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); } } static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev) { u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX; int ret; ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ, NULL, 0, true, &resp_msg, sizeof(u8)); if (ret) { dev_err(&hdev->pdev->dev, "Read mta type fail, ret=%d.\n", ret); return ret; } if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) { dev_err(&hdev->pdev->dev, "Read mta type invalid, resp=%d.\n", resp_msg); return -EINVAL; } hdev->mta_mac_sel_type = resp_msg; return 0; } static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev, const u8 *addr) { u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type; u16 high_val = addr[1] | (addr[0] << 8); return (high_val >> rsh) & 0xfff; } static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev, unsigned long *status) { #define HCLGEVF_MTA_STATUS_MSG_SIZE 13 #define HCLGEVF_MTA_STATUS_MSG_BITS \ (HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE) #define HCLGEVF_MTA_STATUS_MSG_END_BITS \ (HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS) u16 tbl_cnt; u16 tbl_idx; u8 msg_cnt; u8 msg_idx; int ret; msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE, HCLGEVF_MTA_STATUS_MSG_BITS); tbl_idx = 0; msg_idx = 0; while (msg_cnt--) { u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1]; u8 *p = &msg[1]; u8 msg_ofs; u8 msg_bit; memset(msg, 0, sizeof(msg)); /* set index field */ msg[0] = 0x7F & msg_idx; /* set end flag field */ if (msg_cnt == 0) { msg[0] |= 0x80; tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS; } else { tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS; } /* set status field */ msg_ofs = 0; msg_bit = 0; while (tbl_cnt--) { if (test_bit(tbl_idx, status)) p[msg_ofs] |= BIT(msg_bit); tbl_idx++; msg_bit++; if (msg_bit == BITS_PER_BYTE) { msg_bit = 0; msg_ofs++; } } ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE, msg, sizeof(msg), false, NULL, 0); if (ret) break; msg_idx++; } return ret; } static int hclgevf_update_mta_status(struct hnae3_handle *handle) { unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)]; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct net_device *netdev = hdev->nic.kinfo.netdev; struct netdev_hw_addr *ha; u16 tbl_idx; /* clear status */ memset(mta_status, 0, sizeof(mta_status)); /* update status from mc addr list */ netdev_for_each_mc_addr(ha, netdev) { tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr); set_bit(tbl_idx, mta_status); } return hclgevf_do_update_mta_status(hdev, mta_status); } static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); ether_addr_copy(p, hdev->hw.mac.mac_addr); } static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, bool is_first) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; u8 *new_mac_addr = (u8 *)p; u8 msg_data[ETH_ALEN * 2]; u16 subcode; int status; ether_addr_copy(msg_data, new_mac_addr); ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr); subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD : HCLGE_MBX_MAC_VLAN_UC_MODIFY; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, subcode, msg_data, ETH_ALEN * 2, true, NULL, 0); if (!status) ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); return status; } static int hclgevf_add_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, HCLGE_MBX_MAC_VLAN_UC_ADD, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, HCLGE_MBX_MAC_VLAN_UC_REMOVE, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_add_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MC_ADD, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MC_REMOVE, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, u16 vlan_id, bool is_kill) { #define HCLGEVF_VLAN_MBX_MSG_LEN 5 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN]; if (vlan_id > 4095) return -EINVAL; if (proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; msg_data[0] = is_kill; memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id)); memcpy(&msg_data[3], &proto, sizeof(proto)); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_FILTER, msg_data, HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0); } static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data; msg_data = enable ? 1 : 0; return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data, 1, false, NULL, 0); } static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data[2]; int ret; memcpy(&msg_data[0], &queue_id, sizeof(queue_id)); /* disable vf queue before send queue reset msg to PF */ ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); if (ret) return; hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data, 2, true, NULL, 0); } static int hclgevf_notify_client(struct hclgevf_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->nic_client; struct hnae3_handle *handle = &hdev->nic; if (!client->ops->reset_notify) return -EOPNOTSUPP; return client->ops->reset_notify(handle, type); } static int hclgevf_reset_wait(struct hclgevf_dev *hdev) { #define HCLGEVF_RESET_WAIT_MS 500 #define HCLGEVF_RESET_WAIT_CNT 20 u32 val, cnt = 0; /* wait to check the hardware reset completion status */ val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) && (cnt < HCLGEVF_RESET_WAIT_CNT)) { msleep(HCLGEVF_RESET_WAIT_MS); val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); cnt++; } /* hardware completion status should be available by this time */ if (cnt >= HCLGEVF_RESET_WAIT_CNT) { dev_warn(&hdev->pdev->dev, "could'nt get reset done status from h/w, timeout!\n"); return -EBUSY; } /* we will wait a bit more to let reset of the stack to complete. This * might happen in case reset assertion was made by PF. Yes, this also * means we might end up waiting bit more even for VF reset. */ msleep(5000); return 0; } static int hclgevf_reset_stack(struct hclgevf_dev *hdev) { int ret; /* uninitialize the nic client */ hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); /* re-initialize the hclge device */ ret = hclgevf_init_hdev(hdev); if (ret) { dev_err(&hdev->pdev->dev, "hclge device re-init failed, VF is disabled!\n"); return ret; } /* bring up the nic client again */ hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); return 0; } static int hclgevf_reset(struct hclgevf_dev *hdev) { int ret; rtnl_lock(); /* bring down the nic to stop any ongoing TX/RX */ hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); rtnl_unlock(); /* check if VF could successfully fetch the hardware reset completion * status from the hardware */ ret = hclgevf_reset_wait(hdev); if (ret) { /* can't do much in this situation, will disable VF */ dev_err(&hdev->pdev->dev, "VF failed(=%d) to fetch H/W reset completion status\n", ret); dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n"); rtnl_lock(); hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); rtnl_unlock(); return ret; } rtnl_lock(); /* now, re-initialize the nic client and ae device*/ ret = hclgevf_reset_stack(hdev); if (ret) dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); /* bring up the nic to enable TX/RX again */ hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); rtnl_unlock(); return ret; } static int hclgevf_do_reset(struct hclgevf_dev *hdev) { int status; u8 respmsg; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL, 0, false, &respmsg, sizeof(u8)); if (status) dev_err(&hdev->pdev->dev, "VF reset request to PF failed(=%d)\n", status); return status; } static void hclgevf_reset_event(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); handle->reset_level = HNAE3_VF_RESET; /* reset of this VF requested */ set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); hclgevf_reset_task_schedule(hdev); handle->last_reset_time = jiffies; } static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->fw_version; } static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) { struct hclgevf_misc_vector *vector = &hdev->misc_vector; vector->vector_irq = pci_irq_vector(hdev->pdev, HCLGEVF_MISC_VECTOR_NUM); vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; /* vector status always valid for Vector 0 */ hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; hdev->num_msi_left -= 1; hdev->num_msi_used += 1; } void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) && !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) { set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); schedule_work(&hdev->rst_service_task); } } void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) && !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) { set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); schedule_work(&hdev->mbx_service_task); } } static void hclgevf_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) && !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state)) schedule_work(&hdev->service_task); } static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev) { /* if we have any pending mailbox event then schedule the mbx task */ if (hdev->mbx_event_pending) hclgevf_mbx_task_schedule(hdev); if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) hclgevf_reset_task_schedule(hdev); } static void hclgevf_service_timer(struct timer_list *t) { struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer); mod_timer(&hdev->service_timer, jiffies + 5 * HZ); hclgevf_task_schedule(hdev); } static void hclgevf_reset_service_task(struct work_struct *work) { struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, rst_service_task); int ret; if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) return; clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); if (test_and_clear_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) { /* PF has initmated that it is about to reset the hardware. * We now have to poll & check if harware has actually completed * the reset sequence. On hardware reset completion, VF needs to * reset the client and ae device. */ hdev->reset_attempts = 0; ret = hclgevf_reset(hdev); if (ret) dev_err(&hdev->pdev->dev, "VF stack reset failed.\n"); } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state)) { /* we could be here when either of below happens: * 1. reset was initiated due to watchdog timeout due to * a. IMP was earlier reset and our TX got choked down and * which resulted in watchdog reacting and inducing VF * reset. This also means our cmdq would be unreliable. * b. problem in TX due to other lower layer(example link * layer not functioning properly etc.) * 2. VF reset might have been initiated due to some config * change. * * NOTE: Theres no clear way to detect above cases than to react * to the response of PF for this reset request. PF will ack the * 1b and 2. cases but we will not get any intimation about 1a * from PF as cmdq would be in unreliable state i.e. mailbox * communication between PF and VF would be broken. */ /* if we are never geting into pending state it means either: * 1. PF is not receiving our request which could be due to IMP * reset * 2. PF is screwed * We cannot do much for 2. but to check first we can try reset * our PCIe + stack and see if it alleviates the problem. */ if (hdev->reset_attempts > 3) { /* prepare for full reset of stack + pcie interface */ hdev->nic.reset_level = HNAE3_VF_FULL_RESET; /* "defer" schedule the reset task again */ set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); } else { hdev->reset_attempts++; /* request PF for resetting this VF via mailbox */ ret = hclgevf_do_reset(hdev); if (ret) dev_warn(&hdev->pdev->dev, "VF rst fail, stack will call\n"); } } clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); } static void hclgevf_mailbox_service_task(struct work_struct *work) { struct hclgevf_dev *hdev; hdev = container_of(work, struct hclgevf_dev, mbx_service_task); if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) return; clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); hclgevf_mbx_async_handler(hdev); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); } static void hclgevf_service_task(struct work_struct *work) { struct hclgevf_dev *hdev; hdev = container_of(work, struct hclgevf_dev, service_task); /* request the link status from the PF. PF would be able to tell VF * about such updates in future so we might remove this later */ hclgevf_request_link_info(hdev); hclgevf_deferred_task_schedule(hdev); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); } static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) { hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); } static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval) { u32 cmdq_src_reg; /* fetch the events from their corresponding regs */ cmdq_src_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG); /* check for vector0 mailbox(=CMDQ RX) event source */ if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); *clearval = cmdq_src_reg; return true; } dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n"); return false; } static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) { writel(en ? 1 : 0, vector->addr); } static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) { struct hclgevf_dev *hdev = data; u32 clearval; hclgevf_enable_vector(&hdev->misc_vector, false); if (!hclgevf_check_event_cause(hdev, &clearval)) goto skip_sched; hclgevf_mbx_handler(hdev); hclgevf_clear_event_cause(hdev, clearval); skip_sched: hclgevf_enable_vector(&hdev->misc_vector, true); return IRQ_HANDLED; } static int hclgevf_configure(struct hclgevf_dev *hdev) { int ret; /* get queue configuration from PF */ ret = hclge_get_queue_info(hdev); if (ret) return ret; /* get tc configuration from PF */ return hclgevf_get_tc_info(hdev); } static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; struct hclgevf_dev *hdev = ae_dev->priv; hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) return -ENOMEM; hdev->pdev = pdev; hdev->ae_dev = ae_dev; ae_dev->priv = hdev; return 0; } static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) { struct hnae3_handle *roce = &hdev->roce; struct hnae3_handle *nic = &hdev->nic; roce->rinfo.num_vectors = hdev->num_roce_msix; if (hdev->num_msi_left < roce->rinfo.num_vectors || hdev->num_msi_left == 0) return -EINVAL; roce->rinfo.base_vector = hdev->roce_base_vector; roce->rinfo.netdev = nic->kinfo.netdev; roce->rinfo.roce_io_base = hdev->hw.io_base; roce->pdev = nic->pdev; roce->ae_algo = nic->ae_algo; roce->numa_node_mask = nic->numa_node_mask; return 0; } static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) { struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i, ret; rss_cfg->rss_size = hdev->rss_size_max; /* Initialize RSS indirect table for each vport */ for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max; ret = hclgevf_set_rss_indir_table(hdev); if (ret) return ret; return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max); } static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) { /* other vlan config(like, VLAN TX/RX offload) would also be added * here later */ return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, false); } static int hclgevf_ae_start(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int i, queue_id; for (i = 0; i < handle->kinfo.num_tqps; i++) { /* ring enable */ queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); if (queue_id < 0) { dev_warn(&hdev->pdev->dev, "Get invalid queue id, ignore it\n"); continue; } hclgevf_tqp_enable(hdev, queue_id, 0, true); } /* reset tqp stats */ hclgevf_reset_tqp_stats(handle); hclgevf_request_link_info(hdev); clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); mod_timer(&hdev->service_timer, jiffies + HZ); return 0; } static void hclgevf_ae_stop(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int i, queue_id; set_bit(HCLGEVF_STATE_DOWN, &hdev->state); for (i = 0; i < hdev->num_tqps; i++) { /* Ring disable */ queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); if (queue_id < 0) { dev_warn(&hdev->pdev->dev, "Get invalid queue id, ignore it\n"); continue; } hclgevf_tqp_enable(hdev, queue_id, 0, false); } /* reset tqp stats */ hclgevf_reset_tqp_stats(handle); del_timer_sync(&hdev->service_timer); cancel_work_sync(&hdev->service_task); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); hclgevf_update_link_status(hdev, 0); } static void hclgevf_state_init(struct hclgevf_dev *hdev) { /* if this is on going reset then skip this initialization */ if (hclgevf_dev_ongoing_reset(hdev)) return; /* setup tasks for the MBX */ INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task); clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); /* setup tasks for service timer */ timer_setup(&hdev->service_timer, hclgevf_service_timer, 0); INIT_WORK(&hdev->service_task, hclgevf_service_task); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task); mutex_init(&hdev->mbx_resp.mbx_mutex); /* bring the device down */ set_bit(HCLGEVF_STATE_DOWN, &hdev->state); } static void hclgevf_state_uninit(struct hclgevf_dev *hdev) { set_bit(HCLGEVF_STATE_DOWN, &hdev->state); if (hdev->service_timer.function) del_timer_sync(&hdev->service_timer); if (hdev->service_task.func) cancel_work_sync(&hdev->service_task); if (hdev->mbx_service_task.func) cancel_work_sync(&hdev->mbx_service_task); if (hdev->rst_service_task.func) cancel_work_sync(&hdev->rst_service_task); mutex_destroy(&hdev->mbx_resp.mbx_mutex); } static int hclgevf_init_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int vectors; int i; /* if this is on going reset then skip this initialization */ if (hclgevf_dev_ongoing_reset(hdev)) return 0; if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) vectors = pci_alloc_irq_vectors(pdev, hdev->roce_base_msix_offset + 1, hdev->num_msi, PCI_IRQ_MSIX); else vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (vectors < 0) { dev_err(&pdev->dev, "failed(%d) to allocate MSI/MSI-X vectors\n", vectors); return vectors; } if (vectors < hdev->num_msi) dev_warn(&hdev->pdev->dev, "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n", hdev->num_msi, vectors); hdev->num_msi = vectors; hdev->num_msi_left = vectors; hdev->base_msi_vector = pdev->irq; hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(u16), GFP_KERNEL); if (!hdev->vector_status) { pci_free_irq_vectors(pdev); return -ENOMEM; } for (i = 0; i < hdev->num_msi; i++) hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(int), GFP_KERNEL); if (!hdev->vector_irq) { pci_free_irq_vectors(pdev); return -ENOMEM; } return 0; } static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; pci_free_irq_vectors(pdev); } static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) { int ret = 0; /* if this is on going reset then skip this initialization */ if (hclgevf_dev_ongoing_reset(hdev)) return 0; hclgevf_get_misc_vector(hdev); ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 0, "hclgevf_cmd", hdev); if (ret) { dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", hdev->misc_vector.vector_irq); return ret; } hclgevf_clear_event_cause(hdev, 0); /* enable misc. vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, true); return ret; } static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) { /* disable misc vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, false); synchronize_irq(hdev->misc_vector.vector_irq); free_irq(hdev->misc_vector.vector_irq, hdev); hclgevf_free_vector(hdev, 0); } static int hclgevf_init_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; int ret; switch (client->type) { case HNAE3_CLIENT_KNIC: hdev->nic_client = client; hdev->nic.client = client; ret = client->ops->init_instance(&hdev->nic); if (ret) return ret; if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { struct hnae3_client *rc = hdev->roce_client; ret = hclgevf_init_roce_base_info(hdev); if (ret) return ret; ret = rc->ops->init_instance(&hdev->roce); if (ret) return ret; } break; case HNAE3_CLIENT_UNIC: hdev->nic_client = client; hdev->nic.client = client; ret = client->ops->init_instance(&hdev->nic); if (ret) return ret; break; case HNAE3_CLIENT_ROCE: if (hnae3_dev_roce_supported(hdev)) { hdev->roce_client = client; hdev->roce.client = client; } if (hdev->roce_client && hdev->nic_client) { ret = hclgevf_init_roce_base_info(hdev); if (ret) return ret; ret = client->ops->init_instance(&hdev->roce); if (ret) return ret; } } return 0; } static void hclgevf_uninit_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; /* un-init roce, if it exists */ if (hdev->roce_client) hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); /* un-init nic/unic, if this was not called by roce client */ if ((client->ops->uninit_instance) && (client->type != HNAE3_CLIENT_ROCE)) client->ops->uninit_instance(&hdev->nic, 0); } static int hclgevf_pci_init(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; struct hclgevf_hw *hw; int ret; /* check if we need to skip initialization of pci. This will happen if * device is undergoing VF reset. Otherwise, we would need to * re-initialize pci interface again i.e. when device is not going * through *any* reset or actually undergoing full reset. */ if (hclgevf_dev_ongoing_reset(hdev)) return 0; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "failed to enable PCI device\n"); return ret; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); goto err_disable_device; } ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); if (ret) { dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); goto err_disable_device; } pci_set_master(pdev); hw = &hdev->hw; hw->hdev = hdev; hw->io_base = pci_iomap(pdev, 2, 0); if (!hw->io_base) { dev_err(&pdev->dev, "can't map configuration register space\n"); ret = -ENOMEM; goto err_clr_master; } return 0; err_clr_master: pci_clear_master(pdev); pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return ret; } static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; pci_iounmap(pdev, hdev->hw.io_base); pci_clear_master(pdev); pci_release_regions(pdev); pci_disable_device(pdev); } static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) { struct hclgevf_query_res_cmd *req; struct hclgevf_desc desc; int ret; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query vf resource failed, ret = %d.\n", ret); return ret; } req = (struct hclgevf_query_res_cmd *)desc.data; if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) { hdev->roce_base_msix_offset = hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee), HCLGEVF_MSIX_OFT_ROCEE_M, HCLGEVF_MSIX_OFT_ROCEE_S); hdev->num_roce_msix = hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); /* VF should have NIC vectors and Roce vectors, NIC vectors * are queued before Roce vectors. The offset is fixed to 64. */ hdev->num_msi = hdev->num_roce_msix + hdev->roce_base_msix_offset; } else { hdev->num_msi = hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); } return 0; } static int hclgevf_init_hdev(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret; /* check if device is on-going full reset(i.e. pcie as well) */ if (hclgevf_dev_ongoing_full_reset(hdev)) { dev_warn(&pdev->dev, "device is going full reset\n"); hclgevf_uninit_hdev(hdev); } ret = hclgevf_pci_init(hdev); if (ret) { dev_err(&pdev->dev, "PCI initialization failed\n"); return ret; } ret = hclgevf_cmd_init(hdev); if (ret) goto err_cmd_init; /* Get vf resource */ ret = hclgevf_query_vf_resource(hdev); if (ret) { dev_err(&hdev->pdev->dev, "Query vf status error, ret = %d.\n", ret); goto err_query_vf; } ret = hclgevf_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); goto err_query_vf; } hclgevf_state_init(hdev); ret = hclgevf_misc_irq_init(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", ret); goto err_misc_irq_init; } ret = hclgevf_configure(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); goto err_config; } ret = hclgevf_alloc_tqps(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); goto err_config; } ret = hclgevf_set_handle_info(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret); goto err_config; } /* Initialize mta type for this VF */ ret = hclgevf_cfg_func_mta_type(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize MTA type\n", ret); goto err_config; } /* Initialize RSS for this VF */ ret = hclgevf_rss_init_hw(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize RSS\n", ret); goto err_config; } ret = hclgevf_init_vlan_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize VLAN config\n", ret); goto err_config; } pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME); return 0; err_config: hclgevf_misc_irq_uninit(hdev); err_misc_irq_init: hclgevf_state_uninit(hdev); hclgevf_uninit_msi(hdev); err_query_vf: hclgevf_cmd_uninit(hdev); err_cmd_init: hclgevf_pci_uninit(hdev); return ret; } static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) { hclgevf_state_uninit(hdev); hclgevf_misc_irq_uninit(hdev); hclgevf_cmd_uninit(hdev); hclgevf_uninit_msi(hdev); hclgevf_pci_uninit(hdev); } static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; int ret; ret = hclgevf_alloc_hdev(ae_dev); if (ret) { dev_err(&pdev->dev, "hclge device allocation failed\n"); return ret; } ret = hclgevf_init_hdev(ae_dev->priv); if (ret) dev_err(&pdev->dev, "hclge device initialization failed\n"); return ret; } static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; hclgevf_uninit_hdev(hdev); ae_dev->priv = NULL; } static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo = &nic->kinfo; return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps); } /** * hclgevf_get_channels - Get the current channels enabled and max supported. * @handle: hardware information for network interface * @ch: ethtool channels structure * * We don't support separate tx and rx queues as channels. The other count * represents how many queues are being used for control. max_combined counts * how many queue pairs we can support. They may not be mapped 1 to 1 with * q_vectors since we support a lot more queue pairs than q_vectors. **/ static void hclgevf_get_channels(struct hnae3_handle *handle, struct ethtool_channels *ch) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); ch->max_combined = hclgevf_get_max_channels(hdev); ch->other_count = 0; ch->max_other = 0; ch->combined_count = hdev->num_tqps; } static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, u16 *free_tqps, u16 *max_rss_size) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); *free_tqps = 0; *max_rss_size = hdev->rss_size_max; } static int hclgevf_get_status(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->hw.mac.link; } static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, u8 *auto_neg, u32 *speed, u8 *duplex) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (speed) *speed = hdev->hw.mac.speed; if (duplex) *duplex = hdev->hw.mac.duplex; if (auto_neg) *auto_neg = AUTONEG_DISABLE; } void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, u8 duplex) { hdev->hw.mac.speed = speed; hdev->hw.mac.duplex = duplex; } static const struct hnae3_ae_ops hclgevf_ops = { .init_ae_dev = hclgevf_init_ae_dev, .uninit_ae_dev = hclgevf_uninit_ae_dev, .init_client_instance = hclgevf_init_client_instance, .uninit_client_instance = hclgevf_uninit_client_instance, .start = hclgevf_ae_start, .stop = hclgevf_ae_stop, .map_ring_to_vector = hclgevf_map_ring_to_vector, .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, .get_vector = hclgevf_get_vector, .put_vector = hclgevf_put_vector, .reset_queue = hclgevf_reset_tqp, .set_promisc_mode = hclgevf_set_promisc_mode, .get_mac_addr = hclgevf_get_mac_addr, .set_mac_addr = hclgevf_set_mac_addr, .add_uc_addr = hclgevf_add_uc_addr, .rm_uc_addr = hclgevf_rm_uc_addr, .add_mc_addr = hclgevf_add_mc_addr, .rm_mc_addr = hclgevf_rm_mc_addr, .update_mta_status = hclgevf_update_mta_status, .get_stats = hclgevf_get_stats, .update_stats = hclgevf_update_stats, .get_strings = hclgevf_get_strings, .get_sset_count = hclgevf_get_sset_count, .get_rss_key_size = hclgevf_get_rss_key_size, .get_rss_indir_size = hclgevf_get_rss_indir_size, .get_rss = hclgevf_get_rss, .set_rss = hclgevf_set_rss, .get_tc_size = hclgevf_get_tc_size, .get_fw_version = hclgevf_get_fw_version, .set_vlan_filter = hclgevf_set_vlan_filter, .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, .reset_event = hclgevf_reset_event, .get_channels = hclgevf_get_channels, .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, .get_status = hclgevf_get_status, .get_ksettings_an_result = hclgevf_get_ksettings_an_result, }; static struct hnae3_ae_algo ae_algovf = { .ops = &hclgevf_ops, .pdev_id_table = ae_algovf_pci_tbl, }; static int hclgevf_init(void) { pr_info("%s is initializing\n", HCLGEVF_NAME); hnae3_register_ae_algo(&ae_algovf); return 0; } static void hclgevf_exit(void) { hnae3_unregister_ae_algo(&ae_algovf); } module_init(hclgevf_init); module_exit(hclgevf_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_DESCRIPTION("HCLGEVF Driver"); MODULE_VERSION(HCLGEVF_MOD_VERSION);