/* * Xilinx XADC driver * * Copyright 2013-2014 Analog Devices Inc. * Author: Lars-Peter Clauen * * Licensed under the GPL-2. * * Documentation for the parts can be found at: * - XADC hardmacro: Xilinx UG480 * - ZYNQ XADC interface: Xilinx UG585 * - AXI XADC interface: Xilinx PG019 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xilinx-xadc.h" static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500; /* ZYNQ register definitions */ #define XADC_ZYNQ_REG_CFG 0x00 #define XADC_ZYNQ_REG_INTSTS 0x04 #define XADC_ZYNQ_REG_INTMSK 0x08 #define XADC_ZYNQ_REG_STATUS 0x0c #define XADC_ZYNQ_REG_CFIFO 0x10 #define XADC_ZYNQ_REG_DFIFO 0x14 #define XADC_ZYNQ_REG_CTL 0x18 #define XADC_ZYNQ_CFG_ENABLE BIT(31) #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20) #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16) #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16 #define XADC_ZYNQ_CFG_WEDGE BIT(13) #define XADC_ZYNQ_CFG_REDGE BIT(12) #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8) #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8) #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8) #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8) #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8) #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f #define XADC_ZYNQ_CFG_IGAP(x) (x) #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9) #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8) #define XADC_ZYNQ_INT_ALARM_MASK 0xff #define XADC_ZYNQ_INT_ALARM_OFFSET 0 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16) #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12) #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11) #define XADC_ZYNQ_STATUS_CFIFOE BIT(10) #define XADC_ZYNQ_STATUS_DFIFOF BIT(9) #define XADC_ZYNQ_STATUS_DFIFOE BIT(8) #define XADC_ZYNQ_STATUS_OT BIT(7) #define XADC_ZYNQ_STATUS_ALM(x) BIT(x) #define XADC_ZYNQ_CTL_RESET BIT(4) #define XADC_ZYNQ_CMD_NOP 0x00 #define XADC_ZYNQ_CMD_READ 0x01 #define XADC_ZYNQ_CMD_WRITE 0x02 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data)) /* AXI register definitions */ #define XADC_AXI_REG_RESET 0x00 #define XADC_AXI_REG_STATUS 0x04 #define XADC_AXI_REG_ALARM_STATUS 0x08 #define XADC_AXI_REG_CONVST 0x0c #define XADC_AXI_REG_XADC_RESET 0x10 #define XADC_AXI_REG_GIER 0x5c #define XADC_AXI_REG_IPISR 0x60 #define XADC_AXI_REG_IPIER 0x68 #define XADC_AXI_ADC_REG_OFFSET 0x200 #define XADC_AXI_RESET_MAGIC 0xa #define XADC_AXI_GIER_ENABLE BIT(31) #define XADC_AXI_INT_EOS BIT(4) #define XADC_AXI_INT_ALARM_MASK 0x3c0f #define XADC_FLAGS_BUFFERED BIT(0) static void xadc_write_reg(struct xadc *xadc, unsigned int reg, uint32_t val) { writel(val, xadc->base + reg); } static void xadc_read_reg(struct xadc *xadc, unsigned int reg, uint32_t *val) { *val = readl(xadc->base + reg); } /* * The ZYNQ interface uses two asynchronous FIFOs for communication with the * XADC. Reads and writes to the XADC register are performed by submitting a * request to the command FIFO (CFIFO), once the request has been completed the * result can be read from the data FIFO (DFIFO). The method currently used in * this driver is to submit the request for a read/write operation, then go to * sleep and wait for an interrupt that signals that a response is available in * the data FIFO. */ static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]); } static void xadc_zynq_drain_fifo(struct xadc *xadc) { uint32_t status, tmp; xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) { xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); } } static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask, unsigned int val) { xadc->zynq_intmask &= ~mask; xadc->zynq_intmask |= val; xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask | xadc->zynq_masked_alarm); } static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t val) { uint32_t cmd[1]; uint32_t tmp; int ret; spin_lock_irq(&xadc->lock); xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, XADC_ZYNQ_INT_DFIFO_GTH); reinit_completion(&xadc->completion); cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val); xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); spin_unlock_irq(&xadc->lock); ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); if (ret == 0) ret = -EIO; else ret = 0; xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); return ret; } static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t *val) { uint32_t cmd[2]; uint32_t resp, tmp; int ret; cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0); cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0); spin_lock_irq(&xadc->lock); xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, XADC_ZYNQ_INT_DFIFO_GTH); xadc_zynq_drain_fifo(xadc); reinit_completion(&xadc->completion); xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); spin_unlock_irq(&xadc->lock); ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); if (ret == 0) ret = -EIO; if (ret < 0) return ret; xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); *val = resp & 0xffff; return 0; } static unsigned int xadc_zynq_transform_alarm(unsigned int alarm) { return ((alarm & 0x80) >> 4) | ((alarm & 0x78) << 1) | (alarm & 0x07); } /* * The ZYNQ threshold interrupts are level sensitive. Since we can't make the * threshold condition go way from within the interrupt handler, this means as * soon as a threshold condition is present we would enter the interrupt handler * again and again. To work around this we mask all active thresholds interrupts * in the interrupt handler and start a timer. In this timer we poll the * interrupt status and only if the interrupt is inactive we unmask it again. */ static void xadc_zynq_unmask_worker(struct work_struct *work) { struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work); unsigned int misc_sts, unmask; xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts); misc_sts &= XADC_ZYNQ_INT_ALARM_MASK; spin_lock_irq(&xadc->lock); /* Clear those bits which are not active anymore */ unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm; xadc->zynq_masked_alarm &= misc_sts; /* Also clear those which are masked out anyway */ xadc->zynq_masked_alarm &= ~xadc->zynq_intmask; /* Clear the interrupts before we unmask them */ xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask); xadc_zynq_update_intmsk(xadc, 0, 0); spin_unlock_irq(&xadc->lock); /* if still pending some alarm re-trigger the timer */ if (xadc->zynq_masked_alarm) { schedule_delayed_work(&xadc->zynq_unmask_work, msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); } } static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid) { struct iio_dev *indio_dev = devid; struct xadc *xadc = iio_priv(indio_dev); uint32_t status; xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm); if (!status) return IRQ_NONE; spin_lock(&xadc->lock); xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status); if (status & XADC_ZYNQ_INT_DFIFO_GTH) { xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, XADC_ZYNQ_INT_DFIFO_GTH); complete(&xadc->completion); } status &= XADC_ZYNQ_INT_ALARM_MASK; if (status) { xadc->zynq_masked_alarm |= status; /* * mask the current event interrupt, * unmask it when the interrupt is no more active. */ xadc_zynq_update_intmsk(xadc, 0, 0); xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(status)); /* unmask the required interrupts in timer. */ schedule_delayed_work(&xadc->zynq_unmask_work, msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); } spin_unlock(&xadc->lock); return IRQ_HANDLED; } #define XADC_ZYNQ_TCK_RATE_MAX 50000000 #define XADC_ZYNQ_IGAP_DEFAULT 20 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000 static int xadc_zynq_setup(struct platform_device *pdev, struct iio_dev *indio_dev, int irq) { struct xadc *xadc = iio_priv(indio_dev); unsigned long pcap_rate; unsigned int tck_div; unsigned int div; unsigned int igap; unsigned int tck_rate; int ret; /* TODO: Figure out how to make igap and tck_rate configurable */ igap = XADC_ZYNQ_IGAP_DEFAULT; tck_rate = XADC_ZYNQ_TCK_RATE_MAX; xadc->zynq_intmask = ~0; pcap_rate = clk_get_rate(xadc->clk); if (!pcap_rate) return -EINVAL; if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { ret = clk_set_rate(xadc->clk, (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX); if (ret) return ret; } if (tck_rate > pcap_rate / 2) { div = 2; } else { div = pcap_rate / tck_rate; if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX) div++; } if (div <= 3) tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2; else if (div <= 7) tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4; else if (div <= 15) tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8; else tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16; xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET); xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0); xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0); xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask); xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE | XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE | tck_div | XADC_ZYNQ_CFG_IGAP(igap)); if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { ret = clk_set_rate(xadc->clk, pcap_rate); if (ret) return ret; } return 0; } static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc) { unsigned int div; uint32_t val; xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val); switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) { case XADC_ZYNQ_CFG_TCKRATE_DIV4: div = 4; break; case XADC_ZYNQ_CFG_TCKRATE_DIV8: div = 8; break; case XADC_ZYNQ_CFG_TCKRATE_DIV16: div = 16; break; default: div = 2; break; } return clk_get_rate(xadc->clk) / div; } static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm) { unsigned long flags; uint32_t status; /* Move OT to bit 7 */ alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07); spin_lock_irqsave(&xadc->lock, flags); /* Clear previous interrupts if any. */ xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm); xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK, ~alarm & XADC_ZYNQ_INT_ALARM_MASK); spin_unlock_irqrestore(&xadc->lock, flags); } static const struct xadc_ops xadc_zynq_ops = { .read = xadc_zynq_read_adc_reg, .write = xadc_zynq_write_adc_reg, .setup = xadc_zynq_setup, .get_dclk_rate = xadc_zynq_get_dclk_rate, .interrupt_handler = xadc_zynq_interrupt_handler, .update_alarm = xadc_zynq_update_alarm, }; static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t *val) { uint32_t val32; xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32); *val = val32 & 0xffff; return 0; } static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t val) { xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val); return 0; } static int xadc_axi_setup(struct platform_device *pdev, struct iio_dev *indio_dev, int irq) { struct xadc *xadc = iio_priv(indio_dev); xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC); xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE); return 0; } static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid) { struct iio_dev *indio_dev = devid; struct xadc *xadc = iio_priv(indio_dev); uint32_t status, mask; unsigned int events; xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status); xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask); status &= mask; if (!status) return IRQ_NONE; if ((status & XADC_AXI_INT_EOS) && xadc->trigger) iio_trigger_poll(xadc->trigger); if (status & XADC_AXI_INT_ALARM_MASK) { /* * The order of the bits in the AXI-XADC status register does * not match the order of the bits in the XADC alarm enable * register. xadc_handle_events() expects the events to be in * the same order as the XADC alarm enable register. */ events = (status & 0x000e) >> 1; events |= (status & 0x0001) << 3; events |= (status & 0x3c00) >> 6; xadc_handle_events(indio_dev, events); } xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status); return IRQ_HANDLED; } static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm) { uint32_t val; unsigned long flags; /* * The order of the bits in the AXI-XADC status register does not match * the order of the bits in the XADC alarm enable register. We get * passed the alarm mask in the same order as in the XADC alarm enable * register. */ alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) | ((alarm & 0xf0) << 6); spin_lock_irqsave(&xadc->lock, flags); xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); val &= ~XADC_AXI_INT_ALARM_MASK; val |= alarm; xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); spin_unlock_irqrestore(&xadc->lock, flags); } static unsigned long xadc_axi_get_dclk(struct xadc *xadc) { return clk_get_rate(xadc->clk); } static const struct xadc_ops xadc_axi_ops = { .read = xadc_axi_read_adc_reg, .write = xadc_axi_write_adc_reg, .setup = xadc_axi_setup, .get_dclk_rate = xadc_axi_get_dclk, .update_alarm = xadc_axi_update_alarm, .interrupt_handler = xadc_axi_interrupt_handler, .flags = XADC_FLAGS_BUFFERED, }; static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t mask, uint16_t val) { uint16_t tmp; int ret; ret = _xadc_read_adc_reg(xadc, reg, &tmp); if (ret) return ret; return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val); } static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, uint16_t mask, uint16_t val) { int ret; mutex_lock(&xadc->mutex); ret = _xadc_update_adc_reg(xadc, reg, mask, val); mutex_unlock(&xadc->mutex); return ret; } static unsigned long xadc_get_dclk_rate(struct xadc *xadc) { return xadc->ops->get_dclk_rate(xadc); } static int xadc_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *mask) { struct xadc *xadc = iio_priv(indio_dev); unsigned int n; n = bitmap_weight(mask, indio_dev->masklength); kfree(xadc->data); xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL); if (!xadc->data) return -ENOMEM; return 0; } static unsigned int xadc_scan_index_to_channel(unsigned int scan_index) { switch (scan_index) { case 5: return XADC_REG_VCCPINT; case 6: return XADC_REG_VCCPAUX; case 7: return XADC_REG_VCCO_DDR; case 8: return XADC_REG_TEMP; case 9: return XADC_REG_VCCINT; case 10: return XADC_REG_VCCAUX; case 11: return XADC_REG_VPVN; case 12: return XADC_REG_VREFP; case 13: return XADC_REG_VREFN; case 14: return XADC_REG_VCCBRAM; default: return XADC_REG_VAUX(scan_index - 16); } } static irqreturn_t xadc_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct xadc *xadc = iio_priv(indio_dev); unsigned int chan; int i, j; if (!xadc->data) goto out; j = 0; for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) { chan = xadc_scan_index_to_channel(i); xadc_read_adc_reg(xadc, chan, &xadc->data[j]); j++; } iio_push_to_buffers(indio_dev, xadc->data); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state) { struct xadc *xadc = iio_trigger_get_drvdata(trigger); unsigned long flags; unsigned int convst; unsigned int val; int ret = 0; mutex_lock(&xadc->mutex); if (state) { /* Only one of the two triggers can be active at the a time. */ if (xadc->trigger != NULL) { ret = -EBUSY; goto err_out; } else { xadc->trigger = trigger; if (trigger == xadc->convst_trigger) convst = XADC_CONF0_EC; else convst = 0; } ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC, convst); if (ret) goto err_out; } else { xadc->trigger = NULL; } spin_lock_irqsave(&xadc->lock, flags); xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS); if (state) val |= XADC_AXI_INT_EOS; else val &= ~XADC_AXI_INT_EOS; xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); spin_unlock_irqrestore(&xadc->lock, flags); err_out: mutex_unlock(&xadc->mutex); return ret; } static const struct iio_trigger_ops xadc_trigger_ops = { .set_trigger_state = &xadc_trigger_set_state, }; static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev, const char *name) { struct iio_trigger *trig; int ret; trig = iio_trigger_alloc("%s%d-%s", indio_dev->name, indio_dev->id, name); if (trig == NULL) return ERR_PTR(-ENOMEM); trig->dev.parent = indio_dev->dev.parent; trig->ops = &xadc_trigger_ops; iio_trigger_set_drvdata(trig, iio_priv(indio_dev)); ret = iio_trigger_register(trig); if (ret) goto error_free_trig; return trig; error_free_trig: iio_trigger_free(trig); return ERR_PTR(ret); } static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode) { uint16_t val; switch (seq_mode) { case XADC_CONF1_SEQ_SIMULTANEOUS: case XADC_CONF1_SEQ_INDEPENDENT: val = XADC_CONF2_PD_ADC_B; break; default: val = 0; break; } return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK, val); } static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode) { unsigned int aux_scan_mode = scan_mode >> 16; if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL) return XADC_CONF1_SEQ_SIMULTANEOUS; if ((aux_scan_mode & 0xff00) == 0 || (aux_scan_mode & 0x00ff) == 0) return XADC_CONF1_SEQ_CONTINUOUS; return XADC_CONF1_SEQ_SIMULTANEOUS; } static int xadc_postdisable(struct iio_dev *indio_dev) { struct xadc *xadc = iio_priv(indio_dev); unsigned long scan_mask; int ret; int i; scan_mask = 1; /* Run calibration as part of the sequence */ for (i = 0; i < indio_dev->num_channels; i++) scan_mask |= BIT(indio_dev->channels[i].scan_index); /* Enable all channels and calibration */ ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); if (ret) return ret; ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); if (ret) return ret; ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, XADC_CONF1_SEQ_CONTINUOUS); if (ret) return ret; return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS); } static int xadc_preenable(struct iio_dev *indio_dev) { struct xadc *xadc = iio_priv(indio_dev); unsigned long scan_mask; int seq_mode; int ret; ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, XADC_CONF1_SEQ_DEFAULT); if (ret) goto err; scan_mask = *indio_dev->active_scan_mask; seq_mode = xadc_get_seq_mode(xadc, scan_mask); ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); if (ret) goto err; ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); if (ret) goto err; ret = xadc_power_adc_b(xadc, seq_mode); if (ret) goto err; ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, seq_mode); if (ret) goto err; return 0; err: xadc_postdisable(indio_dev); return ret; } static const struct iio_buffer_setup_ops xadc_buffer_ops = { .preenable = &xadc_preenable, .postenable = &iio_triggered_buffer_postenable, .predisable = &iio_triggered_buffer_predisable, .postdisable = &xadc_postdisable, }; static int xadc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct xadc *xadc = iio_priv(indio_dev); unsigned int div; uint16_t val16; int ret; switch (info) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; ret = xadc_read_adc_reg(xadc, chan->address, &val16); if (ret < 0) return ret; val16 >>= 4; if (chan->scan_type.sign == 'u') *val = val16; else *val = sign_extend32(val16, 11); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: /* V = (val * 3.0) / 4096 */ switch (chan->address) { case XADC_REG_VCCINT: case XADC_REG_VCCAUX: case XADC_REG_VREFP: case XADC_REG_VREFN: case XADC_REG_VCCBRAM: case XADC_REG_VCCPINT: case XADC_REG_VCCPAUX: case XADC_REG_VCCO_DDR: *val = 3000; break; default: *val = 1000; break; } *val2 = 12; return IIO_VAL_FRACTIONAL_LOG2; case IIO_TEMP: /* Temp in C = (val * 503.975) / 4096 - 273.15 */ *val = 503975; *val2 = 12; return IIO_VAL_FRACTIONAL_LOG2; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: /* Only the temperature channel has an offset */ *val = -((273150 << 12) / 503975); return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16); if (ret) return ret; div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET; if (div < 2) div = 2; *val = xadc_get_dclk_rate(xadc) / div / 26; return IIO_VAL_INT; default: return -EINVAL; } } static int xadc_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct xadc *xadc = iio_priv(indio_dev); unsigned long clk_rate = xadc_get_dclk_rate(xadc); unsigned int div; if (!clk_rate) return -EINVAL; if (info != IIO_CHAN_INFO_SAMP_FREQ) return -EINVAL; if (val <= 0) return -EINVAL; /* Max. 150 kSPS */ if (val > 150000) val = 150000; val *= 26; /* Min 1MHz */ if (val < 1000000) val = 1000000; /* * We want to round down, but only if we do not exceed the 150 kSPS * limit. */ div = clk_rate / val; if (clk_rate / div / 26 > 150000) div++; if (div < 2) div = 2; else if (div > 0xff) div = 0xff; return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK, div << XADC_CONF2_DIV_OFFSET); } static const struct iio_event_spec xadc_temp_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_HYSTERESIS), }, }; /* Separate values for upper and lower thresholds, but only a shared enabled */ static const struct iio_event_spec xadc_voltage_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, }; #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \ .type = IIO_TEMP, \ .indexed = 1, \ .channel = (_chan), \ .address = (_addr), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .event_spec = xadc_temp_events, \ .num_event_specs = ARRAY_SIZE(xadc_temp_events), \ .scan_index = (_scan_index), \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ } #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (_chan), \ .address = (_addr), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .event_spec = (_alarm) ? xadc_voltage_events : NULL, \ .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \ .scan_index = (_scan_index), \ .scan_type = { \ .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ .extend_name = _ext, \ } static const struct iio_chan_spec xadc_channels[] = { XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP), XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true), XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true), XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true), XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), }; static const struct iio_info xadc_info = { .read_raw = &xadc_read_raw, .write_raw = &xadc_write_raw, .read_event_config = &xadc_read_event_config, .write_event_config = &xadc_write_event_config, .read_event_value = &xadc_read_event_value, .write_event_value = &xadc_write_event_value, .update_scan_mode = &xadc_update_scan_mode, }; static const struct of_device_id xadc_of_match_table[] = { { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops }, { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops }, { }, }; MODULE_DEVICE_TABLE(of, xadc_of_match_table); static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np, unsigned int *conf) { struct xadc *xadc = iio_priv(indio_dev); struct iio_chan_spec *channels, *chan; struct device_node *chan_node, *child; unsigned int num_channels; const char *external_mux; u32 ext_mux_chan; u32 reg; int ret; *conf = 0; ret = of_property_read_string(np, "xlnx,external-mux", &external_mux); if (ret < 0 || strcasecmp(external_mux, "none") == 0) xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE; else if (strcasecmp(external_mux, "single") == 0) xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE; else if (strcasecmp(external_mux, "dual") == 0) xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL; else return -EINVAL; if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) { ret = of_property_read_u32(np, "xlnx,external-mux-channel", &ext_mux_chan); if (ret < 0) return ret; if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) { if (ext_mux_chan == 0) ext_mux_chan = XADC_REG_VPVN; else if (ext_mux_chan <= 16) ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); else return -EINVAL; } else { if (ext_mux_chan > 0 && ext_mux_chan <= 8) ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); else return -EINVAL; } *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan); } channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL); if (!channels) return -ENOMEM; num_channels = 9; chan = &channels[9]; chan_node = of_get_child_by_name(np, "xlnx,channels"); if (chan_node) { for_each_child_of_node(chan_node, child) { if (num_channels >= ARRAY_SIZE(xadc_channels)) { of_node_put(child); break; } ret = of_property_read_u32(child, "reg", ®); if (ret || reg > 16) continue; if (of_property_read_bool(child, "xlnx,bipolar")) chan->scan_type.sign = 's'; if (reg == 0) { chan->scan_index = 11; chan->address = XADC_REG_VPVN; } else { chan->scan_index = 15 + reg; chan->address = XADC_REG_VAUX(reg - 1); } num_channels++; chan++; } } of_node_put(chan_node); indio_dev->num_channels = num_channels; indio_dev->channels = krealloc(channels, sizeof(*channels) * num_channels, GFP_KERNEL); /* If we can't resize the channels array, just use the original */ if (!indio_dev->channels) indio_dev->channels = channels; return 0; } static int xadc_probe(struct platform_device *pdev) { const struct of_device_id *id; struct iio_dev *indio_dev; unsigned int bipolar_mask; struct resource *mem; unsigned int conf0; struct xadc *xadc; int ret; int irq; int i; if (!pdev->dev.of_node) return -ENODEV; id = of_match_node(xadc_of_match_table, pdev->dev.of_node); if (!id) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq <= 0) return -ENXIO; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc)); if (!indio_dev) return -ENOMEM; xadc = iio_priv(indio_dev); xadc->ops = id->data; xadc->irq = irq; init_completion(&xadc->completion); mutex_init(&xadc->mutex); spin_lock_init(&xadc->lock); INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); xadc->base = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(xadc->base)) return PTR_ERR(xadc->base); indio_dev->dev.parent = &pdev->dev; indio_dev->dev.of_node = pdev->dev.of_node; indio_dev->name = "xadc"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &xadc_info; ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0); if (ret) goto err_device_free; if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, &xadc_trigger_handler, &xadc_buffer_ops); if (ret) goto err_device_free; xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst"); if (IS_ERR(xadc->convst_trigger)) { ret = PTR_ERR(xadc->convst_trigger); goto err_triggered_buffer_cleanup; } xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev, "samplerate"); if (IS_ERR(xadc->samplerate_trigger)) { ret = PTR_ERR(xadc->samplerate_trigger); goto err_free_convst_trigger; } } xadc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(xadc->clk)) { ret = PTR_ERR(xadc->clk); goto err_free_samplerate_trigger; } ret = clk_prepare_enable(xadc->clk); if (ret) goto err_free_samplerate_trigger; ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0, dev_name(&pdev->dev), indio_dev); if (ret) goto err_clk_disable_unprepare; ret = xadc->ops->setup(pdev, indio_dev, xadc->irq); if (ret) goto err_free_irq; for (i = 0; i < 16; i++) xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i), &xadc->threshold[i]); ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0); if (ret) goto err_free_irq; bipolar_mask = 0; for (i = 0; i < indio_dev->num_channels; i++) { if (indio_dev->channels[i].scan_type.sign == 's') bipolar_mask |= BIT(indio_dev->channels[i].scan_index); } ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask); if (ret) goto err_free_irq; ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1), bipolar_mask >> 16); if (ret) goto err_free_irq; /* Disable all alarms */ ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK, XADC_CONF1_ALARM_MASK); if (ret) goto err_free_irq; /* Set thresholds to min/max */ for (i = 0; i < 16; i++) { /* * Set max voltage threshold and both temperature thresholds to * 0xffff, min voltage threshold to 0. */ if (i % 8 < 4 || i == 7) xadc->threshold[i] = 0xffff; else xadc->threshold[i] = 0; xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i), xadc->threshold[i]); } /* Go to non-buffered mode */ xadc_postdisable(indio_dev); ret = iio_device_register(indio_dev); if (ret) goto err_free_irq; platform_set_drvdata(pdev, indio_dev); return 0; err_free_irq: free_irq(xadc->irq, indio_dev); cancel_delayed_work_sync(&xadc->zynq_unmask_work); err_clk_disable_unprepare: clk_disable_unprepare(xadc->clk); err_free_samplerate_trigger: if (xadc->ops->flags & XADC_FLAGS_BUFFERED) iio_trigger_free(xadc->samplerate_trigger); err_free_convst_trigger: if (xadc->ops->flags & XADC_FLAGS_BUFFERED) iio_trigger_free(xadc->convst_trigger); err_triggered_buffer_cleanup: if (xadc->ops->flags & XADC_FLAGS_BUFFERED) iio_triggered_buffer_cleanup(indio_dev); err_device_free: kfree(indio_dev->channels); return ret; } static int xadc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct xadc *xadc = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { iio_trigger_free(xadc->samplerate_trigger); iio_trigger_free(xadc->convst_trigger); iio_triggered_buffer_cleanup(indio_dev); } free_irq(xadc->irq, indio_dev); cancel_delayed_work_sync(&xadc->zynq_unmask_work); clk_disable_unprepare(xadc->clk); kfree(xadc->data); kfree(indio_dev->channels); return 0; } static struct platform_driver xadc_driver = { .probe = xadc_probe, .remove = xadc_remove, .driver = { .name = "xadc", .of_match_table = xadc_of_match_table, }, }; module_platform_driver(xadc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Lars-Peter Clausen "); MODULE_DESCRIPTION("Xilinx XADC IIO driver");