/* * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "[drm:%s] " fmt, __func__ #include "dpu_kms.h" #include "dpu_hw_lm.h" #include "dpu_hw_ctl.h" #include "dpu_hw_cdm.h" #include "dpu_hw_pingpong.h" #include "dpu_hw_intf.h" #include "dpu_encoder.h" #include "dpu_trace.h" #define RESERVED_BY_OTHER(h, r) \ ((h)->rsvp && ((h)->rsvp->enc_id != (r)->enc_id)) #define RM_RQ_LOCK(r) ((r)->top_ctrl & BIT(DPU_RM_TOPCTL_RESERVE_LOCK)) #define RM_RQ_CLEAR(r) ((r)->top_ctrl & BIT(DPU_RM_TOPCTL_RESERVE_CLEAR)) #define RM_RQ_DS(r) ((r)->top_ctrl & BIT(DPU_RM_TOPCTL_DS)) #define RM_IS_TOPOLOGY_MATCH(t, r) ((t).num_lm == (r).num_lm && \ (t).num_comp_enc == (r).num_enc && \ (t).num_intf == (r).num_intf) struct dpu_rm_topology_def { enum dpu_rm_topology_name top_name; int num_lm; int num_comp_enc; int num_intf; int num_ctl; int needs_split_display; }; static const struct dpu_rm_topology_def g_top_table[] = { { DPU_RM_TOPOLOGY_NONE, 0, 0, 0, 0, false }, { DPU_RM_TOPOLOGY_SINGLEPIPE, 1, 0, 1, 1, false }, { DPU_RM_TOPOLOGY_DUALPIPE, 2, 0, 2, 2, true }, { DPU_RM_TOPOLOGY_DUALPIPE_3DMERGE, 2, 0, 1, 1, false }, }; /** * struct dpu_rm_requirements - Reservation requirements parameter bundle * @top_ctrl: topology control preference from kernel client * @top: selected topology for the display * @hw_res: Hardware resources required as reported by the encoders */ struct dpu_rm_requirements { uint64_t top_ctrl; const struct dpu_rm_topology_def *topology; struct dpu_encoder_hw_resources hw_res; }; /** * struct dpu_rm_rsvp - Use Case Reservation tagging structure * Used to tag HW blocks as reserved by a CRTC->Encoder->Connector chain * By using as a tag, rather than lists of pointers to HW blocks used * we can avoid some list management since we don't know how many blocks * of each type a given use case may require. * @list: List head for list of all reservations * @seq: Global RSVP sequence number for debugging, especially for * differentiating differenct allocations for same encoder. * @enc_id: Reservations are tracked by Encoder DRM object ID. * CRTCs may be connected to multiple Encoders. * An encoder or connector id identifies the display path. * @topology DRM<->HW topology use case */ struct dpu_rm_rsvp { struct list_head list; uint32_t seq; uint32_t enc_id; enum dpu_rm_topology_name topology; }; /** * struct dpu_rm_hw_blk - hardware block tracking list member * @list: List head for list of all hardware blocks tracking items * @rsvp: Pointer to use case reservation if reserved by a client * @rsvp_nxt: Temporary pointer used during reservation to the incoming * request. Will be swapped into rsvp if proposal is accepted * @type: Type of hardware block this structure tracks * @id: Hardware ID number, within it's own space, ie. LM_X * @catalog: Pointer to the hardware catalog entry for this block * @hw: Pointer to the hardware register access object for this block */ struct dpu_rm_hw_blk { struct list_head list; struct dpu_rm_rsvp *rsvp; struct dpu_rm_rsvp *rsvp_nxt; enum dpu_hw_blk_type type; uint32_t id; struct dpu_hw_blk *hw; }; /** * dpu_rm_dbg_rsvp_stage - enum of steps in making reservation for event logging */ enum dpu_rm_dbg_rsvp_stage { DPU_RM_STAGE_BEGIN, DPU_RM_STAGE_AFTER_CLEAR, DPU_RM_STAGE_AFTER_RSVPNEXT, DPU_RM_STAGE_FINAL }; static void _dpu_rm_print_rsvps( struct dpu_rm *rm, enum dpu_rm_dbg_rsvp_stage stage) { struct dpu_rm_rsvp *rsvp; struct dpu_rm_hw_blk *blk; enum dpu_hw_blk_type type; DPU_DEBUG("%d\n", stage); list_for_each_entry(rsvp, &rm->rsvps, list) { DRM_DEBUG_KMS("%d rsvp[s%ue%u] topology %d\n", stage, rsvp->seq, rsvp->enc_id, rsvp->topology); } for (type = 0; type < DPU_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (!blk->rsvp && !blk->rsvp_nxt) continue; DRM_DEBUG_KMS("%d rsvp[s%ue%u->s%ue%u] %d %d\n", stage, (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); } } } struct dpu_hw_mdp *dpu_rm_get_mdp(struct dpu_rm *rm) { return rm->hw_mdp; } enum dpu_rm_topology_name dpu_rm_get_topology_name(struct msm_display_topology topology) { int i; for (i = 0; i < DPU_RM_TOPOLOGY_MAX; i++) if (RM_IS_TOPOLOGY_MATCH(g_top_table[i], topology)) return g_top_table[i].top_name; return DPU_RM_TOPOLOGY_NONE; } void dpu_rm_init_hw_iter( struct dpu_rm_hw_iter *iter, uint32_t enc_id, enum dpu_hw_blk_type type) { memset(iter, 0, sizeof(*iter)); iter->enc_id = enc_id; iter->type = type; } static bool _dpu_rm_get_hw_locked(struct dpu_rm *rm, struct dpu_rm_hw_iter *i) { struct list_head *blk_list; if (!rm || !i || i->type >= DPU_HW_BLK_MAX) { DPU_ERROR("invalid rm\n"); return false; } i->hw = NULL; blk_list = &rm->hw_blks[i->type]; if (i->blk && (&i->blk->list == blk_list)) { DPU_DEBUG("attempt resume iteration past last\n"); return false; } i->blk = list_prepare_entry(i->blk, blk_list, list); list_for_each_entry_continue(i->blk, blk_list, list) { struct dpu_rm_rsvp *rsvp = i->blk->rsvp; if (i->blk->type != i->type) { DPU_ERROR("found incorrect block type %d on %d list\n", i->blk->type, i->type); return false; } if ((i->enc_id == 0) || (rsvp && rsvp->enc_id == i->enc_id)) { i->hw = i->blk->hw; DPU_DEBUG("found type %d id %d for enc %d\n", i->type, i->blk->id, i->enc_id); return true; } } DPU_DEBUG("no match, type %d for enc %d\n", i->type, i->enc_id); return false; } bool dpu_rm_get_hw(struct dpu_rm *rm, struct dpu_rm_hw_iter *i) { bool ret; mutex_lock(&rm->rm_lock); ret = _dpu_rm_get_hw_locked(rm, i); mutex_unlock(&rm->rm_lock); return ret; } static void _dpu_rm_hw_destroy(enum dpu_hw_blk_type type, void *hw) { switch (type) { case DPU_HW_BLK_LM: dpu_hw_lm_destroy(hw); break; case DPU_HW_BLK_CTL: dpu_hw_ctl_destroy(hw); break; case DPU_HW_BLK_CDM: dpu_hw_cdm_destroy(hw); break; case DPU_HW_BLK_PINGPONG: dpu_hw_pingpong_destroy(hw); break; case DPU_HW_BLK_INTF: dpu_hw_intf_destroy(hw); break; case DPU_HW_BLK_SSPP: /* SSPPs are not managed by the resource manager */ case DPU_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case DPU_HW_BLK_MAX: default: DPU_ERROR("unsupported block type %d\n", type); break; } } int dpu_rm_destroy(struct dpu_rm *rm) { struct dpu_rm_rsvp *rsvp_cur, *rsvp_nxt; struct dpu_rm_hw_blk *hw_cur, *hw_nxt; enum dpu_hw_blk_type type; if (!rm) { DPU_ERROR("invalid rm\n"); return -EINVAL; } list_for_each_entry_safe(rsvp_cur, rsvp_nxt, &rm->rsvps, list) { list_del(&rsvp_cur->list); kfree(rsvp_cur); } for (type = 0; type < DPU_HW_BLK_MAX; type++) { list_for_each_entry_safe(hw_cur, hw_nxt, &rm->hw_blks[type], list) { list_del(&hw_cur->list); _dpu_rm_hw_destroy(hw_cur->type, hw_cur->hw); kfree(hw_cur); } } dpu_hw_mdp_destroy(rm->hw_mdp); rm->hw_mdp = NULL; mutex_destroy(&rm->rm_lock); return 0; } static int _dpu_rm_hw_blk_create( struct dpu_rm *rm, struct dpu_mdss_cfg *cat, void __iomem *mmio, enum dpu_hw_blk_type type, uint32_t id, void *hw_catalog_info) { struct dpu_rm_hw_blk *blk; struct dpu_hw_mdp *hw_mdp; void *hw; hw_mdp = rm->hw_mdp; switch (type) { case DPU_HW_BLK_LM: hw = dpu_hw_lm_init(id, mmio, cat); break; case DPU_HW_BLK_CTL: hw = dpu_hw_ctl_init(id, mmio, cat); break; case DPU_HW_BLK_CDM: hw = dpu_hw_cdm_init(id, mmio, cat, hw_mdp); break; case DPU_HW_BLK_PINGPONG: hw = dpu_hw_pingpong_init(id, mmio, cat); break; case DPU_HW_BLK_INTF: hw = dpu_hw_intf_init(id, mmio, cat); break; case DPU_HW_BLK_SSPP: /* SSPPs are not managed by the resource manager */ case DPU_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case DPU_HW_BLK_MAX: default: DPU_ERROR("unsupported block type %d\n", type); return -EINVAL; } if (IS_ERR_OR_NULL(hw)) { DPU_ERROR("failed hw object creation: type %d, err %ld\n", type, PTR_ERR(hw)); return -EFAULT; } blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) { _dpu_rm_hw_destroy(type, hw); return -ENOMEM; } blk->type = type; blk->id = id; blk->hw = hw; list_add_tail(&blk->list, &rm->hw_blks[type]); return 0; } int dpu_rm_init(struct dpu_rm *rm, struct dpu_mdss_cfg *cat, void __iomem *mmio, struct drm_device *dev) { int rc, i; enum dpu_hw_blk_type type; if (!rm || !cat || !mmio || !dev) { DPU_ERROR("invalid kms\n"); return -EINVAL; } /* Clear, setup lists */ memset(rm, 0, sizeof(*rm)); mutex_init(&rm->rm_lock); INIT_LIST_HEAD(&rm->rsvps); for (type = 0; type < DPU_HW_BLK_MAX; type++) INIT_LIST_HEAD(&rm->hw_blks[type]); rm->dev = dev; /* Some of the sub-blocks require an mdptop to be created */ rm->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, mmio, cat); if (IS_ERR_OR_NULL(rm->hw_mdp)) { rc = PTR_ERR(rm->hw_mdp); rm->hw_mdp = NULL; DPU_ERROR("failed: mdp hw not available\n"); goto fail; } /* Interrogate HW catalog and create tracking items for hw blocks */ for (i = 0; i < cat->mixer_count; i++) { struct dpu_lm_cfg *lm = &cat->mixer[i]; if (lm->pingpong == PINGPONG_MAX) { DPU_DEBUG("skip mixer %d without pingpong\n", lm->id); continue; } rc = _dpu_rm_hw_blk_create(rm, cat, mmio, DPU_HW_BLK_LM, cat->mixer[i].id, &cat->mixer[i]); if (rc) { DPU_ERROR("failed: lm hw not available\n"); goto fail; } if (!rm->lm_max_width) { rm->lm_max_width = lm->sblk->maxwidth; } else if (rm->lm_max_width != lm->sblk->maxwidth) { /* * Don't expect to have hw where lm max widths differ. * If found, take the min. */ DPU_ERROR("unsupported: lm maxwidth differs\n"); if (rm->lm_max_width > lm->sblk->maxwidth) rm->lm_max_width = lm->sblk->maxwidth; } } for (i = 0; i < cat->pingpong_count; i++) { rc = _dpu_rm_hw_blk_create(rm, cat, mmio, DPU_HW_BLK_PINGPONG, cat->pingpong[i].id, &cat->pingpong[i]); if (rc) { DPU_ERROR("failed: pp hw not available\n"); goto fail; } } for (i = 0; i < cat->intf_count; i++) { if (cat->intf[i].type == INTF_NONE) { DPU_DEBUG("skip intf %d with type none\n", i); continue; } rc = _dpu_rm_hw_blk_create(rm, cat, mmio, DPU_HW_BLK_INTF, cat->intf[i].id, &cat->intf[i]); if (rc) { DPU_ERROR("failed: intf hw not available\n"); goto fail; } } for (i = 0; i < cat->ctl_count; i++) { rc = _dpu_rm_hw_blk_create(rm, cat, mmio, DPU_HW_BLK_CTL, cat->ctl[i].id, &cat->ctl[i]); if (rc) { DPU_ERROR("failed: ctl hw not available\n"); goto fail; } } for (i = 0; i < cat->cdm_count; i++) { rc = _dpu_rm_hw_blk_create(rm, cat, mmio, DPU_HW_BLK_CDM, cat->cdm[i].id, &cat->cdm[i]); if (rc) { DPU_ERROR("failed: cdm hw not available\n"); goto fail; } } return 0; fail: dpu_rm_destroy(rm); return rc; } /** * _dpu_rm_check_lm_and_get_connected_blks - check if proposed layer mixer meets * proposed use case requirements, incl. hardwired dependent blocks like * pingpong * @rm: dpu resource manager handle * @rsvp: reservation currently being created * @reqs: proposed use case requirements * @lm: proposed layer mixer, function checks if lm, and all other hardwired * blocks connected to the lm (pp) is available and appropriate * @pp: output parameter, pingpong block attached to the layer mixer. * NULL if pp was not available, or not matching requirements. * @primary_lm: if non-null, this function check if lm is compatible primary_lm * as well as satisfying all other requirements * @Return: true if lm matches all requirements, false otherwise */ static bool _dpu_rm_check_lm_and_get_connected_blks( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, struct dpu_rm_requirements *reqs, struct dpu_rm_hw_blk *lm, struct dpu_rm_hw_blk **pp, struct dpu_rm_hw_blk *primary_lm) { const struct dpu_lm_cfg *lm_cfg = to_dpu_hw_mixer(lm->hw)->cap; struct dpu_rm_hw_iter iter; *pp = NULL; DPU_DEBUG("check lm %d pp %d\n", lm_cfg->id, lm_cfg->pingpong); /* Check if this layer mixer is a peer of the proposed primary LM */ if (primary_lm) { const struct dpu_lm_cfg *prim_lm_cfg = to_dpu_hw_mixer(primary_lm->hw)->cap; if (!test_bit(lm_cfg->id, &prim_lm_cfg->lm_pair_mask)) { DPU_DEBUG("lm %d not peer of lm %d\n", lm_cfg->id, prim_lm_cfg->id); return false; } } /* Already reserved? */ if (RESERVED_BY_OTHER(lm, rsvp)) { DPU_DEBUG("lm %d already reserved\n", lm_cfg->id); return false; } dpu_rm_init_hw_iter(&iter, 0, DPU_HW_BLK_PINGPONG); while (_dpu_rm_get_hw_locked(rm, &iter)) { if (iter.blk->id == lm_cfg->pingpong) { *pp = iter.blk; break; } } if (!*pp) { DPU_ERROR("failed to get pp on lm %d\n", lm_cfg->pingpong); return false; } if (RESERVED_BY_OTHER(*pp, rsvp)) { DPU_DEBUG("lm %d pp %d already reserved\n", lm->id, (*pp)->id); return false; } return true; } static int _dpu_rm_reserve_lms( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, struct dpu_rm_requirements *reqs) { struct dpu_rm_hw_blk *lm[MAX_BLOCKS]; struct dpu_rm_hw_blk *pp[MAX_BLOCKS]; struct dpu_rm_hw_iter iter_i, iter_j; int lm_count = 0; int i, rc = 0; if (!reqs->topology->num_lm) { DPU_ERROR("invalid number of lm: %d\n", reqs->topology->num_lm); return -EINVAL; } /* Find a primary mixer */ dpu_rm_init_hw_iter(&iter_i, 0, DPU_HW_BLK_LM); while (lm_count != reqs->topology->num_lm && _dpu_rm_get_hw_locked(rm, &iter_i)) { memset(&lm, 0, sizeof(lm)); memset(&pp, 0, sizeof(pp)); lm_count = 0; lm[lm_count] = iter_i.blk; if (!_dpu_rm_check_lm_and_get_connected_blks( rm, rsvp, reqs, lm[lm_count], &pp[lm_count], NULL)) continue; ++lm_count; /* Valid primary mixer found, find matching peers */ dpu_rm_init_hw_iter(&iter_j, 0, DPU_HW_BLK_LM); while (lm_count != reqs->topology->num_lm && _dpu_rm_get_hw_locked(rm, &iter_j)) { if (iter_i.blk == iter_j.blk) continue; if (!_dpu_rm_check_lm_and_get_connected_blks( rm, rsvp, reqs, iter_j.blk, &pp[lm_count], iter_i.blk)) continue; lm[lm_count] = iter_j.blk; ++lm_count; } } if (lm_count != reqs->topology->num_lm) { DPU_DEBUG("unable to find appropriate mixers\n"); return -ENAVAIL; } for (i = 0; i < ARRAY_SIZE(lm); i++) { if (!lm[i]) break; lm[i]->rsvp_nxt = rsvp; pp[i]->rsvp_nxt = rsvp; trace_dpu_rm_reserve_lms(lm[i]->id, lm[i]->type, rsvp->enc_id, pp[i]->id); } return rc; } static int _dpu_rm_reserve_ctls( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, const struct dpu_rm_topology_def *top) { struct dpu_rm_hw_blk *ctls[MAX_BLOCKS]; struct dpu_rm_hw_iter iter; int i = 0; memset(&ctls, 0, sizeof(ctls)); dpu_rm_init_hw_iter(&iter, 0, DPU_HW_BLK_CTL); while (_dpu_rm_get_hw_locked(rm, &iter)) { const struct dpu_hw_ctl *ctl = to_dpu_hw_ctl(iter.blk->hw); unsigned long features = ctl->caps->features; bool has_split_display; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; has_split_display = BIT(DPU_CTL_SPLIT_DISPLAY) & features; DPU_DEBUG("ctl %d caps 0x%lX\n", iter.blk->id, features); if (top->needs_split_display != has_split_display) continue; ctls[i] = iter.blk; DPU_DEBUG("ctl %d match\n", iter.blk->id); if (++i == top->num_ctl) break; } if (i != top->num_ctl) return -ENAVAIL; for (i = 0; i < ARRAY_SIZE(ctls) && i < top->num_ctl; i++) { ctls[i]->rsvp_nxt = rsvp; trace_dpu_rm_reserve_ctls(ctls[i]->id, ctls[i]->type, rsvp->enc_id); } return 0; } static int _dpu_rm_reserve_cdm( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, uint32_t id, enum dpu_hw_blk_type type) { struct dpu_rm_hw_iter iter; DRM_DEBUG_KMS("type %d id %d\n", type, id); dpu_rm_init_hw_iter(&iter, 0, DPU_HW_BLK_CDM); while (_dpu_rm_get_hw_locked(rm, &iter)) { const struct dpu_hw_cdm *cdm = to_dpu_hw_cdm(iter.blk->hw); const struct dpu_cdm_cfg *caps = cdm->caps; bool match = false; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; if (type == DPU_HW_BLK_INTF && id != INTF_MAX) match = test_bit(id, &caps->intf_connect); DRM_DEBUG_KMS("iter: type:%d id:%d enc:%d cdm:%lu match:%d\n", iter.blk->type, iter.blk->id, rsvp->enc_id, caps->intf_connect, match); if (!match) continue; trace_dpu_rm_reserve_cdm(iter.blk->id, iter.blk->type, rsvp->enc_id); iter.blk->rsvp_nxt = rsvp; break; } if (!iter.hw) { DPU_ERROR("couldn't reserve cdm for type %d id %d\n", type, id); return -ENAVAIL; } return 0; } static int _dpu_rm_reserve_intf( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, uint32_t id, enum dpu_hw_blk_type type, bool needs_cdm) { struct dpu_rm_hw_iter iter; int ret = 0; /* Find the block entry in the rm, and note the reservation */ dpu_rm_init_hw_iter(&iter, 0, type); while (_dpu_rm_get_hw_locked(rm, &iter)) { if (iter.blk->id != id) continue; if (RESERVED_BY_OTHER(iter.blk, rsvp)) { DPU_ERROR("type %d id %d already reserved\n", type, id); return -ENAVAIL; } iter.blk->rsvp_nxt = rsvp; trace_dpu_rm_reserve_intf(iter.blk->id, iter.blk->type, rsvp->enc_id); break; } /* Shouldn't happen since intfs are fixed at probe */ if (!iter.hw) { DPU_ERROR("couldn't find type %d id %d\n", type, id); return -EINVAL; } if (needs_cdm) ret = _dpu_rm_reserve_cdm(rm, rsvp, id, type); return ret; } static int _dpu_rm_reserve_intf_related_hw( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, struct dpu_encoder_hw_resources *hw_res) { int i, ret = 0; u32 id; for (i = 0; i < ARRAY_SIZE(hw_res->intfs); i++) { if (hw_res->intfs[i] == INTF_MODE_NONE) continue; id = i + INTF_0; ret = _dpu_rm_reserve_intf(rm, rsvp, id, DPU_HW_BLK_INTF, hw_res->needs_cdm); if (ret) return ret; } return ret; } static int _dpu_rm_make_next_rsvp( struct dpu_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct dpu_rm_rsvp *rsvp, struct dpu_rm_requirements *reqs) { int ret; struct dpu_rm_topology_def topology; /* Create reservation info, tag reserved blocks with it as we go */ rsvp->seq = ++rm->rsvp_next_seq; rsvp->enc_id = enc->base.id; rsvp->topology = reqs->topology->top_name; list_add_tail(&rsvp->list, &rm->rsvps); ret = _dpu_rm_reserve_lms(rm, rsvp, reqs); if (ret) { DPU_ERROR("unable to find appropriate mixers\n"); return ret; } /* * Do assignment preferring to give away low-resource CTLs first: * - Check mixers without Split Display * - Only then allow to grab from CTLs with split display capability */ _dpu_rm_reserve_ctls(rm, rsvp, reqs->topology); if (ret && !reqs->topology->needs_split_display) { memcpy(&topology, reqs->topology, sizeof(topology)); topology.needs_split_display = true; _dpu_rm_reserve_ctls(rm, rsvp, &topology); } if (ret) { DPU_ERROR("unable to find appropriate CTL\n"); return ret; } /* Assign INTFs and blks whose usage is tied to them: CTL & CDM */ ret = _dpu_rm_reserve_intf_related_hw(rm, rsvp, &reqs->hw_res); if (ret) return ret; return ret; } static int _dpu_rm_populate_requirements( struct dpu_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct dpu_rm_requirements *reqs, struct msm_display_topology req_topology) { int i; memset(reqs, 0, sizeof(*reqs)); dpu_encoder_get_hw_resources(enc, &reqs->hw_res, conn_state); for (i = 0; i < DPU_RM_TOPOLOGY_MAX; i++) { if (RM_IS_TOPOLOGY_MATCH(g_top_table[i], req_topology)) { reqs->topology = &g_top_table[i]; break; } } if (!reqs->topology) { DPU_ERROR("invalid topology for the display\n"); return -EINVAL; } /** * Set the requirement based on caps if not set from user space * This will ensure to select LM tied with DS blocks * Currently, DS blocks are tied with LM 0 and LM 1 (primary display) */ if (!RM_RQ_DS(reqs) && rm->hw_mdp->caps->has_dest_scaler && conn_state->connector->connector_type == DRM_MODE_CONNECTOR_DSI) reqs->top_ctrl |= BIT(DPU_RM_TOPCTL_DS); DRM_DEBUG_KMS("top_ctrl: 0x%llX num_h_tiles: %d\n", reqs->top_ctrl, reqs->hw_res.display_num_of_h_tiles); DRM_DEBUG_KMS("num_lm: %d num_ctl: %d topology: %d split_display: %d\n", reqs->topology->num_lm, reqs->topology->num_ctl, reqs->topology->top_name, reqs->topology->needs_split_display); return 0; } static struct dpu_rm_rsvp *_dpu_rm_get_rsvp( struct dpu_rm *rm, struct drm_encoder *enc) { struct dpu_rm_rsvp *i; if (!rm || !enc) { DPU_ERROR("invalid params\n"); return NULL; } if (list_empty(&rm->rsvps)) return NULL; list_for_each_entry(i, &rm->rsvps, list) if (i->enc_id == enc->base.id) return i; return NULL; } static struct drm_connector *_dpu_rm_get_connector( struct drm_encoder *enc) { struct drm_connector *conn = NULL; struct list_head *connector_list = &enc->dev->mode_config.connector_list; list_for_each_entry(conn, connector_list, head) if (conn->encoder == enc) return conn; return NULL; } /** * _dpu_rm_release_rsvp - release resources and release a reservation * @rm: KMS handle * @rsvp: RSVP pointer to release and release resources for */ static void _dpu_rm_release_rsvp( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, struct drm_connector *conn) { struct dpu_rm_rsvp *rsvp_c, *rsvp_n; struct dpu_rm_hw_blk *blk; enum dpu_hw_blk_type type; if (!rsvp) return; DPU_DEBUG("rel rsvp %d enc %d\n", rsvp->seq, rsvp->enc_id); list_for_each_entry_safe(rsvp_c, rsvp_n, &rm->rsvps, list) { if (rsvp == rsvp_c) { list_del(&rsvp_c->list); break; } } for (type = 0; type < DPU_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp == rsvp) { blk->rsvp = NULL; DPU_DEBUG("rel rsvp %d enc %d %d %d\n", rsvp->seq, rsvp->enc_id, blk->type, blk->id); } if (blk->rsvp_nxt == rsvp) { blk->rsvp_nxt = NULL; DPU_DEBUG("rel rsvp_nxt %d enc %d %d %d\n", rsvp->seq, rsvp->enc_id, blk->type, blk->id); } } } kfree(rsvp); } void dpu_rm_release(struct dpu_rm *rm, struct drm_encoder *enc) { struct dpu_rm_rsvp *rsvp; struct drm_connector *conn; if (!rm || !enc) { DPU_ERROR("invalid params\n"); return; } mutex_lock(&rm->rm_lock); rsvp = _dpu_rm_get_rsvp(rm, enc); if (!rsvp) { DPU_ERROR("failed to find rsvp for enc %d\n", enc->base.id); goto end; } conn = _dpu_rm_get_connector(enc); if (!conn) { DPU_ERROR("failed to get connector for enc %d\n", enc->base.id); goto end; } _dpu_rm_release_rsvp(rm, rsvp, conn); end: mutex_unlock(&rm->rm_lock); } static int _dpu_rm_commit_rsvp( struct dpu_rm *rm, struct dpu_rm_rsvp *rsvp, struct drm_connector_state *conn_state) { struct dpu_rm_hw_blk *blk; enum dpu_hw_blk_type type; int ret = 0; /* Swap next rsvp to be the active */ for (type = 0; type < DPU_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp_nxt) { blk->rsvp = blk->rsvp_nxt; blk->rsvp_nxt = NULL; } } } if (!ret) DRM_DEBUG_KMS("rsrv enc %d topology %d\n", rsvp->enc_id, rsvp->topology); return ret; } int dpu_rm_reserve( struct dpu_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct msm_display_topology topology, bool test_only) { struct dpu_rm_rsvp *rsvp_cur, *rsvp_nxt; struct dpu_rm_requirements reqs; int ret; if (!rm || !enc || !crtc_state || !conn_state) { DPU_ERROR("invalid arguments\n"); return -EINVAL; } /* Check if this is just a page-flip */ if (!drm_atomic_crtc_needs_modeset(crtc_state)) return 0; DRM_DEBUG_KMS("reserving hw for conn %d enc %d crtc %d test_only %d\n", conn_state->connector->base.id, enc->base.id, crtc_state->crtc->base.id, test_only); mutex_lock(&rm->rm_lock); _dpu_rm_print_rsvps(rm, DPU_RM_STAGE_BEGIN); ret = _dpu_rm_populate_requirements(rm, enc, crtc_state, conn_state, &reqs, topology); if (ret) { DPU_ERROR("failed to populate hw requirements\n"); goto end; } /* * We only support one active reservation per-hw-block. But to implement * transactional semantics for test-only, and for allowing failure while * modifying your existing reservation, over the course of this * function we can have two reservations: * Current: Existing reservation * Next: Proposed reservation. The proposed reservation may fail, or may * be discarded if in test-only mode. * If reservation is successful, and we're not in test-only, then we * replace the current with the next. */ rsvp_nxt = kzalloc(sizeof(*rsvp_nxt), GFP_KERNEL); if (!rsvp_nxt) { ret = -ENOMEM; goto end; } rsvp_cur = _dpu_rm_get_rsvp(rm, enc); /* * User can request that we clear out any reservation during the * atomic_check phase by using this CLEAR bit */ if (rsvp_cur && test_only && RM_RQ_CLEAR(&reqs)) { DPU_DEBUG("test_only & CLEAR: clear rsvp[s%de%d]\n", rsvp_cur->seq, rsvp_cur->enc_id); _dpu_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); rsvp_cur = NULL; _dpu_rm_print_rsvps(rm, DPU_RM_STAGE_AFTER_CLEAR); } /* Check the proposed reservation, store it in hw's "next" field */ ret = _dpu_rm_make_next_rsvp(rm, enc, crtc_state, conn_state, rsvp_nxt, &reqs); _dpu_rm_print_rsvps(rm, DPU_RM_STAGE_AFTER_RSVPNEXT); if (ret) { DPU_ERROR("failed to reserve hw resources: %d\n", ret); _dpu_rm_release_rsvp(rm, rsvp_nxt, conn_state->connector); } else if (test_only && !RM_RQ_LOCK(&reqs)) { /* * Normally, if test_only, test the reservation and then undo * However, if the user requests LOCK, then keep the reservation * made during the atomic_check phase. */ DPU_DEBUG("test_only: discard test rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); _dpu_rm_release_rsvp(rm, rsvp_nxt, conn_state->connector); } else { if (test_only && RM_RQ_LOCK(&reqs)) DPU_DEBUG("test_only & LOCK: lock rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); _dpu_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); ret = _dpu_rm_commit_rsvp(rm, rsvp_nxt, conn_state); } _dpu_rm_print_rsvps(rm, DPU_RM_STAGE_FINAL); end: mutex_unlock(&rm->rm_lock); return ret; }