/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "dpu_hwio.h" #include "dpu_hw_catalog.h" #include "dpu_hw_top.h" #include "dpu_dbg.h" #include "dpu_kms.h" #define SSPP_SPARE 0x28 #define UBWC_STATIC 0x144 #define FLD_SPLIT_DISPLAY_CMD BIT(1) #define FLD_SMART_PANEL_FREE_RUN BIT(2) #define FLD_INTF_1_SW_TRG_MUX BIT(4) #define FLD_INTF_2_SW_TRG_MUX BIT(8) #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF #define DANGER_STATUS 0x360 #define SAFE_STATUS 0x364 #define TE_LINE_INTERVAL 0x3F4 #define TRAFFIC_SHAPER_EN BIT(31) #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4)) #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4)) #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4 #define MDP_WD_TIMER_0_CTL 0x380 #define MDP_WD_TIMER_0_CTL2 0x384 #define MDP_WD_TIMER_0_LOAD_VALUE 0x388 #define MDP_WD_TIMER_1_CTL 0x390 #define MDP_WD_TIMER_1_CTL2 0x394 #define MDP_WD_TIMER_1_LOAD_VALUE 0x398 #define MDP_WD_TIMER_2_CTL 0x420 #define MDP_WD_TIMER_2_CTL2 0x424 #define MDP_WD_TIMER_2_LOAD_VALUE 0x428 #define MDP_WD_TIMER_3_CTL 0x430 #define MDP_WD_TIMER_3_CTL2 0x434 #define MDP_WD_TIMER_3_LOAD_VALUE 0x438 #define MDP_WD_TIMER_4_CTL 0x440 #define MDP_WD_TIMER_4_CTL2 0x444 #define MDP_WD_TIMER_4_LOAD_VALUE 0x448 #define MDP_TICK_COUNT 16 #define XO_CLK_RATE 19200 #define MS_TICKS_IN_SEC 1000 #define CALCULATE_WD_LOAD_VALUE(fps) \ ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps))) #define DCE_SEL 0x450 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp, struct split_pipe_cfg *cfg) { struct dpu_hw_blk_reg_map *c; u32 upper_pipe = 0; u32 lower_pipe = 0; if (!mdp || !cfg) return; c = &mdp->hw; if (cfg->en) { if (cfg->mode == INTF_MODE_CMD) { lower_pipe = FLD_SPLIT_DISPLAY_CMD; /* interface controlling sw trigger */ if (cfg->intf == INTF_2) lower_pipe |= FLD_INTF_1_SW_TRG_MUX; else lower_pipe |= FLD_INTF_2_SW_TRG_MUX; upper_pipe = lower_pipe; } else { if (cfg->intf == INTF_2) { lower_pipe = FLD_INTF_1_SW_TRG_MUX; upper_pipe = FLD_INTF_2_SW_TRG_MUX; } else { lower_pipe = FLD_INTF_2_SW_TRG_MUX; upper_pipe = FLD_INTF_1_SW_TRG_MUX; } } } DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0); DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe); DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe); DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1); } static void dpu_hw_setup_cdm_output(struct dpu_hw_mdp *mdp, struct cdm_output_cfg *cfg) { struct dpu_hw_blk_reg_map *c; u32 out_ctl = 0; if (!mdp || !cfg) return; c = &mdp->hw; if (cfg->intf_en) out_ctl |= BIT(19); DPU_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl); } static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp, enum dpu_clk_ctrl_type clk_ctrl, bool enable) { struct dpu_hw_blk_reg_map *c; u32 reg_off, bit_off; u32 reg_val, new_val; bool clk_forced_on; if (!mdp) return false; c = &mdp->hw; if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX) return false; reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off; bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off; reg_val = DPU_REG_READ(c, reg_off); if (enable) new_val = reg_val | BIT(bit_off); else new_val = reg_val & ~BIT(bit_off); DPU_REG_WRITE(c, reg_off, new_val); clk_forced_on = !(reg_val & BIT(bit_off)); return clk_forced_on; } static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp, struct dpu_danger_safe_status *status) { struct dpu_hw_blk_reg_map *c; u32 value; if (!mdp || !status) return; c = &mdp->hw; value = DPU_REG_READ(c, DANGER_STATUS); status->mdp = (value >> 0) & 0x3; status->sspp[SSPP_VIG0] = (value >> 4) & 0x3; status->sspp[SSPP_VIG1] = (value >> 6) & 0x3; status->sspp[SSPP_VIG2] = (value >> 8) & 0x3; status->sspp[SSPP_VIG3] = (value >> 10) & 0x3; status->sspp[SSPP_RGB0] = (value >> 12) & 0x3; status->sspp[SSPP_RGB1] = (value >> 14) & 0x3; status->sspp[SSPP_RGB2] = (value >> 16) & 0x3; status->sspp[SSPP_RGB3] = (value >> 18) & 0x3; status->sspp[SSPP_DMA0] = (value >> 20) & 0x3; status->sspp[SSPP_DMA1] = (value >> 22) & 0x3; status->sspp[SSPP_DMA2] = (value >> 28) & 0x3; status->sspp[SSPP_DMA3] = (value >> 30) & 0x3; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3; } static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp, struct dpu_vsync_source_cfg *cfg) { struct dpu_hw_blk_reg_map *c; u32 reg, wd_load_value, wd_ctl, wd_ctl2, i; static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18}; if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber))) return; c = &mdp->hw; reg = DPU_REG_READ(c, MDP_VSYNC_SEL); for (i = 0; i < cfg->pp_count; i++) { int pp_idx = cfg->ppnumber[i] - PINGPONG_0; if (pp_idx >= ARRAY_SIZE(pp_offset)) continue; reg &= ~(0xf << pp_offset[pp_idx]); reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx]; } DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg); if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 && cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) { switch (cfg->vsync_source) { case DPU_VSYNC_SOURCE_WD_TIMER_4: wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_4_CTL; wd_ctl2 = MDP_WD_TIMER_4_CTL2; break; case DPU_VSYNC_SOURCE_WD_TIMER_3: wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_3_CTL; wd_ctl2 = MDP_WD_TIMER_3_CTL2; break; case DPU_VSYNC_SOURCE_WD_TIMER_2: wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_2_CTL; wd_ctl2 = MDP_WD_TIMER_2_CTL2; break; case DPU_VSYNC_SOURCE_WD_TIMER_1: wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_1_CTL; wd_ctl2 = MDP_WD_TIMER_1_CTL2; break; case DPU_VSYNC_SOURCE_WD_TIMER_0: default: wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_0_CTL; wd_ctl2 = MDP_WD_TIMER_0_CTL2; break; } DPU_REG_WRITE(c, wd_load_value, CALCULATE_WD_LOAD_VALUE(cfg->frame_rate)); DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */ reg = DPU_REG_READ(c, wd_ctl2); reg |= BIT(8); /* enable heartbeat timer */ reg |= BIT(0); /* enable WD timer */ DPU_REG_WRITE(c, wd_ctl2, reg); /* make sure that timers are enabled/disabled for vsync state */ wmb(); } } static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp, struct dpu_danger_safe_status *status) { struct dpu_hw_blk_reg_map *c; u32 value; if (!mdp || !status) return; c = &mdp->hw; value = DPU_REG_READ(c, SAFE_STATUS); status->mdp = (value >> 0) & 0x1; status->sspp[SSPP_VIG0] = (value >> 4) & 0x1; status->sspp[SSPP_VIG1] = (value >> 6) & 0x1; status->sspp[SSPP_VIG2] = (value >> 8) & 0x1; status->sspp[SSPP_VIG3] = (value >> 10) & 0x1; status->sspp[SSPP_RGB0] = (value >> 12) & 0x1; status->sspp[SSPP_RGB1] = (value >> 14) & 0x1; status->sspp[SSPP_RGB2] = (value >> 16) & 0x1; status->sspp[SSPP_RGB3] = (value >> 18) & 0x1; status->sspp[SSPP_DMA0] = (value >> 20) & 0x1; status->sspp[SSPP_DMA1] = (value >> 22) & 0x1; status->sspp[SSPP_DMA2] = (value >> 28) & 0x1; status->sspp[SSPP_DMA3] = (value >> 30) & 0x1; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1; } static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m) { struct dpu_hw_blk_reg_map c; if (!mdp || !m) return; if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version)) return; /* force blk offset to zero to access beginning of register region */ c = mdp->hw; c.blk_off = 0x0; DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static); } static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp) { struct dpu_hw_blk_reg_map *c; if (!mdp) return; c = &mdp->hw; DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1); } static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops, unsigned long cap) { ops->setup_split_pipe = dpu_hw_setup_split_pipe; ops->setup_cdm_output = dpu_hw_setup_cdm_output; ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl; ops->get_danger_status = dpu_hw_get_danger_status; ops->setup_vsync_source = dpu_hw_setup_vsync_source; ops->get_safe_status = dpu_hw_get_safe_status; ops->reset_ubwc = dpu_hw_reset_ubwc; ops->intf_audio_select = dpu_hw_intf_audio_select; } static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp, const struct dpu_mdss_cfg *m, void __iomem *addr, struct dpu_hw_blk_reg_map *b) { int i; if (!m || !addr || !b) return ERR_PTR(-EINVAL); for (i = 0; i < m->mdp_count; i++) { if (mdp == m->mdp[i].id) { b->base_off = addr; b->blk_off = m->mdp[i].base; b->length = m->mdp[i].len; b->hwversion = m->hwversion; b->log_mask = DPU_DBG_MASK_TOP; return &m->mdp[i]; } } return ERR_PTR(-EINVAL); } static struct dpu_hw_blk_ops dpu_hw_ops = { .start = NULL, .stop = NULL, }; struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx, void __iomem *addr, const struct dpu_mdss_cfg *m) { struct dpu_hw_mdp *mdp; const struct dpu_mdp_cfg *cfg; int rc; if (!addr || !m) return ERR_PTR(-EINVAL); mdp = kzalloc(sizeof(*mdp), GFP_KERNEL); if (!mdp) return ERR_PTR(-ENOMEM); cfg = _top_offset(idx, m, addr, &mdp->hw); if (IS_ERR_OR_NULL(cfg)) { kfree(mdp); return ERR_PTR(-EINVAL); } /* * Assign ops */ mdp->idx = idx; mdp->caps = cfg; _setup_mdp_ops(&mdp->ops, mdp->caps->features); rc = dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops); if (rc) { DPU_ERROR("failed to init hw blk %d\n", rc); goto blk_init_error; } dpu_dbg_set_dpu_top_offset(mdp->hw.blk_off); return mdp; blk_init_error: kzfree(mdp); return ERR_PTR(rc); } void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp) { if (mdp) dpu_hw_blk_destroy(&mdp->base); kfree(mdp); }