// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Hisilicon SEC units found on Hip06 Hip07 * * Copyright (c) 2016-2017 Hisilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sec_drv.h" #define SEC_QUEUE_AR_FROCE_ALLOC 0 #define SEC_QUEUE_AR_FROCE_NOALLOC 1 #define SEC_QUEUE_AR_FROCE_DIS 2 #define SEC_QUEUE_AW_FROCE_ALLOC 0 #define SEC_QUEUE_AW_FROCE_NOALLOC 1 #define SEC_QUEUE_AW_FROCE_DIS 2 /* SEC_ALGSUB registers */ #define SEC_ALGSUB_CLK_EN_REG 0x03b8 #define SEC_ALGSUB_CLK_DIS_REG 0x03bc #define SEC_ALGSUB_CLK_ST_REG 0x535c #define SEC_ALGSUB_RST_REQ_REG 0x0aa8 #define SEC_ALGSUB_RST_DREQ_REG 0x0aac #define SEC_ALGSUB_RST_ST_REG 0x5a54 #define SEC_ALGSUB_RST_ST_IS_RST BIT(0) #define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8 #define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc #define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c #define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0) #define SEC_SAA_BASE 0x00001000UL /* SEC_SAA registers */ #define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE) #define SEC_SAA_CTRL_GET_QM_EN BIT(0) #define SEC_ST_INTMSK1_REG 0x0200 #define SEC_ST_RINT1_REG 0x0400 #define SEC_ST_INTSTS1_REG 0x0600 #define SEC_BD_MNG_STAT_REG 0x0800 #define SEC_PARSING_STAT_REG 0x0804 #define SEC_LOAD_TIME_OUT_CNT_REG 0x0808 #define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c #define SEC_BACK_TIME_OUT_CNT_REG 0x0810 #define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814 #define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818 #define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c #define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820 #define SEC_SAA_ACC_REG 0x083c #define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858 #define SEC_LOAD_WORK_TIME_CNT_REG 0x0860 #define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864 #define SEC_BACK_WORK_TIME_CNT_REG 0x0868 #define SEC_SAA_IDLE_TIME_CNT_REG 0x086c #define SEC_SAA_CLK_CNT_REG 0x0870 /* SEC_COMMON registers */ #define SEC_CLK_EN_REG 0x0000 #define SEC_CTRL_REG 0x0004 #define SEC_COMMON_CNT_CLR_CE_REG 0x0008 #define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0) #define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1) #define SEC_SECURE_CTRL_REG 0x000c #define SEC_AXI_CACHE_CFG_REG 0x0010 #define SEC_AXI_QOS_CFG_REG 0x0014 #define SEC_IPV4_MASK_TABLE_REG 0x0020 #define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4) #define SEC_FSM_MAX_CNT_REG 0x0064 #define SEC_CTRL2_REG 0x0068 #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0) #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0 #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4) #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4 #define SEC_CTRL2_CLK_GATE_EN BIT(7) #define SEC_CTRL2_ENDIAN_BD BIT(8) #define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9) #define SEC_CNT_PRECISION_CFG_REG 0x006c #define SEC_DEBUG_BD_CFG_REG 0x0070 #define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0) #define SEC_DEBUG_BD_CFG_WB_EN BIT(1) #define SEC_Q_SIGHT_SEL 0x0074 #define SEC_Q_SIGHT_HIS_CLR 0x0078 #define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4) #define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4) #define SEC_STAT_CLR_REG 0x0a00 #define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04 #define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00 #define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04 #define SEC_QM_BD_DFX_CFG_REG 0x0b08 #define SEC_QM_BD_DFX_RESULT_REG 0x0b0c #define SEC_QM_BDID_DFX_RESULT_REG 0x0b10 #define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14 #define SEC_QM_BD_DFX_CFG2_REG 0x0b1c #define SEC_QM_BD_DFX_RESULT2_REG 0x0b20 #define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18 #define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28 #define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c #define SEC_HASH_IPV4_MASK 0xfff00000 #define SEC_MAX_SAA_NUM 0xa #define SEC_SAA_ADDR_SIZE 0x1000 #define SEC_Q_INIT_REG 0x0 #define SEC_Q_INIT_WO_STAT_CLEAR 0x2 #define SEC_Q_INIT_AND_STAT_CLEAR 0x3 #define SEC_Q_CFG_REG 0x8 #define SEC_Q_CFG_REORDER BIT(0) #define SEC_Q_PROC_NUM_CFG_REG 0x10 #define SEC_QUEUE_ENB_REG 0x18 #define SEC_Q_DEPTH_CFG_REG 0x50 #define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0) #define SEC_Q_DEPTH_CFG_DEPTH_S 0 #define SEC_Q_BASE_HADDR_REG 0x54 #define SEC_Q_BASE_LADDR_REG 0x58 #define SEC_Q_WR_PTR_REG 0x5c #define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60 #define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64 #define SEC_Q_OUTORDER_RD_PTR_REG 0x68 #define SEC_Q_OT_TH_REG 0x6c #define SEC_Q_ARUSER_CFG_REG 0x70 #define SEC_Q_ARUSER_CFG_FA BIT(0) #define SEC_Q_ARUSER_CFG_FNA BIT(1) #define SEC_Q_ARUSER_CFG_RINVLD BIT(2) #define SEC_Q_ARUSER_CFG_PKG BIT(3) #define SEC_Q_AWUSER_CFG_REG 0x74 #define SEC_Q_AWUSER_CFG_FA BIT(0) #define SEC_Q_AWUSER_CFG_FNA BIT(1) #define SEC_Q_AWUSER_CFG_PKG BIT(2) #define SEC_Q_ERR_BASE_HADDR_REG 0x7c #define SEC_Q_ERR_BASE_LADDR_REG 0x80 #define SEC_Q_CFG_VF_NUM_REG 0x84 #define SEC_Q_SOFT_PROC_PTR_REG 0x88 #define SEC_Q_FAIL_INT_MSK_REG 0x300 #define SEC_Q_FLOW_INT_MKS_REG 0x304 #define SEC_Q_FAIL_RINT_REG 0x400 #define SEC_Q_FLOW_RINT_REG 0x404 #define SEC_Q_FAIL_INT_STATUS_REG 0x500 #define SEC_Q_FLOW_INT_STATUS_REG 0x504 #define SEC_Q_STATUS_REG 0x600 #define SEC_Q_RD_PTR_REG 0x604 #define SEC_Q_PRO_PTR_REG 0x608 #define SEC_Q_OUTORDER_WR_PTR_REG 0x60c #define SEC_Q_OT_CNT_STATUS_REG 0x610 #define SEC_Q_INORDER_BD_NUM_ST_REG 0x650 #define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654 #define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658 #define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c #define SEC_Q_RD_DONE_PTR_REG 0x660 #define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700 #define SEC_Q_CPL_Q_PTR_ST_REG 0x704 #define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708 #define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c #define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710 #define SEC_Q_WRR_ID_CHECK_REG 0x714 #define SEC_Q_CPLQ_FULL_CHECK_REG 0x718 #define SEC_Q_SUCCESS_BD_CNT_REG 0x800 #define SEC_Q_FAIL_BD_CNT_REG 0x804 #define SEC_Q_GET_BD_CNT_REG 0x808 #define SEC_Q_IVLD_CNT_REG 0x80c #define SEC_Q_BD_PROC_GET_CNT_REG 0x810 #define SEC_Q_BD_PROC_DONE_CNT_REG 0x814 #define SEC_Q_LAT_CLR_REG 0x850 #define SEC_Q_PKT_LAT_MAX_REG 0x854 #define SEC_Q_PKT_LAT_AVG_REG 0x858 #define SEC_Q_PKT_LAT_MIN_REG 0x85c #define SEC_Q_ID_CLR_CFG_REG 0x900 #define SEC_Q_1ST_BD_ERR_ID_REG 0x904 #define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908 #define SEC_Q_1ST_RD_ERR_ID_REG 0x90c #define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910 #define SEC_Q_1ST_IVLD_ID_REG 0x914 #define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918 #define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c #define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920 struct sec_debug_bd_info { #define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0) u32 soft_err_check; #define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0) u32 hard_err_check; u32 icv_mac1st_word; #define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0) u32 sec_get_id; /* W4---W15 */ u32 reserv_left[12]; }; struct sec_out_bd_info { #define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0) #define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14) u16 data; }; #define SEC_MAX_DEVICES 8 static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES]; static DEFINE_MUTEX(sec_id_lock); static int sec_queue_map_io(struct sec_queue *queue) { struct device *dev = queue->dev_info->dev; struct resource *res; res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 2 + queue->queue_id); if (!res) { dev_err(dev, "Failed to get queue %d memory resource\n", queue->queue_id); return -ENOMEM; } queue->regs = ioremap(res->start, resource_size(res)); if (!queue->regs) return -ENOMEM; return 0; } static void sec_queue_unmap_io(struct sec_queue *queue) { iounmap(queue->regs); } static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg) { void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG; u32 regval; regval = readl_relaxed(addr); if (ar_pkg) regval |= SEC_Q_ARUSER_CFG_PKG; else regval &= ~SEC_Q_ARUSER_CFG_PKG; writel_relaxed(regval, addr); return 0; } static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg) { void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG; u32 regval; regval = readl_relaxed(addr); regval |= SEC_Q_AWUSER_CFG_PKG; writel_relaxed(regval, addr); return 0; } static int sec_clk_en(struct sec_dev_info *info) { void __iomem *base = info->regs[SEC_COMMON]; u32 i = 0; writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG); do { usleep_range(1000, 10000); if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7) return 0; i++; } while (i < 10); dev_err(info->dev, "sec clock enable fail!\n"); return -EIO; } static int sec_clk_dis(struct sec_dev_info *info) { void __iomem *base = info->regs[SEC_COMMON]; u32 i = 0; writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG); do { usleep_range(1000, 10000); if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0) return 0; i++; } while (i < 10); dev_err(info->dev, "sec clock disable fail!\n"); return -EIO; } static int sec_reset_whole_module(struct sec_dev_info *info) { void __iomem *base = info->regs[SEC_COMMON]; bool is_reset, b_is_reset; u32 i = 0; writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG); writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG); while (1) { usleep_range(1000, 10000); is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) & SEC_ALGSUB_RST_ST_IS_RST; b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) & SEC_ALGSUB_BUILD_RST_ST_IS_RST; if (is_reset && b_is_reset) break; i++; if (i > 10) { dev_err(info->dev, "Reset req failed\n"); return -EIO; } } i = 0; writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG); writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG); while (1) { usleep_range(1000, 10000); is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) & SEC_ALGSUB_RST_ST_IS_RST; b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) & SEC_ALGSUB_BUILD_RST_ST_IS_RST; if (!is_reset && !b_is_reset) break; i++; if (i > 10) { dev_err(info->dev, "Reset dreq failed\n"); return -EIO; } } return 0; } static void sec_bd_endian_little(struct sec_dev_info *info) { void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; u32 regval; regval = readl_relaxed(addr); regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE); writel_relaxed(regval, addr); } /* * sec_cache_config - configure optimum cache placement */ static void sec_cache_config(struct sec_dev_info *info) { struct iommu_domain *domain; void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG; domain = iommu_get_domain_for_dev(info->dev); /* Check that translation is occurring */ if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) writel_relaxed(0x44cf9e, addr); else writel_relaxed(0x4cfd9, addr); } static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg) { void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; u32 regval; regval = readl_relaxed(addr); regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M; regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) & SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M; writel_relaxed(regval, addr); } static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg) { void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; u32 regval; regval = readl_relaxed(addr); regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M; regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) & SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M; writel_relaxed(regval, addr); } static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate) { void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; u32 regval; regval = readl_relaxed(addr); if (clkgate) regval |= SEC_CTRL2_CLK_GATE_EN; else regval &= ~SEC_CTRL2_CLK_GATE_EN; writel_relaxed(regval, addr); } static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce) { void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG; u32 regval; regval = readl_relaxed(addr); if (clr_ce) regval |= SEC_COMMON_CNT_CLR_CE_CLEAR; else regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR; writel_relaxed(regval, addr); } static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en) { void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG; u32 regval; regval = readl_relaxed(addr); if (snap_en) regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN; else regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN; writel_relaxed(regval, addr); } static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[]) { void __iomem *base = info->regs[SEC_SAA]; int i; for (i = 0; i < 10; i++) writel_relaxed(hash_mask[0], base + SEC_IPV6_MASK_TABLE_X_REG(i)); } static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask) { if (hash_mask & SEC_HASH_IPV4_MASK) { dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n "); return -EINVAL; } writel_relaxed(hash_mask, info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG); return 0; } static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg) { void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG; u32 regval; regval = readl_relaxed(addr); /* Always disable write back of normal bd */ regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL; if (cfg) regval &= ~SEC_DEBUG_BD_CFG_WB_EN; else regval |= SEC_DEBUG_BD_CFG_WB_EN; writel_relaxed(regval, addr); } static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en) { void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_SAA_CTRL_REG(saa_indx); u32 regval; regval = readl_relaxed(addr); if (en) regval |= SEC_SAA_CTRL_GET_QM_EN; else regval &= ~SEC_SAA_CTRL_GET_QM_EN; writel_relaxed(regval, addr); } static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx, u32 saa_int_mask) { writel_relaxed(saa_int_mask, info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG + saa_indx * SEC_SAA_ADDR_SIZE); } static void sec_streamid(struct sec_dev_info *info, int i) { #define SEC_SID 0x600 #define SEC_VMID 0 writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)), info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i)); } static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc) { void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG; u32 regval; regval = readl_relaxed(addr); if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) { regval |= SEC_Q_ARUSER_CFG_FA; regval &= ~SEC_Q_ARUSER_CFG_FNA; } else { regval &= ~SEC_Q_ARUSER_CFG_FA; regval |= SEC_Q_ARUSER_CFG_FNA; } writel_relaxed(regval, addr); } static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc) { void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG; u32 regval; regval = readl_relaxed(addr); if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) { regval |= SEC_Q_AWUSER_CFG_FA; regval &= ~SEC_Q_AWUSER_CFG_FNA; } else { regval &= ~SEC_Q_AWUSER_CFG_FA; regval |= SEC_Q_AWUSER_CFG_FNA; } writel_relaxed(regval, addr); } static void sec_queue_reorder(struct sec_queue *queue, bool reorder) { void __iomem *base = queue->regs; u32 regval; regval = readl_relaxed(base + SEC_Q_CFG_REG); if (reorder) regval |= SEC_Q_CFG_REORDER; else regval &= ~SEC_Q_CFG_REORDER; writel_relaxed(regval, base + SEC_Q_CFG_REG); } static void sec_queue_depth(struct sec_queue *queue, u32 depth) { void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG; u32 regval; regval = readl_relaxed(addr); regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M; regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M; writel_relaxed(regval, addr); } static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr) { writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG); writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG); } static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr) { writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG); writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG); } static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr) { writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_ERR_BASE_HADDR_REG); writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_ERR_BASE_LADDR_REG); } static void sec_queue_irq_disable(struct sec_queue *queue) { writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG); } static void sec_queue_irq_enable(struct sec_queue *queue) { writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG); } static void sec_queue_abn_irq_disable(struct sec_queue *queue) { writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG); } static void sec_queue_stop(struct sec_queue *queue) { disable_irq(queue->task_irq); sec_queue_irq_disable(queue); writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG); } static void sec_queue_start(struct sec_queue *queue) { sec_queue_irq_enable(queue); enable_irq(queue->task_irq); queue->expected = 0; writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG); writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG); } static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info) { int i; mutex_lock(&info->dev_lock); /* Get the first idle queue in SEC device */ for (i = 0; i < SEC_Q_NUM; i++) if (!info->queues[i].in_use) { info->queues[i].in_use = true; info->queues_in_use++; mutex_unlock(&info->dev_lock); return &info->queues[i]; } mutex_unlock(&info->dev_lock); return ERR_PTR(-ENODEV); } static int sec_queue_free(struct sec_queue *queue) { struct sec_dev_info *info = queue->dev_info; if (queue->queue_id >= SEC_Q_NUM) { dev_err(info->dev, "No queue %d\n", queue->queue_id); return -ENODEV; } if (!queue->in_use) { dev_err(info->dev, "Queue %d is idle\n", queue->queue_id); return -ENODEV; } mutex_lock(&info->dev_lock); queue->in_use = false; info->queues_in_use--; mutex_unlock(&info->dev_lock); return 0; } static irqreturn_t sec_isr_handle_th(int irq, void *q) { sec_queue_irq_disable(q); return IRQ_WAKE_THREAD; } static irqreturn_t sec_isr_handle(int irq, void *q) { struct sec_queue *queue = q; struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; struct sec_queue_ring_cq *cq_ring = &queue->ring_cq; struct sec_out_bd_info *outorder_msg; struct sec_bd_info *msg; u32 ooo_read, ooo_write; void __iomem *base = queue->regs; int q_id; ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG); ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG); outorder_msg = cq_ring->vaddr + ooo_read; q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M; msg = msg_ring->vaddr + q_id; while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) { /* * Must be before callback otherwise blocks adding other chained * elements */ set_bit(q_id, queue->unprocessed); if (q_id == queue->expected) while (test_bit(queue->expected, queue->unprocessed)) { clear_bit(queue->expected, queue->unprocessed); msg = msg_ring->vaddr + queue->expected; msg->w0 &= ~SEC_BD_W0_DONE; msg_ring->callback(msg, queue->shadow[queue->expected]); queue->shadow[queue->expected] = NULL; queue->expected = (queue->expected + 1) % SEC_QUEUE_LEN; atomic_dec(&msg_ring->used); } ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN; writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG); ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG); outorder_msg = cq_ring->vaddr + ooo_read; q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M; msg = msg_ring->vaddr + q_id; } sec_queue_irq_enable(queue); return IRQ_HANDLED; } static int sec_queue_irq_init(struct sec_queue *queue) { struct sec_dev_info *info = queue->dev_info; int irq = queue->task_irq; int ret; ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle, IRQF_TRIGGER_RISING, queue->name, queue); if (ret) { dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret); return ret; } disable_irq(irq); return 0; } static int sec_queue_irq_uninit(struct sec_queue *queue) { free_irq(queue->task_irq, queue); return 0; } static struct sec_dev_info *sec_device_get(void) { struct sec_dev_info *sec_dev = NULL; struct sec_dev_info *this_sec_dev; int least_busy_n = SEC_Q_NUM + 1; int i; /* Find which one is least busy and use that first */ for (i = 0; i < SEC_MAX_DEVICES; i++) { this_sec_dev = sec_devices[i]; if (this_sec_dev && this_sec_dev->queues_in_use < least_busy_n) { least_busy_n = this_sec_dev->queues_in_use; sec_dev = this_sec_dev; } } return sec_dev; } static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info) { struct sec_queue *queue; queue = sec_alloc_queue(info); if (IS_ERR(queue)) { dev_err(info->dev, "alloc sec queue failed! %ld\n", PTR_ERR(queue)); return queue; } sec_queue_start(queue); return queue; } /** * sec_queue_alloc_start_safe - get a hw queue from appropriate instance * * This function does extremely simplistic load balancing. It does not take into * account NUMA locality of the accelerator, or which cpu has requested the * queue. Future work may focus on optimizing this in order to improve full * machine throughput. */ struct sec_queue *sec_queue_alloc_start_safe(void) { struct sec_dev_info *info; struct sec_queue *queue = ERR_PTR(-ENODEV); mutex_lock(&sec_id_lock); info = sec_device_get(); if (!info) goto unlock; queue = sec_queue_alloc_start(info); unlock: mutex_unlock(&sec_id_lock); return queue; } /** * sec_queue_stop_release() - free up a hw queue for reuse * @queue: The queue we are done with. * * This will stop the current queue, terminanting any transactions * that are inflight an return it to the pool of available hw queuess */ int sec_queue_stop_release(struct sec_queue *queue) { struct device *dev = queue->dev_info->dev; int ret; sec_queue_stop(queue); ret = sec_queue_free(queue); if (ret) dev_err(dev, "Releasing queue failed %d\n", ret); return ret; } /** * sec_queue_empty() - Is this hardware queue currently empty. * * We need to know if we have an empty queue for some of the chaining modes * as if it is not empty we may need to hold the message in a software queue * until the hw queue is drained. */ bool sec_queue_empty(struct sec_queue *queue) { struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; return !atomic_read(&msg_ring->used); } /** * sec_queue_send() - queue up a single operation in the hw queue * @queue: The queue in which to put the message * @msg: The message * @ctx: Context to be put in the shadow array and passed back to cb on result. * * This function will return -EAGAIN if the queue is currently full. */ int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx) { struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; void __iomem *base = queue->regs; u32 write, read; mutex_lock(&msg_ring->lock); read = readl(base + SEC_Q_RD_PTR_REG); write = readl(base + SEC_Q_WR_PTR_REG); if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) { mutex_unlock(&msg_ring->lock); return -EAGAIN; } memcpy(msg_ring->vaddr + write, msg, sizeof(*msg)); queue->shadow[write] = ctx; write = (write + 1) % SEC_QUEUE_LEN; /* Ensure content updated before queue advance */ wmb(); writel(write, base + SEC_Q_WR_PTR_REG); atomic_inc(&msg_ring->used); mutex_unlock(&msg_ring->lock); return 0; } bool sec_queue_can_enqueue(struct sec_queue *queue, int num) { struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num; } static void sec_queue_hw_init(struct sec_queue *queue) { sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC); sec_queue_aw_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC); sec_queue_ar_pkgattr(queue, 1); sec_queue_aw_pkgattr(queue, 1); /* Enable out of order queue */ sec_queue_reorder(queue, true); /* Interrupt after a single complete element */ writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG); sec_queue_depth(queue, SEC_QUEUE_LEN - 1); sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr); sec_queue_outorder_addr(queue, queue->ring_cq.paddr); sec_queue_errbase_addr(queue, queue->ring_db.paddr); writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG); sec_queue_abn_irq_disable(queue); sec_queue_irq_disable(queue); writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG); } static int sec_hw_init(struct sec_dev_info *info) { struct iommu_domain *domain; u32 sec_ipv4_mask = 0; u32 sec_ipv6_mask[10] = {}; u32 i, ret; domain = iommu_get_domain_for_dev(info->dev); /* * Enable all available processing unit clocks. * Only the first cluster is usable with translations. */ if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) info->num_saas = 5; else info->num_saas = 10; writel_relaxed(GENMASK(info->num_saas - 1, 0), info->regs[SEC_SAA] + SEC_CLK_EN_REG); /* 32 bit little endian */ sec_bd_endian_little(info); sec_cache_config(info); /* Data axi port write and read outstanding config as per datasheet */ sec_data_axiwr_otsd_cfg(info, 0x7); sec_data_axird_otsd_cfg(info, 0x7); /* Enable clock gating */ sec_clk_gate_en(info, true); /* Set CNT_CYC register not read clear */ sec_comm_cnt_cfg(info, false); /* Enable CNT_CYC */ sec_commsnap_en(info, false); writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG); ret = sec_ipv4_hashmask(info, sec_ipv4_mask); if (ret) { dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret); return -EIO; } sec_ipv6_hashmask(info, sec_ipv6_mask); /* do not use debug bd */ sec_set_dbg_bd_cfg(info, 0); if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) { for (i = 0; i < SEC_Q_NUM; i++) { sec_streamid(info, i); /* Same QoS for all queues */ writel_relaxed(0x3f, info->regs[SEC_SAA] + SEC_Q_WEIGHT_CFG_REG(i)); } } for (i = 0; i < info->num_saas; i++) { sec_saa_getqm_en(info, i, 1); sec_saa_int_mask(info, i, 0); } return 0; } static void sec_hw_exit(struct sec_dev_info *info) { int i; for (i = 0; i < SEC_MAX_SAA_NUM; i++) { sec_saa_int_mask(info, i, (u32)~0); sec_saa_getqm_en(info, i, 0); } } static void sec_queue_base_init(struct sec_dev_info *info, struct sec_queue *queue, int queue_id) { queue->dev_info = info; queue->queue_id = queue_id; snprintf(queue->name, sizeof(queue->name), "%s_%d", dev_name(info->dev), queue->queue_id); } static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev) { struct resource *res; int i; for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (!res) { dev_err(info->dev, "Memory resource %d not found\n", i); return -EINVAL; } info->regs[i] = devm_ioremap(info->dev, res->start, resource_size(res)); if (!info->regs[i]) { dev_err(info->dev, "Memory resource %d could not be remapped\n", i); return -EINVAL; } } return 0; } static int sec_base_init(struct sec_dev_info *info, struct platform_device *pdev) { int ret; ret = sec_map_io(info, pdev); if (ret) return ret; ret = sec_clk_en(info); if (ret) return ret; ret = sec_reset_whole_module(info); if (ret) goto sec_clk_disable; ret = sec_hw_init(info); if (ret) goto sec_clk_disable; return 0; sec_clk_disable: sec_clk_dis(info); return ret; } static void sec_base_exit(struct sec_dev_info *info) { sec_hw_exit(info); sec_clk_dis(info); } #define SEC_Q_CMD_SIZE \ round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE) #define SEC_Q_CQ_SIZE \ round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE) #define SEC_Q_DB_SIZE \ round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE) static int sec_queue_res_cfg(struct sec_queue *queue) { struct device *dev = queue->dev_info->dev; struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd; struct sec_queue_ring_cq *ring_cq = &queue->ring_cq; struct sec_queue_ring_db *ring_db = &queue->ring_db; int ret; ring_cmd->vaddr = dma_zalloc_coherent(dev, SEC_Q_CMD_SIZE, &ring_cmd->paddr, GFP_KERNEL); if (!ring_cmd->vaddr) return -ENOMEM; atomic_set(&ring_cmd->used, 0); mutex_init(&ring_cmd->lock); ring_cmd->callback = sec_alg_callback; ring_cq->vaddr = dma_zalloc_coherent(dev, SEC_Q_CQ_SIZE, &ring_cq->paddr, GFP_KERNEL); if (!ring_cq->vaddr) { ret = -ENOMEM; goto err_free_ring_cmd; } ring_db->vaddr = dma_zalloc_coherent(dev, SEC_Q_DB_SIZE, &ring_db->paddr, GFP_KERNEL); if (!ring_db->vaddr) { ret = -ENOMEM; goto err_free_ring_cq; } queue->task_irq = platform_get_irq(to_platform_device(dev), queue->queue_id * 2 + 1); if (queue->task_irq <= 0) { ret = -EINVAL; goto err_free_ring_db; } return 0; err_free_ring_db: dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr, queue->ring_db.paddr); err_free_ring_cq: dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr, queue->ring_cq.paddr); err_free_ring_cmd: dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr, queue->ring_cmd.paddr); return ret; } static void sec_queue_free_ring_pages(struct sec_queue *queue) { struct device *dev = queue->dev_info->dev; dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr, queue->ring_db.paddr); dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr, queue->ring_cq.paddr); dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr, queue->ring_cmd.paddr); } static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue, int queue_id) { int ret; sec_queue_base_init(info, queue, queue_id); ret = sec_queue_res_cfg(queue); if (ret) return ret; ret = sec_queue_map_io(queue); if (ret) { dev_err(info->dev, "Queue map failed %d\n", ret); sec_queue_free_ring_pages(queue); return ret; } sec_queue_hw_init(queue); return 0; } static void sec_queue_unconfig(struct sec_dev_info *info, struct sec_queue *queue) { sec_queue_unmap_io(queue); sec_queue_free_ring_pages(queue); } static int sec_id_alloc(struct sec_dev_info *info) { int ret = 0; int i; mutex_lock(&sec_id_lock); for (i = 0; i < SEC_MAX_DEVICES; i++) if (!sec_devices[i]) break; if (i == SEC_MAX_DEVICES) { ret = -ENOMEM; goto unlock; } info->sec_id = i; sec_devices[info->sec_id] = info; unlock: mutex_unlock(&sec_id_lock); return ret; } static void sec_id_free(struct sec_dev_info *info) { mutex_lock(&sec_id_lock); sec_devices[info->sec_id] = NULL; mutex_unlock(&sec_id_lock); } static int sec_probe(struct platform_device *pdev) { struct sec_dev_info *info; struct device *dev = &pdev->dev; int i, j; int ret; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) { dev_err(dev, "Failed to set 64 bit dma mask %d", ret); return -ENODEV; } info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = dev; mutex_init(&info->dev_lock); info->hw_sgl_pool = dmam_pool_create("sgl", dev, sizeof(struct sec_hw_sgl), 64, 0); if (!info->hw_sgl_pool) { dev_err(dev, "Failed to create sec sgl dma pool\n"); return -ENOMEM; } ret = sec_base_init(info, pdev); if (ret) { dev_err(dev, "Base initialization fail! %d\n", ret); return ret; } for (i = 0; i < SEC_Q_NUM; i++) { ret = sec_queue_config(info, &info->queues[i], i); if (ret) goto queues_unconfig; ret = sec_queue_irq_init(&info->queues[i]); if (ret) { sec_queue_unconfig(info, &info->queues[i]); goto queues_unconfig; } } ret = sec_algs_register(); if (ret) { dev_err(dev, "Failed to register algorithms with crypto %d\n", ret); goto queues_unconfig; } platform_set_drvdata(pdev, info); ret = sec_id_alloc(info); if (ret) goto algs_unregister; return 0; algs_unregister: sec_algs_unregister(); queues_unconfig: for (j = i - 1; j >= 0; j--) { sec_queue_irq_uninit(&info->queues[j]); sec_queue_unconfig(info, &info->queues[j]); } sec_base_exit(info); return ret; } static int sec_remove(struct platform_device *pdev) { struct sec_dev_info *info = platform_get_drvdata(pdev); int i; /* Unexpose as soon as possible, reuse during remove is fine */ sec_id_free(info); sec_algs_unregister(); for (i = 0; i < SEC_Q_NUM; i++) { sec_queue_irq_uninit(&info->queues[i]); sec_queue_unconfig(info, &info->queues[i]); } sec_base_exit(info); return 0; } static const __maybe_unused struct of_device_id sec_match[] = { { .compatible = "hisilicon,hip06-sec" }, { .compatible = "hisilicon,hip07-sec" }, {} }; MODULE_DEVICE_TABLE(of, sec_match); static const __maybe_unused struct acpi_device_id sec_acpi_match[] = { { "HISI02C1", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, sec_acpi_match); static struct platform_driver sec_driver = { .probe = sec_probe, .remove = sec_remove, .driver = { .name = "hisi_sec_platform_driver", .of_match_table = sec_match, .acpi_match_table = ACPI_PTR(sec_acpi_match), }, }; module_platform_driver(sec_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Hisilicon Security Accelerators"); MODULE_AUTHOR("Zaibo Xu ");