/* * Kernel-based Virtual Machine driver for Linux * * derived from drivers/kvm/kvm_main.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * Amit Shah * Ben-Ami Yassour * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "irq.h" #include "mmu.h" #include "i8254.h" #include "tss.h" #include "kvm_cache_regs.h" #include "x86.h" #include "cpuid.h" #include "pmu.h" #include "hyperv.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Ugh! */ #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #define MAX_IO_MSRS 256 #define KVM_MAX_MCE_BANKS 32 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); #define emul_to_vcpu(ctxt) \ container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) /* EFER defaults: * - enable syscall per default because its emulated by KVM * - enable LME and LMA per default on 64 bit KVM */ #ifdef CONFIG_X86_64 static u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); #else static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); #endif #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) static void update_cr8_intercept(struct kvm_vcpu *vcpu); static void process_nmi(struct kvm_vcpu *vcpu); static void enter_smm(struct kvm_vcpu *vcpu); static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); static void store_regs(struct kvm_vcpu *vcpu); static int sync_regs(struct kvm_vcpu *vcpu); struct kvm_x86_ops *kvm_x86_ops __read_mostly; EXPORT_SYMBOL_GPL(kvm_x86_ops); static bool __read_mostly ignore_msrs = 0; module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); static bool __read_mostly report_ignored_msrs = true; module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); unsigned int min_timer_period_us = 200; module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); static bool __read_mostly kvmclock_periodic_sync = true; module_param(kvmclock_periodic_sync, bool, S_IRUGO); bool __read_mostly kvm_has_tsc_control; EXPORT_SYMBOL_GPL(kvm_has_tsc_control); u32 __read_mostly kvm_max_guest_tsc_khz; EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); u64 __read_mostly kvm_max_tsc_scaling_ratio; EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); u64 __read_mostly kvm_default_tsc_scaling_ratio; EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ static u32 __read_mostly tsc_tolerance_ppm = 250; module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); /* lapic timer advance (tscdeadline mode only) in nanoseconds */ unsigned int __read_mostly lapic_timer_advance_ns = 0; module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); EXPORT_SYMBOL_GPL(lapic_timer_advance_ns); static bool __read_mostly vector_hashing = true; module_param(vector_hashing, bool, S_IRUGO); bool __read_mostly enable_vmware_backdoor = false; module_param(enable_vmware_backdoor, bool, S_IRUGO); EXPORT_SYMBOL_GPL(enable_vmware_backdoor); static bool __read_mostly force_emulation_prefix = false; module_param(force_emulation_prefix, bool, S_IRUGO); #define KVM_NR_SHARED_MSRS 16 struct kvm_shared_msrs_global { int nr; u32 msrs[KVM_NR_SHARED_MSRS]; }; struct kvm_shared_msrs { struct user_return_notifier urn; bool registered; struct kvm_shared_msr_values { u64 host; u64 curr; } values[KVM_NR_SHARED_MSRS]; }; static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; static struct kvm_shared_msrs __percpu *shared_msrs; struct kvm_stats_debugfs_item debugfs_entries[] = { { "pf_fixed", VCPU_STAT(pf_fixed) }, { "pf_guest", VCPU_STAT(pf_guest) }, { "tlb_flush", VCPU_STAT(tlb_flush) }, { "invlpg", VCPU_STAT(invlpg) }, { "exits", VCPU_STAT(exits) }, { "io_exits", VCPU_STAT(io_exits) }, { "mmio_exits", VCPU_STAT(mmio_exits) }, { "signal_exits", VCPU_STAT(signal_exits) }, { "irq_window", VCPU_STAT(irq_window_exits) }, { "nmi_window", VCPU_STAT(nmi_window_exits) }, { "halt_exits", VCPU_STAT(halt_exits) }, { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "hypercalls", VCPU_STAT(hypercalls) }, { "request_irq", VCPU_STAT(request_irq_exits) }, { "irq_exits", VCPU_STAT(irq_exits) }, { "host_state_reload", VCPU_STAT(host_state_reload) }, { "fpu_reload", VCPU_STAT(fpu_reload) }, { "insn_emulation", VCPU_STAT(insn_emulation) }, { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, { "irq_injections", VCPU_STAT(irq_injections) }, { "nmi_injections", VCPU_STAT(nmi_injections) }, { "req_event", VCPU_STAT(req_event) }, { "l1d_flush", VCPU_STAT(l1d_flush) }, { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, { "mmu_pte_write", VM_STAT(mmu_pte_write) }, { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, { "mmu_flooded", VM_STAT(mmu_flooded) }, { "mmu_recycled", VM_STAT(mmu_recycled) }, { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, { "mmu_unsync", VM_STAT(mmu_unsync) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { "largepages", VM_STAT(lpages) }, { "max_mmu_page_hash_collisions", VM_STAT(max_mmu_page_hash_collisions) }, { NULL } }; u64 __read_mostly host_xcr0; static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) vcpu->arch.apf.gfns[i] = ~0; } static void kvm_on_user_return(struct user_return_notifier *urn) { unsigned slot; struct kvm_shared_msrs *locals = container_of(urn, struct kvm_shared_msrs, urn); struct kvm_shared_msr_values *values; unsigned long flags; /* * Disabling irqs at this point since the following code could be * interrupted and executed through kvm_arch_hardware_disable() */ local_irq_save(flags); if (locals->registered) { locals->registered = false; user_return_notifier_unregister(urn); } local_irq_restore(flags); for (slot = 0; slot < shared_msrs_global.nr; ++slot) { values = &locals->values[slot]; if (values->host != values->curr) { wrmsrl(shared_msrs_global.msrs[slot], values->host); values->curr = values->host; } } } static void shared_msr_update(unsigned slot, u32 msr) { u64 value; unsigned int cpu = smp_processor_id(); struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); /* only read, and nobody should modify it at this time, * so don't need lock */ if (slot >= shared_msrs_global.nr) { printk(KERN_ERR "kvm: invalid MSR slot!"); return; } rdmsrl_safe(msr, &value); smsr->values[slot].host = value; smsr->values[slot].curr = value; } void kvm_define_shared_msr(unsigned slot, u32 msr) { BUG_ON(slot >= KVM_NR_SHARED_MSRS); shared_msrs_global.msrs[slot] = msr; if (slot >= shared_msrs_global.nr) shared_msrs_global.nr = slot + 1; } EXPORT_SYMBOL_GPL(kvm_define_shared_msr); static void kvm_shared_msr_cpu_online(void) { unsigned i; for (i = 0; i < shared_msrs_global.nr; ++i) shared_msr_update(i, shared_msrs_global.msrs[i]); } int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) { unsigned int cpu = smp_processor_id(); struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); int err; if (((value ^ smsr->values[slot].curr) & mask) == 0) return 0; smsr->values[slot].curr = value; err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); if (err) return 1; if (!smsr->registered) { smsr->urn.on_user_return = kvm_on_user_return; user_return_notifier_register(&smsr->urn); smsr->registered = true; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_shared_msr); static void drop_user_return_notifiers(void) { unsigned int cpu = smp_processor_id(); struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); if (smsr->registered) kvm_on_user_return(&smsr->urn); } u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { return vcpu->arch.apic_base; } EXPORT_SYMBOL_GPL(kvm_get_apic_base); enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) { return kvm_apic_mode(kvm_get_apic_base(vcpu)); } EXPORT_SYMBOL_GPL(kvm_get_apic_mode); int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) return 1; if (!msr_info->host_initiated) { if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) return 1; if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) return 1; } kvm_lapic_set_base(vcpu, msr_info->data); return 0; } EXPORT_SYMBOL_GPL(kvm_set_apic_base); asmlinkage __visible void kvm_spurious_fault(void) { /* Fault while not rebooting. We want the trace. */ BUG(); } EXPORT_SYMBOL_GPL(kvm_spurious_fault); #define EXCPT_BENIGN 0 #define EXCPT_CONTRIBUTORY 1 #define EXCPT_PF 2 static int exception_class(int vector) { switch (vector) { case PF_VECTOR: return EXCPT_PF; case DE_VECTOR: case TS_VECTOR: case NP_VECTOR: case SS_VECTOR: case GP_VECTOR: return EXCPT_CONTRIBUTORY; default: break; } return EXCPT_BENIGN; } #define EXCPT_FAULT 0 #define EXCPT_TRAP 1 #define EXCPT_ABORT 2 #define EXCPT_INTERRUPT 3 static int exception_type(int vector) { unsigned int mask; if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) return EXCPT_INTERRUPT; mask = 1 << vector; /* #DB is trap, as instruction watchpoints are handled elsewhere */ if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) return EXCPT_TRAP; if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) return EXCPT_ABORT; /* Reserved exceptions will result in fault */ return EXCPT_FAULT; } static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error, u32 error_code, bool reinject) { u32 prev_nr; int class1, class2; kvm_make_request(KVM_REQ_EVENT, vcpu); if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { queue: if (has_error && !is_protmode(vcpu)) has_error = false; if (reinject) { /* * On vmentry, vcpu->arch.exception.pending is only * true if an event injection was blocked by * nested_run_pending. In that case, however, * vcpu_enter_guest requests an immediate exit, * and the guest shouldn't proceed far enough to * need reinjection. */ WARN_ON_ONCE(vcpu->arch.exception.pending); vcpu->arch.exception.injected = true; } else { vcpu->arch.exception.pending = true; vcpu->arch.exception.injected = false; } vcpu->arch.exception.has_error_code = has_error; vcpu->arch.exception.nr = nr; vcpu->arch.exception.error_code = error_code; return; } /* to check exception */ prev_nr = vcpu->arch.exception.nr; if (prev_nr == DF_VECTOR) { /* triple fault -> shutdown */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } class1 = exception_class(prev_nr); class2 = exception_class(nr); if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { /* * Generate double fault per SDM Table 5-5. Set * exception.pending = true so that the double fault * can trigger a nested vmexit. */ vcpu->arch.exception.pending = true; vcpu->arch.exception.injected = false; vcpu->arch.exception.has_error_code = true; vcpu->arch.exception.nr = DF_VECTOR; vcpu->arch.exception.error_code = 0; } else /* replace previous exception with a new one in a hope that instruction re-execution will regenerate lost exception */ goto queue; } void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception); void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception); int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) { if (err) kvm_inject_gp(vcpu, 0); else return kvm_skip_emulated_instruction(vcpu); return 1; } EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { ++vcpu->stat.pf_guest; vcpu->arch.exception.nested_apf = is_guest_mode(vcpu) && fault->async_page_fault; if (vcpu->arch.exception.nested_apf) vcpu->arch.apf.nested_apf_token = fault->address; else vcpu->arch.cr2 = fault->address; kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); } EXPORT_SYMBOL_GPL(kvm_inject_page_fault); static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { if (mmu_is_nested(vcpu) && !fault->nested_page_fault) vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); else vcpu->arch.mmu.inject_page_fault(vcpu, fault); return fault->nested_page_fault; } void kvm_inject_nmi(struct kvm_vcpu *vcpu) { atomic_inc(&vcpu->arch.nmi_queued); kvm_make_request(KVM_REQ_NMI, vcpu); } EXPORT_SYMBOL_GPL(kvm_inject_nmi); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception_e); void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); /* * Checks if cpl <= required_cpl; if true, return true. Otherwise queue * a #GP and return false. */ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) { if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) return true; kvm_queue_exception_e(vcpu, GP_VECTOR, 0); return false; } EXPORT_SYMBOL_GPL(kvm_require_cpl); bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) { if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return true; kvm_queue_exception(vcpu, UD_VECTOR); return false; } EXPORT_SYMBOL_GPL(kvm_require_dr); /* * This function will be used to read from the physical memory of the currently * running guest. The difference to kvm_vcpu_read_guest_page is that this function * can read from guest physical or from the guest's guest physical memory. */ int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t ngfn, void *data, int offset, int len, u32 access) { struct x86_exception exception; gfn_t real_gfn; gpa_t ngpa; ngpa = gfn_to_gpa(ngfn); real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); if (real_gfn == UNMAPPED_GVA) return -EFAULT; real_gfn = gpa_to_gfn(real_gfn); return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); } EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len, u32 access) { return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, data, offset, len, access); } /* * Load the pae pdptrs. Return true is they are all valid. */ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, offset * sizeof(u64), sizeof(pdpte), PFERR_USER_MASK|PFERR_WRITE_MASK); if (ret < 0) { ret = 0; goto out; } for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { if ((pdpte[i] & PT_PRESENT_MASK) && (pdpte[i] & vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { ret = 0; goto out; } } ret = 1; memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); out: return ret; } EXPORT_SYMBOL_GPL(load_pdptrs); bool pdptrs_changed(struct kvm_vcpu *vcpu) { u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; bool changed = true; int offset; gfn_t gfn; int r; if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu)) return false; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail)) return true; gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), PFERR_USER_MASK | PFERR_WRITE_MASK); if (r < 0) goto out; changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; out: return changed; } EXPORT_SYMBOL_GPL(pdptrs_changed); int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { unsigned long old_cr0 = kvm_read_cr0(vcpu); unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; cr0 |= X86_CR0_ET; #ifdef CONFIG_X86_64 if (cr0 & 0xffffffff00000000UL) return 1; #endif cr0 &= ~CR0_RESERVED_BITS; if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) return 1; if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) return 1; if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 if ((vcpu->arch.efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) return 1; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) return 1; } else #endif if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; } if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) return 1; kvm_x86_ops->set_cr0(vcpu, cr0); if ((cr0 ^ old_cr0) & X86_CR0_PG) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); } if ((cr0 ^ old_cr0) & update_bits) kvm_mmu_reset_context(vcpu); if (((cr0 ^ old_cr0) & X86_CR0_CD) && kvm_arch_has_noncoherent_dma(vcpu->kvm) && !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr0); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(kvm_lmsw); void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) { if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && !vcpu->guest_xcr0_loaded) { /* kvm_set_xcr() also depends on this */ if (vcpu->arch.xcr0 != host_xcr0) xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); vcpu->guest_xcr0_loaded = 1; } } EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0); void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) { if (vcpu->guest_xcr0_loaded) { if (vcpu->arch.xcr0 != host_xcr0) xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); vcpu->guest_xcr0_loaded = 0; } } EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0); static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { u64 xcr0 = xcr; u64 old_xcr0 = vcpu->arch.xcr0; u64 valid_bits; /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ if (index != XCR_XFEATURE_ENABLED_MASK) return 1; if (!(xcr0 & XFEATURE_MASK_FP)) return 1; if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) return 1; /* * Do not allow the guest to set bits that we do not support * saving. However, xcr0 bit 0 is always set, even if the * emulated CPU does not support XSAVE (see fx_init). */ valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; if (xcr0 & ~valid_bits) return 1; if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != (!(xcr0 & XFEATURE_MASK_BNDCSR))) return 1; if (xcr0 & XFEATURE_MASK_AVX512) { if (!(xcr0 & XFEATURE_MASK_YMM)) return 1; if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) return 1; } vcpu->arch.xcr0 = xcr0; if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) kvm_update_cpuid(vcpu); return 0; } int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { if (kvm_x86_ops->get_cpl(vcpu) != 0 || __kvm_set_xcr(vcpu, index, xcr)) { kvm_inject_gp(vcpu, 0); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_xcr); int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long old_cr4 = kvm_read_cr4(vcpu); unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; if (cr4 & CR4_RESERVED_BITS) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) return 1; if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) return 1; if (is_long_mode(vcpu)) { if (!(cr4 & X86_CR4_PAE)) return 1; } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) && ((cr4 ^ old_cr4) & pdptr_bits) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) return 1; /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) return 1; } if (kvm_x86_ops->set_cr4(vcpu, cr4)) return 1; if (((cr4 ^ old_cr4) & pdptr_bits) || (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) kvm_mmu_reset_context(vcpu); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) kvm_update_cpuid(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr4); int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { bool skip_tlb_flush = false; #ifdef CONFIG_X86_64 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); if (pcid_enabled) { skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; cr3 &= ~X86_CR3_PCID_NOFLUSH; } #endif if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { if (!skip_tlb_flush) { kvm_mmu_sync_roots(vcpu); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } return 0; } if (is_long_mode(vcpu) && (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) return 1; else if (is_pae(vcpu) && is_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) return 1; kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); vcpu->arch.cr3 = cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr3); int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if (cr8 & CR8_RESERVED_BITS) return 1; if (lapic_in_kernel(vcpu)) kvm_lapic_set_tpr(vcpu, cr8); else vcpu->arch.cr8 = cr8; return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr8); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) { if (lapic_in_kernel(vcpu)) return kvm_lapic_get_cr8(vcpu); else return vcpu->arch.cr8; } EXPORT_SYMBOL_GPL(kvm_get_cr8); static void kvm_update_dr0123(struct kvm_vcpu *vcpu) { int i; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { for (i = 0; i < KVM_NR_DB_REGS; i++) vcpu->arch.eff_db[i] = vcpu->arch.db[i]; vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; } } static void kvm_update_dr6(struct kvm_vcpu *vcpu) { if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); } static void kvm_update_dr7(struct kvm_vcpu *vcpu) { unsigned long dr7; if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) dr7 = vcpu->arch.guest_debug_dr7; else dr7 = vcpu->arch.dr7; kvm_x86_ops->set_dr7(vcpu, dr7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; if (dr7 & DR7_BP_EN_MASK) vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; } static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) { u64 fixed = DR6_FIXED_1; if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) fixed |= DR6_RTM; return fixed; } static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { switch (dr) { case 0 ... 3: vcpu->arch.db[dr] = val; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) vcpu->arch.eff_db[dr] = val; break; case 4: /* fall through */ case 6: if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); kvm_update_dr6(vcpu); break; case 5: /* fall through */ default: /* 7 */ if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; kvm_update_dr7(vcpu); break; } return 0; } int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { if (__kvm_set_dr(vcpu, dr, val)) { kvm_inject_gp(vcpu, 0); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_dr); int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { switch (dr) { case 0 ... 3: *val = vcpu->arch.db[dr]; break; case 4: /* fall through */ case 6: if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) *val = vcpu->arch.dr6; else *val = kvm_x86_ops->get_dr6(vcpu); break; case 5: /* fall through */ default: /* 7 */ *val = vcpu->arch.dr7; break; } return 0; } EXPORT_SYMBOL_GPL(kvm_get_dr); bool kvm_rdpmc(struct kvm_vcpu *vcpu) { u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); u64 data; int err; err = kvm_pmu_rdpmc(vcpu, ecx, &data); if (err) return err; kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); return err; } EXPORT_SYMBOL_GPL(kvm_rdpmc); /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. * * This list is modified at module load time to reflect the * capabilities of the host cpu. This capabilities test skips MSRs that are * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs * may depend on host virtualization features rather than host cpu features. */ static u32 msrs_to_save[] = { MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES }; static unsigned num_msrs_to_save; static u32 emulated_msrs[] = { MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, HV_X64_MSR_RESET, HV_X64_MSR_VP_INDEX, HV_X64_MSR_VP_RUNTIME, HV_X64_MSR_SCONTROL, HV_X64_MSR_STIMER0_CONFIG, HV_X64_MSR_VP_ASSIST_PAGE, HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, HV_X64_MSR_TSC_EMULATION_STATUS, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, MSR_KVM_PV_EOI_EN, MSR_IA32_TSC_ADJUST, MSR_IA32_TSCDEADLINE, MSR_IA32_MISC_ENABLE, MSR_IA32_MCG_STATUS, MSR_IA32_MCG_CTL, MSR_IA32_MCG_EXT_CTL, MSR_IA32_SMBASE, MSR_SMI_COUNT, MSR_PLATFORM_INFO, MSR_MISC_FEATURES_ENABLES, MSR_AMD64_VIRT_SPEC_CTRL, }; static unsigned num_emulated_msrs; /* * List of msr numbers which are used to expose MSR-based features that * can be used by a hypervisor to validate requested CPU features. */ static u32 msr_based_features[] = { MSR_IA32_VMX_BASIC, MSR_IA32_VMX_TRUE_PINBASED_CTLS, MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS, MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS, MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_MISC, MSR_IA32_VMX_CR0_FIXED0, MSR_IA32_VMX_CR0_FIXED1, MSR_IA32_VMX_CR4_FIXED0, MSR_IA32_VMX_CR4_FIXED1, MSR_IA32_VMX_VMCS_ENUM, MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_EPT_VPID_CAP, MSR_IA32_VMX_VMFUNC, MSR_F10H_DECFG, MSR_IA32_UCODE_REV, MSR_IA32_ARCH_CAPABILITIES, }; static unsigned int num_msr_based_features; u64 kvm_get_arch_capabilities(void) { u64 data; rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data); /* * If we're doing cache flushes (either "always" or "cond") * we will do one whenever the guest does a vmlaunch/vmresume. * If an outer hypervisor is doing the cache flush for us * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that * capability to the guest too, and if EPT is disabled we're not * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will * require a nested hypervisor to do a flush of its own. */ if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; return data; } EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities); static int kvm_get_msr_feature(struct kvm_msr_entry *msr) { switch (msr->index) { case MSR_IA32_ARCH_CAPABILITIES: msr->data = kvm_get_arch_capabilities(); break; case MSR_IA32_UCODE_REV: rdmsrl_safe(msr->index, &msr->data); break; default: if (kvm_x86_ops->get_msr_feature(msr)) return 1; } return 0; } static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { struct kvm_msr_entry msr; int r; msr.index = index; r = kvm_get_msr_feature(&msr); if (r) return r; *data = msr.data; return 0; } static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) { if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) return false; if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) return false; return true; } bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) { if (efer & efer_reserved_bits) return false; return __kvm_valid_efer(vcpu, efer); } EXPORT_SYMBOL_GPL(kvm_valid_efer); static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { u64 old_efer = vcpu->arch.efer; u64 efer = msr_info->data; if (efer & efer_reserved_bits) return 1; if (!msr_info->host_initiated) { if (!__kvm_valid_efer(vcpu, efer)) return 1; if (is_paging(vcpu) && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) return 1; } efer &= ~EFER_LMA; efer |= vcpu->arch.efer & EFER_LMA; kvm_x86_ops->set_efer(vcpu, efer); /* Update reserved bits */ if ((efer ^ old_efer) & EFER_NX) kvm_mmu_reset_context(vcpu); return 0; } void kvm_enable_efer_bits(u64 mask) { efer_reserved_bits &= ~mask; } EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { switch (msr->index) { case MSR_FS_BASE: case MSR_GS_BASE: case MSR_KERNEL_GS_BASE: case MSR_CSTAR: case MSR_LSTAR: if (is_noncanonical_address(msr->data, vcpu)) return 1; break; case MSR_IA32_SYSENTER_EIP: case MSR_IA32_SYSENTER_ESP: /* * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if * non-canonical address is written on Intel but not on * AMD (which ignores the top 32-bits, because it does * not implement 64-bit SYSENTER). * * 64-bit code should hence be able to write a non-canonical * value on AMD. Making the address canonical ensures that * vmentry does not fail on Intel after writing a non-canonical * value, and that something deterministic happens if the guest * invokes 64-bit SYSENTER. */ msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); } return kvm_x86_ops->set_msr(vcpu, msr); } EXPORT_SYMBOL_GPL(kvm_set_msr); /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { struct msr_data msr; int r; msr.index = index; msr.host_initiated = true; r = kvm_get_msr(vcpu, &msr); if (r) return r; *data = msr.data; return 0; } static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { struct msr_data msr; msr.data = *data; msr.index = index; msr.host_initiated = true; return kvm_set_msr(vcpu, &msr); } #ifdef CONFIG_X86_64 struct pvclock_gtod_data { seqcount_t seq; struct { /* extract of a clocksource struct */ int vclock_mode; u64 cycle_last; u64 mask; u32 mult; u32 shift; } clock; u64 boot_ns; u64 nsec_base; u64 wall_time_sec; }; static struct pvclock_gtod_data pvclock_gtod_data; static void update_pvclock_gtod(struct timekeeper *tk) { struct pvclock_gtod_data *vdata = &pvclock_gtod_data; u64 boot_ns; boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); write_seqcount_begin(&vdata->seq); /* copy pvclock gtod data */ vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; vdata->clock.cycle_last = tk->tkr_mono.cycle_last; vdata->clock.mask = tk->tkr_mono.mask; vdata->clock.mult = tk->tkr_mono.mult; vdata->clock.shift = tk->tkr_mono.shift; vdata->boot_ns = boot_ns; vdata->nsec_base = tk->tkr_mono.xtime_nsec; vdata->wall_time_sec = tk->xtime_sec; write_seqcount_end(&vdata->seq); } #endif void kvm_set_pending_timer(struct kvm_vcpu *vcpu) { /* * Note: KVM_REQ_PENDING_TIMER is implicitly checked in * vcpu_enter_guest. This function is only called from * the physical CPU that is running vcpu. */ kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); } static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) { int version; int r; struct pvclock_wall_clock wc; struct timespec64 boot; if (!wall_clock) return; r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); if (r) return; if (version & 1) ++version; /* first time write, random junk */ ++version; if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) return; /* * The guest calculates current wall clock time by adding * system time (updated by kvm_guest_time_update below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ getboottime64(&boot); if (kvm->arch.kvmclock_offset) { struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); boot = timespec64_sub(boot, ts); } wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ wc.nsec = boot.tv_nsec; wc.version = version; kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); version++; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); } static uint32_t div_frac(uint32_t dividend, uint32_t divisor) { do_shl32_div32(dividend, divisor); return dividend; } static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, s8 *pshift, u32 *pmultiplier) { uint64_t scaled64; int32_t shift = 0; uint64_t tps64; uint32_t tps32; tps64 = base_hz; scaled64 = scaled_hz; while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) scaled64 >>= 1; else tps32 <<= 1; shift++; } *pshift = shift; *pmultiplier = div_frac(scaled64, tps32); pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", __func__, base_hz, scaled_hz, shift, *pmultiplier); } #ifdef CONFIG_X86_64 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); #endif static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); static unsigned long max_tsc_khz; static u32 adjust_tsc_khz(u32 khz, s32 ppm) { u64 v = (u64)khz * (1000000 + ppm); do_div(v, 1000000); return v; } static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) { u64 ratio; /* Guest TSC same frequency as host TSC? */ if (!scale) { vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; return 0; } /* TSC scaling supported? */ if (!kvm_has_tsc_control) { if (user_tsc_khz > tsc_khz) { vcpu->arch.tsc_catchup = 1; vcpu->arch.tsc_always_catchup = 1; return 0; } else { pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); return -1; } } /* TSC scaling required - calculate ratio */ ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, user_tsc_khz, tsc_khz); if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", user_tsc_khz); return -1; } vcpu->arch.tsc_scaling_ratio = ratio; return 0; } static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) { u32 thresh_lo, thresh_hi; int use_scaling = 0; /* tsc_khz can be zero if TSC calibration fails */ if (user_tsc_khz == 0) { /* set tsc_scaling_ratio to a safe value */ vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; return -1; } /* Compute a scale to convert nanoseconds in TSC cycles */ kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, &vcpu->arch.virtual_tsc_shift, &vcpu->arch.virtual_tsc_mult); vcpu->arch.virtual_tsc_khz = user_tsc_khz; /* * Compute the variation in TSC rate which is acceptable * within the range of tolerance and decide if the * rate being applied is within that bounds of the hardware * rate. If so, no scaling or compensation need be done. */ thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); use_scaling = 1; } return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); } static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) { u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); tsc += vcpu->arch.this_tsc_write; return tsc; } static inline int gtod_is_based_on_tsc(int mode) { return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; } static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 bool vcpus_matched; struct kvm_arch *ka = &vcpu->kvm->arch; struct pvclock_gtod_data *gtod = &pvclock_gtod_data; vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == atomic_read(&vcpu->kvm->online_vcpus)); /* * Once the masterclock is enabled, always perform request in * order to update it. * * In order to enable masterclock, the host clocksource must be TSC * and the vcpus need to have matched TSCs. When that happens, * perform request to enable masterclock. */ if (ka->use_master_clock || (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, atomic_read(&vcpu->kvm->online_vcpus), ka->use_master_clock, gtod->clock.vclock_mode); #endif } static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) { u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; } /* * Multiply tsc by a fixed point number represented by ratio. * * The most significant 64-N bits (mult) of ratio represent the * integral part of the fixed point number; the remaining N bits * (frac) represent the fractional part, ie. ratio represents a fixed * point number (mult + frac * 2^(-N)). * * N equals to kvm_tsc_scaling_ratio_frac_bits. */ static inline u64 __scale_tsc(u64 ratio, u64 tsc) { return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); } u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) { u64 _tsc = tsc; u64 ratio = vcpu->arch.tsc_scaling_ratio; if (ratio != kvm_default_tsc_scaling_ratio) _tsc = __scale_tsc(ratio, tsc); return _tsc; } EXPORT_SYMBOL_GPL(kvm_scale_tsc); static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) { u64 tsc; tsc = kvm_scale_tsc(vcpu, rdtsc()); return target_tsc - tsc; } u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) { u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); } EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); } static inline bool kvm_check_tsc_unstable(void) { #ifdef CONFIG_X86_64 /* * TSC is marked unstable when we're running on Hyper-V, * 'TSC page' clocksource is good. */ if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) return false; #endif return check_tsc_unstable(); } void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) { struct kvm *kvm = vcpu->kvm; u64 offset, ns, elapsed; unsigned long flags; bool matched; bool already_matched; u64 data = msr->data; bool synchronizing = false; raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); offset = kvm_compute_tsc_offset(vcpu, data); ns = ktime_get_boot_ns(); elapsed = ns - kvm->arch.last_tsc_nsec; if (vcpu->arch.virtual_tsc_khz) { if (data == 0 && msr->host_initiated) { /* * detection of vcpu initialization -- need to sync * with other vCPUs. This particularly helps to keep * kvm_clock stable after CPU hotplug */ synchronizing = true; } else { u64 tsc_exp = kvm->arch.last_tsc_write + nsec_to_cycles(vcpu, elapsed); u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; /* * Special case: TSC write with a small delta (1 second) * of virtual cycle time against real time is * interpreted as an attempt to synchronize the CPU. */ synchronizing = data < tsc_exp + tsc_hz && data + tsc_hz > tsc_exp; } } /* * For a reliable TSC, we can match TSC offsets, and for an unstable * TSC, we add elapsed time in this computation. We could let the * compensation code attempt to catch up if we fall behind, but * it's better to try to match offsets from the beginning. */ if (synchronizing && vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { if (!kvm_check_tsc_unstable()) { offset = kvm->arch.cur_tsc_offset; pr_debug("kvm: matched tsc offset for %llu\n", data); } else { u64 delta = nsec_to_cycles(vcpu, elapsed); data += delta; offset = kvm_compute_tsc_offset(vcpu, data); pr_debug("kvm: adjusted tsc offset by %llu\n", delta); } matched = true; already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); } else { /* * We split periods of matched TSC writes into generations. * For each generation, we track the original measured * nanosecond time, offset, and write, so if TSCs are in * sync, we can match exact offset, and if not, we can match * exact software computation in compute_guest_tsc() * * These values are tracked in kvm->arch.cur_xxx variables. */ kvm->arch.cur_tsc_generation++; kvm->arch.cur_tsc_nsec = ns; kvm->arch.cur_tsc_write = data; kvm->arch.cur_tsc_offset = offset; matched = false; pr_debug("kvm: new tsc generation %llu, clock %llu\n", kvm->arch.cur_tsc_generation, data); } /* * We also track th most recent recorded KHZ, write and time to * allow the matching interval to be extended at each write. */ kvm->arch.last_tsc_nsec = ns; kvm->arch.last_tsc_write = data; kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; vcpu->arch.last_guest_tsc = data; /* Keep track of which generation this VCPU has synchronized to */ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) update_ia32_tsc_adjust_msr(vcpu, offset); kvm_vcpu_write_tsc_offset(vcpu, offset); raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); spin_lock(&kvm->arch.pvclock_gtod_sync_lock); if (!matched) { kvm->arch.nr_vcpus_matched_tsc = 0; } else if (!already_matched) { kvm->arch.nr_vcpus_matched_tsc++; } kvm_track_tsc_matching(vcpu); spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); } EXPORT_SYMBOL_GPL(kvm_write_tsc); static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment) { u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); } static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) { if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) WARN_ON(adjustment < 0); adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); adjust_tsc_offset_guest(vcpu, adjustment); } #ifdef CONFIG_X86_64 static u64 read_tsc(void) { u64 ret = (u64)rdtsc_ordered(); u64 last = pvclock_gtod_data.clock.cycle_last; if (likely(ret >= last)) return ret; /* * GCC likes to generate cmov here, but this branch is extremely * predictable (it's just a function of time and the likely is * very likely) and there's a data dependence, so force GCC * to generate a branch instead. I don't barrier() because * we don't actually need a barrier, and if this function * ever gets inlined it will generate worse code. */ asm volatile (""); return last; } static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) { long v; struct pvclock_gtod_data *gtod = &pvclock_gtod_data; u64 tsc_pg_val; switch (gtod->clock.vclock_mode) { case VCLOCK_HVCLOCK: tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), tsc_timestamp); if (tsc_pg_val != U64_MAX) { /* TSC page valid */ *mode = VCLOCK_HVCLOCK; v = (tsc_pg_val - gtod->clock.cycle_last) & gtod->clock.mask; } else { /* TSC page invalid */ *mode = VCLOCK_NONE; } break; case VCLOCK_TSC: *mode = VCLOCK_TSC; *tsc_timestamp = read_tsc(); v = (*tsc_timestamp - gtod->clock.cycle_last) & gtod->clock.mask; break; default: *mode = VCLOCK_NONE; } if (*mode == VCLOCK_NONE) *tsc_timestamp = v = 0; return v * gtod->clock.mult; } static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) { struct pvclock_gtod_data *gtod = &pvclock_gtod_data; unsigned long seq; int mode; u64 ns; do { seq = read_seqcount_begin(>od->seq); ns = gtod->nsec_base; ns += vgettsc(tsc_timestamp, &mode); ns >>= gtod->clock.shift; ns += gtod->boot_ns; } while (unlikely(read_seqcount_retry(>od->seq, seq))); *t = ns; return mode; } static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) { struct pvclock_gtod_data *gtod = &pvclock_gtod_data; unsigned long seq; int mode; u64 ns; do { seq = read_seqcount_begin(>od->seq); ts->tv_sec = gtod->wall_time_sec; ns = gtod->nsec_base; ns += vgettsc(tsc_timestamp, &mode); ns >>= gtod->clock.shift; } while (unlikely(read_seqcount_retry(>od->seq, seq))); ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); ts->tv_nsec = ns; return mode; } /* returns true if host is using TSC based clocksource */ static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) { /* checked again under seqlock below */ if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) return false; return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, tsc_timestamp)); } /* returns true if host is using TSC based clocksource */ static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, u64 *tsc_timestamp) { /* checked again under seqlock below */ if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) return false; return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); } #endif /* * * Assuming a stable TSC across physical CPUS, and a stable TSC * across virtual CPUs, the following condition is possible. * Each numbered line represents an event visible to both * CPUs at the next numbered event. * * "timespecX" represents host monotonic time. "tscX" represents * RDTSC value. * * VCPU0 on CPU0 | VCPU1 on CPU1 * * 1. read timespec0,tsc0 * 2. | timespec1 = timespec0 + N * | tsc1 = tsc0 + M * 3. transition to guest | transition to guest * 4. ret0 = timespec0 + (rdtsc - tsc0) | * 5. | ret1 = timespec1 + (rdtsc - tsc1) * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) * * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: * * - ret0 < ret1 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) * ... * - 0 < N - M => M < N * * That is, when timespec0 != timespec1, M < N. Unfortunately that is not * always the case (the difference between two distinct xtime instances * might be smaller then the difference between corresponding TSC reads, * when updating guest vcpus pvclock areas). * * To avoid that problem, do not allow visibility of distinct * system_timestamp/tsc_timestamp values simultaneously: use a master * copy of host monotonic time values. Update that master copy * in lockstep. * * Rely on synchronization of host TSCs and guest TSCs for monotonicity. * */ static void pvclock_update_vm_gtod_copy(struct kvm *kvm) { #ifdef CONFIG_X86_64 struct kvm_arch *ka = &kvm->arch; int vclock_mode; bool host_tsc_clocksource, vcpus_matched; vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == atomic_read(&kvm->online_vcpus)); /* * If the host uses TSC clock, then passthrough TSC as stable * to the guest. */ host_tsc_clocksource = kvm_get_time_and_clockread( &ka->master_kernel_ns, &ka->master_cycle_now); ka->use_master_clock = host_tsc_clocksource && vcpus_matched && !ka->backwards_tsc_observed && !ka->boot_vcpu_runs_old_kvmclock; if (ka->use_master_clock) atomic_set(&kvm_guest_has_master_clock, 1); vclock_mode = pvclock_gtod_data.clock.vclock_mode; trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, vcpus_matched); #endif } void kvm_make_mclock_inprogress_request(struct kvm *kvm) { kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); } static void kvm_gen_update_masterclock(struct kvm *kvm) { #ifdef CONFIG_X86_64 int i; struct kvm_vcpu *vcpu; struct kvm_arch *ka = &kvm->arch; spin_lock(&ka->pvclock_gtod_sync_lock); kvm_make_mclock_inprogress_request(kvm); /* no guest entries from this point */ pvclock_update_vm_gtod_copy(kvm); kvm_for_each_vcpu(i, vcpu, kvm) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* guest entries allowed */ kvm_for_each_vcpu(i, vcpu, kvm) kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); spin_unlock(&ka->pvclock_gtod_sync_lock); #endif } u64 get_kvmclock_ns(struct kvm *kvm) { struct kvm_arch *ka = &kvm->arch; struct pvclock_vcpu_time_info hv_clock; u64 ret; spin_lock(&ka->pvclock_gtod_sync_lock); if (!ka->use_master_clock) { spin_unlock(&ka->pvclock_gtod_sync_lock); return ktime_get_boot_ns() + ka->kvmclock_offset; } hv_clock.tsc_timestamp = ka->master_cycle_now; hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; spin_unlock(&ka->pvclock_gtod_sync_lock); /* both __this_cpu_read() and rdtsc() should be on the same cpu */ get_cpu(); if (__this_cpu_read(cpu_tsc_khz)) { kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, &hv_clock.tsc_shift, &hv_clock.tsc_to_system_mul); ret = __pvclock_read_cycles(&hv_clock, rdtsc()); } else ret = ktime_get_boot_ns() + ka->kvmclock_offset; put_cpu(); return ret; } static void kvm_setup_pvclock_page(struct kvm_vcpu *v) { struct kvm_vcpu_arch *vcpu = &v->arch; struct pvclock_vcpu_time_info guest_hv_clock; if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, &guest_hv_clock, sizeof(guest_hv_clock)))) return; /* This VCPU is paused, but it's legal for a guest to read another * VCPU's kvmclock, so we really have to follow the specification where * it says that version is odd if data is being modified, and even after * it is consistent. * * Version field updates must be kept separate. This is because * kvm_write_guest_cached might use a "rep movs" instruction, and * writes within a string instruction are weakly ordered. So there * are three writes overall. * * As a small optimization, only write the version field in the first * and third write. The vcpu->pv_time cache is still valid, because the * version field is the first in the struct. */ BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); if (guest_hv_clock.version & 1) ++guest_hv_clock.version; /* first time write, random junk */ vcpu->hv_clock.version = guest_hv_clock.version + 1; kvm_write_guest_cached(v->kvm, &vcpu->pv_time, &vcpu->hv_clock, sizeof(vcpu->hv_clock.version)); smp_wmb(); /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); if (vcpu->pvclock_set_guest_stopped_request) { vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; vcpu->pvclock_set_guest_stopped_request = false; } trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); kvm_write_guest_cached(v->kvm, &vcpu->pv_time, &vcpu->hv_clock, sizeof(vcpu->hv_clock)); smp_wmb(); vcpu->hv_clock.version++; kvm_write_guest_cached(v->kvm, &vcpu->pv_time, &vcpu->hv_clock, sizeof(vcpu->hv_clock.version)); } static int kvm_guest_time_update(struct kvm_vcpu *v) { unsigned long flags, tgt_tsc_khz; struct kvm_vcpu_arch *vcpu = &v->arch; struct kvm_arch *ka = &v->kvm->arch; s64 kernel_ns; u64 tsc_timestamp, host_tsc; u8 pvclock_flags; bool use_master_clock; kernel_ns = 0; host_tsc = 0; /* * If the host uses TSC clock, then passthrough TSC as stable * to the guest. */ spin_lock(&ka->pvclock_gtod_sync_lock); use_master_clock = ka->use_master_clock; if (use_master_clock) { host_tsc = ka->master_cycle_now; kernel_ns = ka->master_kernel_ns; } spin_unlock(&ka->pvclock_gtod_sync_lock); /* Keep irq disabled to prevent changes to the clock */ local_irq_save(flags); tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); if (unlikely(tgt_tsc_khz == 0)) { local_irq_restore(flags); kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); return 1; } if (!use_master_clock) { host_tsc = rdtsc(); kernel_ns = ktime_get_boot_ns(); } tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); /* * We may have to catch up the TSC to match elapsed wall clock * time for two reasons, even if kvmclock is used. * 1) CPU could have been running below the maximum TSC rate * 2) Broken TSC compensation resets the base at each VCPU * entry to avoid unknown leaps of TSC even when running * again on the same CPU. This may cause apparent elapsed * time to disappear, and the guest to stand still or run * very slowly. */ if (vcpu->tsc_catchup) { u64 tsc = compute_guest_tsc(v, kernel_ns); if (tsc > tsc_timestamp) { adjust_tsc_offset_guest(v, tsc - tsc_timestamp); tsc_timestamp = tsc; } } local_irq_restore(flags); /* With all the info we got, fill in the values */ if (kvm_has_tsc_control) tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, &vcpu->hv_clock.tsc_shift, &vcpu->hv_clock.tsc_to_system_mul); vcpu->hw_tsc_khz = tgt_tsc_khz; } vcpu->hv_clock.tsc_timestamp = tsc_timestamp; vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; vcpu->last_guest_tsc = tsc_timestamp; /* If the host uses TSC clocksource, then it is stable */ pvclock_flags = 0; if (use_master_clock) pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; vcpu->hv_clock.flags = pvclock_flags; if (vcpu->pv_time_enabled) kvm_setup_pvclock_page(v); if (v == kvm_get_vcpu(v->kvm, 0)) kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); return 0; } /* * kvmclock updates which are isolated to a given vcpu, such as * vcpu->cpu migration, should not allow system_timestamp from * the rest of the vcpus to remain static. Otherwise ntp frequency * correction applies to one vcpu's system_timestamp but not * the others. * * So in those cases, request a kvmclock update for all vcpus. * We need to rate-limit these requests though, as they can * considerably slow guests that have a large number of vcpus. * The time for a remote vcpu to update its kvmclock is bound * by the delay we use to rate-limit the updates. */ #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) static void kvmclock_update_fn(struct work_struct *work) { int i; struct delayed_work *dwork = to_delayed_work(work); struct kvm_arch *ka = container_of(dwork, struct kvm_arch, kvmclock_update_work); struct kvm *kvm = container_of(ka, struct kvm, arch); struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); kvm_vcpu_kick(vcpu); } } static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) { struct kvm *kvm = v->kvm; kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); schedule_delayed_work(&kvm->arch.kvmclock_update_work, KVMCLOCK_UPDATE_DELAY); } #define KVMCLOCK_SYNC_PERIOD (300 * HZ) static void kvmclock_sync_fn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct kvm_arch *ka = container_of(dwork, struct kvm_arch, kvmclock_sync_work); struct kvm *kvm = container_of(ka, struct kvm, arch); if (!kvmclock_periodic_sync) return; schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); schedule_delayed_work(&kvm->arch.kvmclock_sync_work, KVMCLOCK_SYNC_PERIOD); } static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; u32 msr = msr_info->index; u64 data = msr_info->data; switch (msr) { case MSR_IA32_MCG_STATUS: vcpu->arch.mcg_status = data; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P) && (data || !msr_info->host_initiated)) return 1; if (data != 0 && data != ~(u64)0) return 1; vcpu->arch.mcg_ctl = data; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MCx_CTL(bank_num)) { u32 offset = msr - MSR_IA32_MC0_CTL; /* only 0 or all 1s can be written to IA32_MCi_CTL * some Linux kernels though clear bit 10 in bank 4 to * workaround a BIOS/GART TBL issue on AMD K8s, ignore * this to avoid an uncatched #GP in the guest */ if ((offset & 0x3) == 0 && data != 0 && (data | (1 << 10)) != ~(u64)0) return -1; if (!msr_info->host_initiated && (offset & 0x3) == 1 && data != 0) return -1; vcpu->arch.mce_banks[offset] = data; break; } return 1; } return 0; } static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; int lm = is_long_mode(vcpu); u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 : kvm->arch.xen_hvm_config.blob_size_32; u32 page_num = data & ~PAGE_MASK; u64 page_addr = data & PAGE_MASK; u8 *page; int r; r = -E2BIG; if (page_num >= blob_size) goto out; r = -ENOMEM; page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); if (IS_ERR(page)) { r = PTR_ERR(page); goto out; } if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) goto out_free; r = 0; out_free: kfree(page); out: return r; } static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) { gpa_t gpa = data & ~0x3f; /* Bits 3:5 are reserved, Should be zero */ if (data & 0x38) return 1; vcpu->arch.apf.msr_val = data; if (!(data & KVM_ASYNC_PF_ENABLED)) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); return 0; } if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, sizeof(u32))) return 1; vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; kvm_async_pf_wakeup_all(vcpu); return 0; } static void kvmclock_reset(struct kvm_vcpu *vcpu) { vcpu->arch.pv_time_enabled = false; } static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) { ++vcpu->stat.tlb_flush; kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); } static void record_steal_time(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) return; if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) return; /* * Doing a TLB flush here, on the guest's behalf, can avoid * expensive IPIs. */ if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) kvm_vcpu_flush_tlb(vcpu, false); if (vcpu->arch.st.steal.version & 1) vcpu->arch.st.steal.version += 1; /* first time write, random junk */ vcpu->arch.st.steal.version += 1; kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); smp_wmb(); vcpu->arch.st.steal.steal += current->sched_info.run_delay - vcpu->arch.st.last_steal; vcpu->arch.st.last_steal = current->sched_info.run_delay; kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); smp_wmb(); vcpu->arch.st.steal.version += 1; kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); } int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { bool pr = false; u32 msr = msr_info->index; u64 data = msr_info->data; switch (msr) { case MSR_AMD64_NB_CFG: case MSR_IA32_UCODE_WRITE: case MSR_VM_HSAVE_PA: case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: case MSR_AMD64_DC_CFG: case MSR_F15H_EX_CFG: break; case MSR_IA32_UCODE_REV: if (msr_info->host_initiated) vcpu->arch.microcode_version = data; break; case MSR_IA32_ARCH_CAPABILITIES: if (!msr_info->host_initiated) return 1; vcpu->arch.arch_capabilities = data; break; case MSR_EFER: return set_efer(vcpu, msr_info); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ data &= ~(u64)0x40000; /* ignore Mc status write enable */ if (data != 0) { vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " "0x%llx\n", data); return 1; } break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case 0x200 ... 0x2ff: return kvm_mtrr_set_msr(vcpu, msr, data); case MSR_IA32_APICBASE: return kvm_set_apic_base(vcpu, msr_info); case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); case MSR_IA32_TSCDEADLINE: kvm_set_lapic_tscdeadline_msr(vcpu, data); break; case MSR_IA32_TSC_ADJUST: if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { if (!msr_info->host_initiated) { s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; adjust_tsc_offset_guest(vcpu, adj); } vcpu->arch.ia32_tsc_adjust_msr = data; } break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_IA32_SMBASE: if (!msr_info->host_initiated) return 1; vcpu->arch.smbase = data; break; case MSR_IA32_TSC: kvm_write_tsc(vcpu, msr_info); break; case MSR_SMI_COUNT: if (!msr_info->host_initiated) return 1; vcpu->arch.smi_count = data; break; case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { struct kvm_arch *ka = &vcpu->kvm->arch; kvmclock_reset(vcpu); if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { bool tmp = (msr == MSR_KVM_SYSTEM_TIME); if (ka->boot_vcpu_runs_old_kvmclock != tmp) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); ka->boot_vcpu_runs_old_kvmclock = tmp; } vcpu->arch.time = data; kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_time, data & ~1ULL, sizeof(struct pvclock_vcpu_time_info))) vcpu->arch.pv_time_enabled = false; else vcpu->arch.pv_time_enabled = true; break; } case MSR_KVM_ASYNC_PF_EN: if (kvm_pv_enable_async_pf(vcpu, data)) return 1; break; case MSR_KVM_STEAL_TIME: if (unlikely(!sched_info_on())) return 1; if (data & KVM_STEAL_RESERVED_MASK) return 1; if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, data & KVM_STEAL_VALID_BITS, sizeof(struct kvm_steal_time))) return 1; vcpu->arch.st.msr_val = data; if (!(data & KVM_MSR_ENABLED)) break; kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); break; case MSR_KVM_PV_EOI_EN: if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) return 1; break; case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: return set_msr_mce(vcpu, msr_info); case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: pr = true; /* fall through */ case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: if (kvm_pmu_is_valid_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr_info); if (pr || data != 0) vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_K7_CLK_CTL: /* * Ignore all writes to this no longer documented MSR. * Writes are only relevant for old K7 processors, * all pre-dating SVM, but a recommended workaround from * AMD for these chips. It is possible to specify the * affected processor models on the command line, hence * the need to ignore the workaround. */ break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: case HV_X64_MSR_CRASH_CTL: case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: case HV_X64_MSR_REENLIGHTENMENT_CONTROL: case HV_X64_MSR_TSC_EMULATION_CONTROL: case HV_X64_MSR_TSC_EMULATION_STATUS: return kvm_hv_set_msr_common(vcpu, msr, data, msr_info->host_initiated); case MSR_IA32_BBL_CR_CTL3: /* Drop writes to this legacy MSR -- see rdmsr * counterpart for further detail. */ if (report_ignored_msrs) vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) return 1; vcpu->arch.osvw.length = data; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) return 1; vcpu->arch.osvw.status = data; break; case MSR_PLATFORM_INFO: if (!msr_info->host_initiated || (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && cpuid_fault_enabled(vcpu))) return 1; vcpu->arch.msr_platform_info = data; break; case MSR_MISC_FEATURES_ENABLES: if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && !supports_cpuid_fault(vcpu))) return 1; vcpu->arch.msr_misc_features_enables = data; break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); if (kvm_pmu_is_valid_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr_info); if (!ignore_msrs) { vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", msr, data); return 1; } else { if (report_ignored_msrs) vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); break; } } return 0; } EXPORT_SYMBOL_GPL(kvm_set_msr_common); /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { return kvm_x86_ops->get_msr(vcpu, msr); } EXPORT_SYMBOL_GPL(kvm_get_msr); static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { u64 data; u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; switch (msr) { case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: data = 0; break; case MSR_IA32_MCG_CAP: data = vcpu->arch.mcg_cap; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P) && !host) return 1; data = vcpu->arch.mcg_ctl; break; case MSR_IA32_MCG_STATUS: data = vcpu->arch.mcg_status; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MCx_CTL(bank_num)) { u32 offset = msr - MSR_IA32_MC0_CTL; data = vcpu->arch.mce_banks[offset]; break; } return 1; } *pdata = data; return 0; } int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { switch (msr_info->index) { case MSR_IA32_PLATFORM_ID: case MSR_IA32_EBL_CR_POWERON: case MSR_IA32_DEBUGCTLMSR: case MSR_IA32_LASTBRANCHFROMIP: case MSR_IA32_LASTBRANCHTOIP: case MSR_IA32_LASTINTFROMIP: case MSR_IA32_LASTINTTOIP: case MSR_K8_SYSCFG: case MSR_K8_TSEG_ADDR: case MSR_K8_TSEG_MASK: case MSR_K7_HWCR: case MSR_VM_HSAVE_PA: case MSR_K8_INT_PENDING_MSG: case MSR_AMD64_NB_CFG: case MSR_FAM10H_MMIO_CONF_BASE: case MSR_AMD64_BU_CFG2: case MSR_IA32_PERF_CTL: case MSR_AMD64_DC_CFG: case MSR_F15H_EX_CFG: msr_info->data = 0; break; case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); msr_info->data = 0; break; case MSR_IA32_UCODE_REV: msr_info->data = vcpu->arch.microcode_version; break; case MSR_IA32_ARCH_CAPABILITIES: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) return 1; msr_info->data = vcpu->arch.arch_capabilities; break; case MSR_IA32_TSC: msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; break; case MSR_MTRRcap: case 0x200 ... 0x2ff: return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); case 0xcd: /* fsb frequency */ msr_info->data = 3; break; /* * MSR_EBC_FREQUENCY_ID * Conservative value valid for even the basic CPU models. * Models 0,1: 000 in bits 23:21 indicating a bus speed of * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, * and 266MHz for model 3, or 4. Set Core Clock * Frequency to System Bus Frequency Ratio to 1 (bits * 31:24) even though these are only valid for CPU * models > 2, however guests may end up dividing or * multiplying by zero otherwise. */ case MSR_EBC_FREQUENCY_ID: msr_info->data = 1 << 24; break; case MSR_IA32_APICBASE: msr_info->data = kvm_get_apic_base(vcpu); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); break; case MSR_IA32_TSCDEADLINE: msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); break; case MSR_IA32_TSC_ADJUST: msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; break; case MSR_IA32_MISC_ENABLE: msr_info->data = vcpu->arch.ia32_misc_enable_msr; break; case MSR_IA32_SMBASE: if (!msr_info->host_initiated) return 1; msr_info->data = vcpu->arch.smbase; break; case MSR_SMI_COUNT: msr_info->data = vcpu->arch.smi_count; break; case MSR_IA32_PERF_STATUS: /* TSC increment by tick */ msr_info->data = 1000ULL; /* CPU multiplier */ msr_info->data |= (((uint64_t)4ULL) << 40); break; case MSR_EFER: msr_info->data = vcpu->arch.efer; break; case MSR_KVM_WALL_CLOCK: case MSR_KVM_WALL_CLOCK_NEW: msr_info->data = vcpu->kvm->arch.wall_clock; break; case MSR_KVM_SYSTEM_TIME: case MSR_KVM_SYSTEM_TIME_NEW: msr_info->data = vcpu->arch.time; break; case MSR_KVM_ASYNC_PF_EN: msr_info->data = vcpu->arch.apf.msr_val; break; case MSR_KVM_STEAL_TIME: msr_info->data = vcpu->arch.st.msr_val; break; case MSR_KVM_PV_EOI_EN: msr_info->data = vcpu->arch.pv_eoi.msr_val; break; case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MCG_CAP: case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: return get_msr_mce(vcpu, msr_info->index, &msr_info->data, msr_info->host_initiated); case MSR_K7_CLK_CTL: /* * Provide expected ramp-up count for K7. All other * are set to zero, indicating minimum divisors for * every field. * * This prevents guest kernels on AMD host with CPU * type 6, model 8 and higher from exploding due to * the rdmsr failing. */ msr_info->data = 0x20000000; break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: case HV_X64_MSR_CRASH_CTL: case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: case HV_X64_MSR_REENLIGHTENMENT_CONTROL: case HV_X64_MSR_TSC_EMULATION_CONTROL: case HV_X64_MSR_TSC_EMULATION_STATUS: return kvm_hv_get_msr_common(vcpu, msr_info->index, &msr_info->data, msr_info->host_initiated); break; case MSR_IA32_BBL_CR_CTL3: /* This legacy MSR exists but isn't fully documented in current * silicon. It is however accessed by winxp in very narrow * scenarios where it sets bit #19, itself documented as * a "reserved" bit. Best effort attempt to source coherent * read data here should the balance of the register be * interpreted by the guest: * * L2 cache control register 3: 64GB range, 256KB size, * enabled, latency 0x1, configured */ msr_info->data = 0xbe702111; break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) return 1; msr_info->data = vcpu->arch.osvw.length; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) return 1; msr_info->data = vcpu->arch.osvw.status; break; case MSR_PLATFORM_INFO: if (!msr_info->host_initiated && !vcpu->kvm->arch.guest_can_read_msr_platform_info) return 1; msr_info->data = vcpu->arch.msr_platform_info; break; case MSR_MISC_FEATURES_ENABLES: msr_info->data = vcpu->arch.msr_misc_features_enables; break; default: if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); if (!ignore_msrs) { vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index); return 1; } else { if (report_ignored_msrs) vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); msr_info->data = 0; } break; } return 0; } EXPORT_SYMBOL_GPL(kvm_get_msr_common); /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { int i; for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = memdup_user(user_msrs->entries, size); if (IS_ERR(entries)) { r = PTR_ERR(entries); goto out; } r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: kfree(entries); out: return r; } static inline bool kvm_can_mwait_in_guest(void) { return boot_cpu_has(X86_FEATURE_MWAIT) && !boot_cpu_has_bug(X86_BUG_MONITOR) && boot_cpu_has(X86_FEATURE_ARAT); } int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r = 0; switch (ext) { case KVM_CAP_IRQCHIP: case KVM_CAP_HLT: case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: case KVM_CAP_SET_TSS_ADDR: case KVM_CAP_EXT_CPUID: case KVM_CAP_EXT_EMUL_CPUID: case KVM_CAP_CLOCKSOURCE: case KVM_CAP_PIT: case KVM_CAP_NOP_IO_DELAY: case KVM_CAP_MP_STATE: case KVM_CAP_SYNC_MMU: case KVM_CAP_USER_NMI: case KVM_CAP_REINJECT_CONTROL: case KVM_CAP_IRQ_INJECT_STATUS: case KVM_CAP_IOEVENTFD: case KVM_CAP_IOEVENTFD_NO_LENGTH: case KVM_CAP_PIT2: case KVM_CAP_PIT_STATE2: case KVM_CAP_SET_IDENTITY_MAP_ADDR: case KVM_CAP_XEN_HVM: case KVM_CAP_VCPU_EVENTS: case KVM_CAP_HYPERV: case KVM_CAP_HYPERV_VAPIC: case KVM_CAP_HYPERV_SPIN: case KVM_CAP_HYPERV_SYNIC: case KVM_CAP_HYPERV_SYNIC2: case KVM_CAP_HYPERV_VP_INDEX: case KVM_CAP_HYPERV_EVENTFD: case KVM_CAP_HYPERV_TLBFLUSH: case KVM_CAP_PCI_SEGMENT: case KVM_CAP_DEBUGREGS: case KVM_CAP_X86_ROBUST_SINGLESTEP: case KVM_CAP_XSAVE: case KVM_CAP_ASYNC_PF: case KVM_CAP_GET_TSC_KHZ: case KVM_CAP_KVMCLOCK_CTRL: case KVM_CAP_READONLY_MEM: case KVM_CAP_HYPERV_TIME: case KVM_CAP_IOAPIC_POLARITY_IGNORED: case KVM_CAP_TSC_DEADLINE_TIMER: case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_DISABLE_QUIRKS: case KVM_CAP_SET_BOOT_CPU_ID: case KVM_CAP_SPLIT_IRQCHIP: case KVM_CAP_IMMEDIATE_EXIT: case KVM_CAP_GET_MSR_FEATURES: case KVM_CAP_MSR_PLATFORM_INFO: r = 1; break; case KVM_CAP_SYNC_REGS: r = KVM_SYNC_X86_VALID_FIELDS; break; case KVM_CAP_ADJUST_CLOCK: r = KVM_CLOCK_TSC_STABLE; break; case KVM_CAP_X86_DISABLE_EXITS: r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE; if(kvm_can_mwait_in_guest()) r |= KVM_X86_DISABLE_EXITS_MWAIT; break; case KVM_CAP_X86_SMM: /* SMBASE is usually relocated above 1M on modern chipsets, * and SMM handlers might indeed rely on 4G segment limits, * so do not report SMM to be available if real mode is * emulated via vm86 mode. Still, do not go to great lengths * to avoid userspace's usage of the feature, because it is a * fringe case that is not enabled except via specific settings * of the module parameters. */ r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); break; case KVM_CAP_VAPIC: r = !kvm_x86_ops->cpu_has_accelerated_tpr(); break; case KVM_CAP_NR_VCPUS: r = KVM_SOFT_MAX_VCPUS; break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_MAX_VCPU_ID: r = KVM_MAX_VCPU_ID; break; case KVM_CAP_NR_MEMSLOTS: r = KVM_USER_MEM_SLOTS; break; case KVM_CAP_PV_MMU: /* obsolete */ r = 0; break; case KVM_CAP_MCE: r = KVM_MAX_MCE_BANKS; break; case KVM_CAP_XCRS: r = boot_cpu_has(X86_FEATURE_XSAVE); break; case KVM_CAP_TSC_CONTROL: r = kvm_has_tsc_control; break; case KVM_CAP_X2APIC_API: r = KVM_X2APIC_API_VALID_FLAGS; break; case KVM_CAP_NESTED_STATE: r = kvm_x86_ops->get_nested_state ? kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0; break; default: break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < msr_list.nmsrs) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, num_msrs_to_save * sizeof(u32))) goto out; if (copy_to_user(user_msr_list->indices + num_msrs_to_save, &emulated_msrs, num_emulated_msrs * sizeof(u32))) goto out; r = 0; break; } case KVM_GET_SUPPORTED_CPUID: case KVM_GET_EMULATED_CPUID: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, ioctl); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_X86_GET_MCE_CAP_SUPPORTED: { r = -EFAULT; if (copy_to_user(argp, &kvm_mce_cap_supported, sizeof(kvm_mce_cap_supported))) goto out; r = 0; break; case KVM_GET_MSR_FEATURE_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned int n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msr_based_features; if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) goto out; r = -E2BIG; if (n < msr_list.nmsrs) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msr_based_features, num_msr_based_features * sizeof(u32))) goto out; r = 0; break; } case KVM_GET_MSRS: r = msr_io(NULL, argp, do_get_msr_feature, 1); break; } default: r = -EINVAL; } out: return r; } static void wbinvd_ipi(void *garbage) { wbinvd(); } static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) { return kvm_arch_has_noncoherent_dma(vcpu->kvm); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { /* Address WBINVD may be executed by guest */ if (need_emulate_wbinvd(vcpu)) { if (kvm_x86_ops->has_wbinvd_exit()) cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); else if (vcpu->cpu != -1 && vcpu->cpu != cpu) smp_call_function_single(vcpu->cpu, wbinvd_ipi, NULL, 1); } kvm_x86_ops->vcpu_load(vcpu, cpu); /* Apply any externally detected TSC adjustments (due to suspend) */ if (unlikely(vcpu->arch.tsc_offset_adjustment)) { adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); vcpu->arch.tsc_offset_adjustment = 0; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); } if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : rdtsc() - vcpu->arch.last_host_tsc; if (tsc_delta < 0) mark_tsc_unstable("KVM discovered backwards TSC"); if (kvm_check_tsc_unstable()) { u64 offset = kvm_compute_tsc_offset(vcpu, vcpu->arch.last_guest_tsc); kvm_vcpu_write_tsc_offset(vcpu, offset); vcpu->arch.tsc_catchup = 1; } if (kvm_lapic_hv_timer_in_use(vcpu)) kvm_lapic_restart_hv_timer(vcpu); /* * On a host with synchronized TSC, there is no need to update * kvmclock on vcpu->cpu migration */ if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); if (vcpu->cpu != cpu) kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); vcpu->cpu = cpu; } kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); } static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) return; vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal.preempted, offsetof(struct kvm_steal_time, preempted), sizeof(vcpu->arch.st.steal.preempted)); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { int idx; if (vcpu->preempted) vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); /* * Disable page faults because we're in atomic context here. * kvm_write_guest_offset_cached() would call might_fault() * that relies on pagefault_disable() to tell if there's a * bug. NOTE: the write to guest memory may not go through if * during postcopy live migration or if there's heavy guest * paging. */ pagefault_disable(); /* * kvm_memslots() will be called by * kvm_write_guest_offset_cached() so take the srcu lock. */ idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_steal_time_set_preempted(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, idx); pagefault_enable(); kvm_x86_ops->vcpu_put(vcpu); vcpu->arch.last_host_tsc = rdtsc(); /* * If userspace has set any breakpoints or watchpoints, dr6 is restored * on every vmexit, but if not, we might have a stale dr6 from the * guest. do_debug expects dr6 to be cleared after it runs, do the same. */ set_debugreg(0, 6); } static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { if (vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); return kvm_apic_get_state(vcpu, s); } static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { int r; r = kvm_apic_set_state(vcpu, s); if (r) return r; update_cr8_intercept(vcpu); return 0; } static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) { return (!lapic_in_kernel(vcpu) || kvm_apic_accept_pic_intr(vcpu)); } /* * if userspace requested an interrupt window, check that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) { return kvm_arch_interrupt_allowed(vcpu) && !kvm_cpu_has_interrupt(vcpu) && !kvm_event_needs_reinjection(vcpu) && kvm_cpu_accept_dm_intr(vcpu); } static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq >= KVM_NR_INTERRUPTS) return -EINVAL; if (!irqchip_in_kernel(vcpu->kvm)) { kvm_queue_interrupt(vcpu, irq->irq, false); kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } /* * With in-kernel LAPIC, we only use this to inject EXTINT, so * fail for in-kernel 8259. */ if (pic_in_kernel(vcpu->kvm)) return -ENXIO; if (vcpu->arch.pending_external_vector != -1) return -EEXIST; vcpu->arch.pending_external_vector = irq->irq; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) { kvm_inject_nmi(vcpu); return 0; } static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) { kvm_make_request(KVM_REQ_SMI, vcpu); return 0; } static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac) { if (tac->flags) return -EINVAL; vcpu->arch.tpr_access_reporting = !!tac->enabled; return 0; } static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, u64 mcg_cap) { int r; unsigned bank_num = mcg_cap & 0xff, bank; r = -EINVAL; if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) goto out; if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) goto out; r = 0; vcpu->arch.mcg_cap = mcg_cap; /* Init IA32_MCG_CTL to all 1s */ if (mcg_cap & MCG_CTL_P) vcpu->arch.mcg_ctl = ~(u64)0; /* Init IA32_MCi_CTL to all 1s */ for (bank = 0; bank < bank_num; bank++) vcpu->arch.mce_banks[bank*4] = ~(u64)0; if (kvm_x86_ops->setup_mce) kvm_x86_ops->setup_mce(vcpu); out: return r; } static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; u64 *banks = vcpu->arch.mce_banks; if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) return -EINVAL; /* * if IA32_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && vcpu->arch.mcg_ctl != ~(u64)0) return 0; banks += 4 * mce->bank; /* * if IA32_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) return 0; if (mce->status & MCI_STATUS_UC) { if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return 0; } if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; vcpu->arch.mcg_status = mce->mcg_status; banks[1] = mce->status; kvm_queue_exception(vcpu, MC_VECTOR); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; banks[1] = mce->status; } else banks[1] |= MCI_STATUS_OVER; return 0; } static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { process_nmi(vcpu); /* * FIXME: pass injected and pending separately. This is only * needed for nested virtualization, whose state cannot be * migrated yet. For now we can combine them. */ events->exception.injected = (vcpu->arch.exception.pending || vcpu->arch.exception.injected) && !kvm_exception_is_soft(vcpu->arch.exception.nr); events->exception.nr = vcpu->arch.exception.nr; events->exception.has_error_code = vcpu->arch.exception.has_error_code; events->exception.pad = 0; events->exception.error_code = vcpu->arch.exception.error_code; events->interrupt.injected = vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; events->interrupt.nr = vcpu->arch.interrupt.nr; events->interrupt.soft = 0; events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); events->nmi.injected = vcpu->arch.nmi_injected; events->nmi.pending = vcpu->arch.nmi_pending != 0; events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); events->nmi.pad = 0; events->sipi_vector = 0; /* never valid when reporting to user space */ events->smi.smm = is_smm(vcpu); events->smi.pending = vcpu->arch.smi_pending; events->smi.smm_inside_nmi = !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); events->smi.latched_init = kvm_lapic_latched_init(vcpu); events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SHADOW | KVM_VCPUEVENT_VALID_SMM); memset(&events->reserved, 0, sizeof(events->reserved)); } static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR | KVM_VCPUEVENT_VALID_SHADOW | KVM_VCPUEVENT_VALID_SMM)) return -EINVAL; if (events->exception.injected && (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || is_guest_mode(vcpu))) return -EINVAL; /* INITs are latched while in SMM */ if (events->flags & KVM_VCPUEVENT_VALID_SMM && (events->smi.smm || events->smi.pending) && vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) return -EINVAL; process_nmi(vcpu); vcpu->arch.exception.injected = false; vcpu->arch.exception.pending = events->exception.injected; vcpu->arch.exception.nr = events->exception.nr; vcpu->arch.exception.has_error_code = events->exception.has_error_code; vcpu->arch.exception.error_code = events->exception.error_code; vcpu->arch.interrupt.injected = events->interrupt.injected; vcpu->arch.interrupt.nr = events->interrupt.nr; vcpu->arch.interrupt.soft = events->interrupt.soft; if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) kvm_x86_ops->set_interrupt_shadow(vcpu, events->interrupt.shadow); vcpu->arch.nmi_injected = events->nmi.injected; if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) vcpu->arch.nmi_pending = events->nmi.pending; kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && lapic_in_kernel(vcpu)) vcpu->arch.apic->sipi_vector = events->sipi_vector; if (events->flags & KVM_VCPUEVENT_VALID_SMM) { u32 hflags = vcpu->arch.hflags; if (events->smi.smm) hflags |= HF_SMM_MASK; else hflags &= ~HF_SMM_MASK; kvm_set_hflags(vcpu, hflags); vcpu->arch.smi_pending = events->smi.pending; if (events->smi.smm) { if (events->smi.smm_inside_nmi) vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; else vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; if (lapic_in_kernel(vcpu)) { if (events->smi.latched_init) set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); else clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); } } } kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { unsigned long val; memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); kvm_get_dr(vcpu, 6, &val); dbgregs->dr6 = val; dbgregs->dr7 = vcpu->arch.dr7; dbgregs->flags = 0; memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); } static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { if (dbgregs->flags) return -EINVAL; if (dbgregs->dr6 & ~0xffffffffull) return -EINVAL; if (dbgregs->dr7 & ~0xffffffffull) return -EINVAL; memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); kvm_update_dr0123(vcpu); vcpu->arch.dr6 = dbgregs->dr6; kvm_update_dr6(vcpu); vcpu->arch.dr7 = dbgregs->dr7; kvm_update_dr7(vcpu); return 0; } #define XSTATE_COMPACTION_ENABLED (1ULL << 63) static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) { struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; u64 xstate_bv = xsave->header.xfeatures; u64 valid; /* * Copy legacy XSAVE area, to avoid complications with CPUID * leaves 0 and 1 in the loop below. */ memcpy(dest, xsave, XSAVE_HDR_OFFSET); /* Set XSTATE_BV */ xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; /* * Copy each region from the possibly compacted offset to the * non-compacted offset. */ valid = xstate_bv & ~XFEATURE_MASK_FPSSE; while (valid) { u64 feature = valid & -valid; int index = fls64(feature) - 1; void *src = get_xsave_addr(xsave, feature); if (src) { u32 size, offset, ecx, edx; cpuid_count(XSTATE_CPUID, index, &size, &offset, &ecx, &edx); if (feature == XFEATURE_MASK_PKRU) memcpy(dest + offset, &vcpu->arch.pkru, sizeof(vcpu->arch.pkru)); else memcpy(dest + offset, src, size); } valid -= feature; } } static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) { struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); u64 valid; /* * Copy legacy XSAVE area, to avoid complications with CPUID * leaves 0 and 1 in the loop below. */ memcpy(xsave, src, XSAVE_HDR_OFFSET); /* Set XSTATE_BV and possibly XCOMP_BV. */ xsave->header.xfeatures = xstate_bv; if (boot_cpu_has(X86_FEATURE_XSAVES)) xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; /* * Copy each region from the non-compacted offset to the * possibly compacted offset. */ valid = xstate_bv & ~XFEATURE_MASK_FPSSE; while (valid) { u64 feature = valid & -valid; int index = fls64(feature) - 1; void *dest = get_xsave_addr(xsave, feature); if (dest) { u32 size, offset, ecx, edx; cpuid_count(XSTATE_CPUID, index, &size, &offset, &ecx, &edx); if (feature == XFEATURE_MASK_PKRU) memcpy(&vcpu->arch.pkru, src + offset, sizeof(vcpu->arch.pkru)); else memcpy(dest, src + offset, size); } valid -= feature; } } static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { if (boot_cpu_has(X86_FEATURE_XSAVE)) { memset(guest_xsave, 0, sizeof(struct kvm_xsave)); fill_xsave((u8 *) guest_xsave->region, vcpu); } else { memcpy(guest_xsave->region, &vcpu->arch.guest_fpu.state.fxsave, sizeof(struct fxregs_state)); *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = XFEATURE_MASK_FPSSE; } } #define XSAVE_MXCSR_OFFSET 24 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { u64 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; if (boot_cpu_has(X86_FEATURE_XSAVE)) { /* * Here we allow setting states that are not present in * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility * with old userspace. */ if (xstate_bv & ~kvm_supported_xcr0() || mxcsr & ~mxcsr_feature_mask) return -EINVAL; load_xsave(vcpu, (u8 *)guest_xsave->region); } else { if (xstate_bv & ~XFEATURE_MASK_FPSSE || mxcsr & ~mxcsr_feature_mask) return -EINVAL; memcpy(&vcpu->arch.guest_fpu.state.fxsave, guest_xsave->region, sizeof(struct fxregs_state)); } return 0; } static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { if (!boot_cpu_has(X86_FEATURE_XSAVE)) { guest_xcrs->nr_xcrs = 0; return; } guest_xcrs->nr_xcrs = 1; guest_xcrs->flags = 0; guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; } static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { int i, r = 0; if (!boot_cpu_has(X86_FEATURE_XSAVE)) return -EINVAL; if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) return -EINVAL; for (i = 0; i < guest_xcrs->nr_xcrs; i++) /* Only support XCR0 currently */ if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, guest_xcrs->xcrs[i].value); break; } if (r) r = -EINVAL; return r; } /* * kvm_set_guest_paused() indicates to the guest kernel that it has been * stopped by the hypervisor. This function will be called from the host only. * EINVAL is returned when the host attempts to set the flag for a guest that * does not support pv clocks. */ static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) { if (!vcpu->arch.pv_time_enabled) return -EINVAL; vcpu->arch.pvclock_set_guest_stopped_request = true; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_HYPERV_SYNIC2: if (cap->args[0]) return -EINVAL; case KVM_CAP_HYPERV_SYNIC: if (!irqchip_in_kernel(vcpu->kvm)) return -EINVAL; return kvm_hv_activate_synic(vcpu, cap->cap == KVM_CAP_HYPERV_SYNIC2); default: return -EINVAL; } } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; union { struct kvm_lapic_state *lapic; struct kvm_xsave *xsave; struct kvm_xcrs *xcrs; void *buffer; } u; vcpu_load(vcpu); u.buffer = NULL; switch (ioctl) { case KVM_GET_LAPIC: { r = -EINVAL; if (!lapic_in_kernel(vcpu)) goto out; u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!u.lapic) goto out; r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) goto out; r = 0; break; } case KVM_SET_LAPIC: { r = -EINVAL; if (!lapic_in_kernel(vcpu)) goto out; u.lapic = memdup_user(argp, sizeof(*u.lapic)); if (IS_ERR(u.lapic)) { r = PTR_ERR(u.lapic); goto out_nofree; } r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); break; } case KVM_NMI: { r = kvm_vcpu_ioctl_nmi(vcpu); break; } case KVM_SMI: { r = kvm_vcpu_ioctl_smi(vcpu); break; } case KVM_SET_CPUID: { struct kvm_cpuid __user *cpuid_arg = argp; struct kvm_cpuid cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); break; } case KVM_SET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, cpuid_arg->entries); break; } case KVM_GET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_GET_MSRS: { int idx = srcu_read_lock(&vcpu->kvm->srcu); r = msr_io(vcpu, argp, do_get_msr, 1); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; } case KVM_SET_MSRS: { int idx = srcu_read_lock(&vcpu->kvm->srcu); r = msr_io(vcpu, argp, do_set_msr, 0); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; } case KVM_TPR_ACCESS_REPORTING: { struct kvm_tpr_access_ctl tac; r = -EFAULT; if (copy_from_user(&tac, argp, sizeof tac)) goto out; r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tac, sizeof tac)) goto out; r = 0; break; }; case KVM_SET_VAPIC_ADDR: { struct kvm_vapic_addr va; int idx; r = -EINVAL; if (!lapic_in_kernel(vcpu)) goto out; r = -EFAULT; if (copy_from_user(&va, argp, sizeof va)) goto out; idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; } case KVM_X86_SETUP_MCE: { u64 mcg_cap; r = -EFAULT; if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) goto out; r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); break; } case KVM_X86_SET_MCE: { struct kvm_x86_mce mce; r = -EFAULT; if (copy_from_user(&mce, argp, sizeof mce)) goto out; r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); break; } case KVM_GET_VCPU_EVENTS: { struct kvm_vcpu_events events; kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); r = -EFAULT; if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) break; r = 0; break; } case KVM_SET_VCPU_EVENTS: { struct kvm_vcpu_events events; r = -EFAULT; if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) break; r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); break; } case KVM_GET_DEBUGREGS: { struct kvm_debugregs dbgregs; kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); r = -EFAULT; if (copy_to_user(argp, &dbgregs, sizeof(struct kvm_debugregs))) break; r = 0; break; } case KVM_SET_DEBUGREGS: { struct kvm_debugregs dbgregs; r = -EFAULT; if (copy_from_user(&dbgregs, argp, sizeof(struct kvm_debugregs))) break; r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); break; } case KVM_GET_XSAVE: { u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); r = -ENOMEM; if (!u.xsave) break; kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); r = -EFAULT; if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) break; r = 0; break; } case KVM_SET_XSAVE: { u.xsave = memdup_user(argp, sizeof(*u.xsave)); if (IS_ERR(u.xsave)) { r = PTR_ERR(u.xsave); goto out_nofree; } r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); break; } case KVM_GET_XCRS: { u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); r = -ENOMEM; if (!u.xcrs) break; kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); r = -EFAULT; if (copy_to_user(argp, u.xcrs, sizeof(struct kvm_xcrs))) break; r = 0; break; } case KVM_SET_XCRS: { u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); if (IS_ERR(u.xcrs)) { r = PTR_ERR(u.xcrs); goto out_nofree; } r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); break; } case KVM_SET_TSC_KHZ: { u32 user_tsc_khz; r = -EINVAL; user_tsc_khz = (u32)arg; if (user_tsc_khz >= kvm_max_guest_tsc_khz) goto out; if (user_tsc_khz == 0) user_tsc_khz = tsc_khz; if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) r = 0; goto out; } case KVM_GET_TSC_KHZ: { r = vcpu->arch.virtual_tsc_khz; goto out; } case KVM_KVMCLOCK_CTRL: { r = kvm_set_guest_paused(vcpu); goto out; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) goto out; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); break; } case KVM_GET_NESTED_STATE: { struct kvm_nested_state __user *user_kvm_nested_state = argp; u32 user_data_size; r = -EINVAL; if (!kvm_x86_ops->get_nested_state) break; BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); r = -EFAULT; if (get_user(user_data_size, &user_kvm_nested_state->size)) break; r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, user_data_size); if (r < 0) break; if (r > user_data_size) { if (put_user(r, &user_kvm_nested_state->size)) r = -EFAULT; else r = -E2BIG; break; } r = 0; break; } case KVM_SET_NESTED_STATE: { struct kvm_nested_state __user *user_kvm_nested_state = argp; struct kvm_nested_state kvm_state; r = -EINVAL; if (!kvm_x86_ops->set_nested_state) break; r = -EFAULT; if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) break; r = -EINVAL; if (kvm_state.size < sizeof(kvm_state)) break; if (kvm_state.flags & ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE)) break; /* nested_run_pending implies guest_mode. */ if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING) break; r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); break; } default: r = -EINVAL; } out: kfree(u.buffer); out_nofree: vcpu_put(vcpu); return r; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) { int ret; if (addr > (unsigned int)(-3 * PAGE_SIZE)) return -EINVAL; ret = kvm_x86_ops->set_tss_addr(kvm, addr); return ret; } static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); } static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages) { if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) return -EINVAL; mutex_lock(&kvm->slots_lock); kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; mutex_unlock(&kvm->slots_lock); return 0; } static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { return kvm->arch.n_max_mmu_pages; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { struct kvm_pic *pic = kvm->arch.vpic; int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: memcpy(&chip->chip.pic, &pic->pics[0], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_PIC_SLAVE: memcpy(&chip->chip.pic, &pic->pics[1], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_IOAPIC: kvm_get_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } return r; } static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { struct kvm_pic *pic = kvm->arch.vpic; int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: spin_lock(&pic->lock); memcpy(&pic->pics[0], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic->lock); break; case KVM_IRQCHIP_PIC_SLAVE: spin_lock(&pic->lock); memcpy(&pic->pics[1], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic->lock); break; case KVM_IRQCHIP_IOAPIC: kvm_set_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } kvm_pic_update_irq(pic); return r; } static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) { struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); mutex_lock(&kps->lock); memcpy(ps, &kps->channels, sizeof(*ps)); mutex_unlock(&kps->lock); return 0; } static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int i; struct kvm_pit *pit = kvm->arch.vpit; mutex_lock(&pit->pit_state.lock); memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); for (i = 0; i < 3; i++) kvm_pit_load_count(pit, i, ps->channels[i].count, 0); mutex_unlock(&pit->pit_state.lock); return 0; } static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, sizeof(ps->channels)); ps->flags = kvm->arch.vpit->pit_state.flags; mutex_unlock(&kvm->arch.vpit->pit_state.lock); memset(&ps->reserved, 0, sizeof(ps->reserved)); return 0; } static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int start = 0; int i; u32 prev_legacy, cur_legacy; struct kvm_pit *pit = kvm->arch.vpit; mutex_lock(&pit->pit_state.lock); prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; if (!prev_legacy && cur_legacy) start = 1; memcpy(&pit->pit_state.channels, &ps->channels, sizeof(pit->pit_state.channels)); pit->pit_state.flags = ps->flags; for (i = 0; i < 3; i++) kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, start && i == 0); mutex_unlock(&pit->pit_state.lock); return 0; } static int kvm_vm_ioctl_reinject(struct kvm *kvm, struct kvm_reinject_control *control) { struct kvm_pit *pit = kvm->arch.vpit; if (!pit) return -ENXIO; /* pit->pit_state.lock was overloaded to prevent userspace from getting * an inconsistent state after running multiple KVM_REINJECT_CONTROL * ioctls in parallel. Use a separate lock if that ioctl isn't rare. */ mutex_lock(&pit->pit_state.lock); kvm_pit_set_reinject(pit, control->pit_reinject); mutex_unlock(&pit->pit_state.lock); return 0; } /** * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot * @kvm: kvm instance * @log: slot id and address to which we copy the log * * Steps 1-4 below provide general overview of dirty page logging. See * kvm_get_dirty_log_protect() function description for additional details. * * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we * always flush the TLB (step 4) even if previous step failed and the dirty * bitmap may be corrupt. Regardless of previous outcome the KVM logging API * does not preclude user space subsequent dirty log read. Flushing TLB ensures * writes will be marked dirty for next log read. * * 1. Take a snapshot of the bit and clear it if needed. * 2. Write protect the corresponding page. * 3. Copy the snapshot to the userspace. * 4. Flush TLB's if needed. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { bool is_dirty = false; int r; mutex_lock(&kvm->slots_lock); /* * Flush potentially hardware-cached dirty pages to dirty_bitmap. */ if (kvm_x86_ops->flush_log_dirty) kvm_x86_ops->flush_log_dirty(kvm); r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); /* * All the TLBs can be flushed out of mmu lock, see the comments in * kvm_mmu_slot_remove_write_access(). */ lockdep_assert_held(&kvm->slots_lock); if (is_dirty) kvm_flush_remote_tlbs(kvm); mutex_unlock(&kvm->slots_lock); return r; } int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, bool line_status) { if (!irqchip_in_kernel(kvm)) return -ENXIO; irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event->irq, irq_event->level, line_status); return 0; } static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_DISABLE_QUIRKS: kvm->arch.disabled_quirks = cap->args[0]; r = 0; break; case KVM_CAP_SPLIT_IRQCHIP: { mutex_lock(&kvm->lock); r = -EINVAL; if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) goto split_irqchip_unlock; r = -EEXIST; if (irqchip_in_kernel(kvm)) goto split_irqchip_unlock; if (kvm->created_vcpus) goto split_irqchip_unlock; r = kvm_setup_empty_irq_routing(kvm); if (r) goto split_irqchip_unlock; /* Pairs with irqchip_in_kernel. */ smp_wmb(); kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; r = 0; split_irqchip_unlock: mutex_unlock(&kvm->lock); break; } case KVM_CAP_X2APIC_API: r = -EINVAL; if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) break; if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) kvm->arch.x2apic_format = true; if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) kvm->arch.x2apic_broadcast_quirk_disabled = true; r = 0; break; case KVM_CAP_X86_DISABLE_EXITS: r = -EINVAL; if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) break; if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && kvm_can_mwait_in_guest()) kvm->arch.mwait_in_guest = true; if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) kvm->arch.hlt_in_guest = true; if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) kvm->arch.pause_in_guest = true; r = 0; break; case KVM_CAP_MSR_PLATFORM_INFO: kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; r = 0; break; default: r = -EINVAL; break; } return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -ENOTTY; /* * This union makes it completely explicit to gcc-3.x * that these two variables' stack usage should be * combined, not added together. */ union { struct kvm_pit_state ps; struct kvm_pit_state2 ps2; struct kvm_pit_config pit_config; } u; switch (ioctl) { case KVM_SET_TSS_ADDR: r = kvm_vm_ioctl_set_tss_addr(kvm, arg); break; case KVM_SET_IDENTITY_MAP_ADDR: { u64 ident_addr; mutex_lock(&kvm->lock); r = -EINVAL; if (kvm->created_vcpus) goto set_identity_unlock; r = -EFAULT; if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) goto set_identity_unlock; r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); set_identity_unlock: mutex_unlock(&kvm->lock); break; } case KVM_SET_NR_MMU_PAGES: r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); break; case KVM_GET_NR_MMU_PAGES: r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; case KVM_CREATE_IRQCHIP: { mutex_lock(&kvm->lock); r = -EEXIST; if (irqchip_in_kernel(kvm)) goto create_irqchip_unlock; r = -EINVAL; if (kvm->created_vcpus) goto create_irqchip_unlock; r = kvm_pic_init(kvm); if (r) goto create_irqchip_unlock; r = kvm_ioapic_init(kvm); if (r) { kvm_pic_destroy(kvm); goto create_irqchip_unlock; } r = kvm_setup_default_irq_routing(kvm); if (r) { kvm_ioapic_destroy(kvm); kvm_pic_destroy(kvm); goto create_irqchip_unlock; } /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ smp_wmb(); kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; create_irqchip_unlock: mutex_unlock(&kvm->lock); break; } case KVM_CREATE_PIT: u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; goto create_pit; case KVM_CREATE_PIT2: r = -EFAULT; if (copy_from_user(&u.pit_config, argp, sizeof(struct kvm_pit_config))) goto out; create_pit: mutex_lock(&kvm->lock); r = -EEXIST; if (kvm->arch.vpit) goto create_pit_unlock; r = -ENOMEM; kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); if (kvm->arch.vpit) r = 0; create_pit_unlock: mutex_unlock(&kvm->lock); break; case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip; chip = memdup_user(argp, sizeof(*chip)); if (IS_ERR(chip)) { r = PTR_ERR(chip); goto out; } r = -ENXIO; if (!irqchip_kernel(kvm)) goto get_irqchip_out; r = kvm_vm_ioctl_get_irqchip(kvm, chip); if (r) goto get_irqchip_out; r = -EFAULT; if (copy_to_user(argp, chip, sizeof *chip)) goto get_irqchip_out; r = 0; get_irqchip_out: kfree(chip); break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip; chip = memdup_user(argp, sizeof(*chip)); if (IS_ERR(chip)) { r = PTR_ERR(chip); goto out; } r = -ENXIO; if (!irqchip_kernel(kvm)) goto set_irqchip_out; r = kvm_vm_ioctl_set_irqchip(kvm, chip); if (r) goto set_irqchip_out; r = 0; set_irqchip_out: kfree(chip); break; } case KVM_GET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit(kvm, &u.ps); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) goto out; r = 0; break; } case KVM_SET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof u.ps)) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit(kvm, &u.ps); break; } case KVM_GET_PIT2: { r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) goto out; r = 0; break; } case KVM_SET_PIT2: { r = -EFAULT; if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); break; } case KVM_REINJECT_CONTROL: { struct kvm_reinject_control control; r = -EFAULT; if (copy_from_user(&control, argp, sizeof(control))) goto out; r = kvm_vm_ioctl_reinject(kvm, &control); break; } case KVM_SET_BOOT_CPU_ID: r = 0; mutex_lock(&kvm->lock); if (kvm->created_vcpus) r = -EBUSY; else kvm->arch.bsp_vcpu_id = arg; mutex_unlock(&kvm->lock); break; case KVM_XEN_HVM_CONFIG: { struct kvm_xen_hvm_config xhc; r = -EFAULT; if (copy_from_user(&xhc, argp, sizeof(xhc))) goto out; r = -EINVAL; if (xhc.flags) goto out; memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); r = 0; break; } case KVM_SET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; r = -EFAULT; if (copy_from_user(&user_ns, argp, sizeof(user_ns))) goto out; r = -EINVAL; if (user_ns.flags) goto out; r = 0; /* * TODO: userspace has to take care of races with VCPU_RUN, so * kvm_gen_update_masterclock() can be cut down to locked * pvclock_update_vm_gtod_copy(). */ kvm_gen_update_masterclock(kvm); now_ns = get_kvmclock_ns(kvm); kvm->arch.kvmclock_offset += user_ns.clock - now_ns; kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); break; } case KVM_GET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; now_ns = get_kvmclock_ns(kvm); user_ns.clock = now_ns; user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; memset(&user_ns.pad, 0, sizeof(user_ns.pad)); r = -EFAULT; if (copy_to_user(argp, &user_ns, sizeof(user_ns))) goto out; r = 0; break; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) goto out; r = kvm_vm_ioctl_enable_cap(kvm, &cap); break; } case KVM_MEMORY_ENCRYPT_OP: { r = -ENOTTY; if (kvm_x86_ops->mem_enc_op) r = kvm_x86_ops->mem_enc_op(kvm, argp); break; } case KVM_MEMORY_ENCRYPT_REG_REGION: { struct kvm_enc_region region; r = -EFAULT; if (copy_from_user(®ion, argp, sizeof(region))) goto out; r = -ENOTTY; if (kvm_x86_ops->mem_enc_reg_region) r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); break; } case KVM_MEMORY_ENCRYPT_UNREG_REGION: { struct kvm_enc_region region; r = -EFAULT; if (copy_from_user(®ion, argp, sizeof(region))) goto out; r = -ENOTTY; if (kvm_x86_ops->mem_enc_unreg_region) r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); break; } case KVM_HYPERV_EVENTFD: { struct kvm_hyperv_eventfd hvevfd; r = -EFAULT; if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) goto out; r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); break; } default: r = -ENOTTY; } out: return r; } static void kvm_init_msr_list(void) { u32 dummy[2]; unsigned i, j; for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; /* * Even MSRs that are valid in the host may not be exposed * to the guests in some cases. */ switch (msrs_to_save[i]) { case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported()) continue; break; case MSR_TSC_AUX: if (!kvm_x86_ops->rdtscp_supported()) continue; break; default: break; } if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; } num_msrs_to_save = j; for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) continue; if (j < i) emulated_msrs[j] = emulated_msrs[i]; j++; } num_emulated_msrs = j; for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { struct kvm_msr_entry msr; msr.index = msr_based_features[i]; if (kvm_get_msr_feature(&msr)) continue; if (j < i) msr_based_features[j] = msr_based_features[i]; j++; } num_msr_based_features = j; } static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v) { int handled = 0; int n; do { n = min(len, 8); if (!(lapic_in_kernel(vcpu) && !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) break; handled += n; addr += n; len -= n; v += n; } while (len); return handled; } static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) { int handled = 0; int n; do { n = min(len, 8); if (!(lapic_in_kernel(vcpu) && !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, addr, n, v)) && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) break; trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); handled += n; addr += n; len -= n; v += n; } while (len); return handled; } static void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->set_segment(vcpu, var, seg); } void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->get_segment(vcpu, var, seg); } gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception) { gpa_t t_gpa; BUG_ON(!mmu_is_nested(vcpu)); /* NPT walks are always user-walks */ access |= PFERR_USER_MASK; t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); return t_gpa; } gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_FETCH_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_WRITE_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } /* uses this to access any guest's mapped memory without checking CPL */ gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); } static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, offset, toread); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= toread; data += toread; addr += toread; } out: return r; } /* used for instruction fetching */ static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; unsigned offset; int ret; /* Inline kvm_read_guest_virt_helper for speed. */ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, exception); if (unlikely(gpa == UNMAPPED_GVA)) return X86EMUL_PROPAGATE_FAULT; offset = addr & (PAGE_SIZE-1); if (WARN_ON(offset + bytes > PAGE_SIZE)) bytes = (unsigned)PAGE_SIZE - offset; ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, offset, bytes); if (unlikely(ret < 0)) return X86EMUL_IO_NEEDED; return X86EMUL_CONTINUE; } int kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; /* * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED * is returned, but our callers are not ready for that and they blindly * call kvm_inject_page_fault. Ensure that they at least do not leak * uninitialized kernel stack memory into cr2 and error code. */ memset(exception, 0, sizeof(*exception)); return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); } EXPORT_SYMBOL_GPL(kvm_read_guest_virt); static int emulator_read_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); u32 access = 0; if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) access |= PFERR_USER_MASK; return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); } static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; } static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= towrite; data += towrite; addr += towrite; } out: return r; } static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); u32 access = PFERR_WRITE_MASK; if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) access |= PFERR_USER_MASK; return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, access, exception); } int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { /* kvm_write_guest_virt_system can pull in tons of pages. */ vcpu->arch.l1tf_flush_l1d = true; /* * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED * is returned, but our callers are not ready for that and they blindly * call kvm_inject_page_fault. Ensure that they at least do not leak * uninitialized kernel stack memory into cr2 and error code. */ memset(exception, 0, sizeof(*exception)); return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, PFERR_WRITE_MASK, exception); } EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); int handle_ud(struct kvm_vcpu *vcpu) { int emul_type = EMULTYPE_TRAP_UD; enum emulation_result er; char sig[5]; /* ud2; .ascii "kvm" */ struct x86_exception e; if (force_emulation_prefix && kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 && memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); emul_type = 0; } er = kvm_emulate_instruction(vcpu, emul_type); if (er == EMULATE_USER_EXIT) return 0; if (er != EMULATE_DONE) kvm_queue_exception(vcpu, UD_VECTOR); return 1; } EXPORT_SYMBOL_GPL(handle_ud); static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t gpa, bool write) { /* For APIC access vmexit */ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) return 1; if (vcpu_match_mmio_gpa(vcpu, gpa)) { trace_vcpu_match_mmio(gva, gpa, write, true); return 1; } return 0; } static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t *gpa, struct x86_exception *exception, bool write) { u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) | (write ? PFERR_WRITE_MASK : 0); /* * currently PKRU is only applied to ept enabled guest so * there is no pkey in EPT page table for L1 guest or EPT * shadow page table for L2 guest. */ if (vcpu_match_mmio_gva(vcpu, gva) && !permission_fault(vcpu, vcpu->arch.walk_mmu, vcpu->arch.access, 0, access)) { *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | (gva & (PAGE_SIZE - 1)); trace_vcpu_match_mmio(gva, *gpa, write, false); return 1; } *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); if (*gpa == UNMAPPED_GVA) return -1; return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes) { int ret; ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); if (ret < 0) return 0; kvm_page_track_write(vcpu, gpa, val, bytes); return 1; } struct read_write_emulator_ops { int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, int bytes); int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes); int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val); int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes); bool write; }; static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) { if (vcpu->mmio_read_completed) { trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, vcpu->mmio_fragments[0].gpa, val); vcpu->mmio_read_completed = 0; return 1; } return 0; } static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); } static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { return emulator_write_phys(vcpu, gpa, val, bytes); } static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) { trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); return vcpu_mmio_write(vcpu, gpa, bytes, val); } static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); return X86EMUL_IO_NEEDED; } static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); return X86EMUL_CONTINUE; } static const struct read_write_emulator_ops read_emultor = { .read_write_prepare = read_prepare, .read_write_emulate = read_emulate, .read_write_mmio = vcpu_mmio_read, .read_write_exit_mmio = read_exit_mmio, }; static const struct read_write_emulator_ops write_emultor = { .read_write_emulate = write_emulate, .read_write_mmio = write_mmio, .read_write_exit_mmio = write_exit_mmio, .write = true, }; static int emulator_read_write_onepage(unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu, const struct read_write_emulator_ops *ops) { gpa_t gpa; int handled, ret; bool write = ops->write; struct kvm_mmio_fragment *frag; struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; /* * If the exit was due to a NPF we may already have a GPA. * If the GPA is present, use it to avoid the GVA to GPA table walk. * Note, this cannot be used on string operations since string * operation using rep will only have the initial GPA from the NPF * occurred. */ if (vcpu->arch.gpa_available && emulator_can_use_gpa(ctxt) && (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { gpa = vcpu->arch.gpa_val; ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); } else { ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); if (ret < 0) return X86EMUL_PROPAGATE_FAULT; } if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; /* * Is this MMIO handled locally? */ handled = ops->read_write_mmio(vcpu, gpa, bytes, val); if (handled == bytes) return X86EMUL_CONTINUE; gpa += handled; bytes -= handled; val += handled; WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; frag->gpa = gpa; frag->data = val; frag->len = bytes; return X86EMUL_CONTINUE; } static int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, const struct read_write_emulator_ops *ops) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); gpa_t gpa; int rc; if (ops->read_write_prepare && ops->read_write_prepare(vcpu, val, bytes)) return X86EMUL_CONTINUE; vcpu->mmio_nr_fragments = 0; /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { int now; now = -addr & ~PAGE_MASK; rc = emulator_read_write_onepage(addr, val, now, exception, vcpu, ops); if (rc != X86EMUL_CONTINUE) return rc; addr += now; if (ctxt->mode != X86EMUL_MODE_PROT64) addr = (u32)addr; val += now; bytes -= now; } rc = emulator_read_write_onepage(addr, val, bytes, exception, vcpu, ops); if (rc != X86EMUL_CONTINUE) return rc; if (!vcpu->mmio_nr_fragments) return rc; gpa = vcpu->mmio_fragments[0].gpa; vcpu->mmio_needed = 1; vcpu->mmio_cur_fragment = 0; vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; vcpu->run->exit_reason = KVM_EXIT_MMIO; vcpu->run->mmio.phys_addr = gpa; return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); } static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception) { return emulator_read_write(ctxt, addr, val, bytes, exception, &read_emultor); } static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception) { return emulator_read_write(ctxt, addr, (void *)val, bytes, exception, &write_emultor); } #define CMPXCHG_TYPE(t, ptr, old, new) \ (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) #ifdef CONFIG_X86_64 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) #else # define CMPXCHG64(ptr, old, new) \ (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) #endif static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); gpa_t gpa; struct page *page; char *kaddr; bool exchanged; /* guests cmpxchg8b have to be emulated atomically */ if (bytes > 8 || (bytes & (bytes - 1))) goto emul_write; gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); if (gpa == UNMAPPED_GVA || (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto emul_write; if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) goto emul_write; page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); if (is_error_page(page)) goto emul_write; kaddr = kmap_atomic(page); kaddr += offset_in_page(gpa); switch (bytes) { case 1: exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); break; case 2: exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); break; case 4: exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); break; case 8: exchanged = CMPXCHG64(kaddr, old, new); break; default: BUG(); } kunmap_atomic(kaddr); kvm_release_page_dirty(page); if (!exchanged) return X86EMUL_CMPXCHG_FAILED; kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); kvm_page_track_write(vcpu, gpa, new, bytes); return X86EMUL_CONTINUE; emul_write: printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); return emulator_write_emulated(ctxt, addr, new, bytes, exception); } static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) { int r = 0, i; for (i = 0; i < vcpu->arch.pio.count; i++) { if (vcpu->arch.pio.in) r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); else r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); if (r) break; pd += vcpu->arch.pio.size; } return r; } static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count, bool in) { vcpu->arch.pio.port = port; vcpu->arch.pio.in = in; vcpu->arch.pio.count = count; vcpu->arch.pio.size = size; if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { vcpu->arch.pio.count = 0; return 1; } vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = count; vcpu->run->io.port = port; return 0; } static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, void *val, unsigned int count) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); int ret; if (vcpu->arch.pio.count) goto data_avail; memset(vcpu->arch.pio_data, 0, size * count); ret = emulator_pio_in_out(vcpu, size, port, val, count, true); if (ret) { data_avail: memcpy(val, vcpu->arch.pio_data, size * count); trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); vcpu->arch.pio.count = 0; return 1; } return 0; } static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, const void *val, unsigned int count) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); memcpy(vcpu->arch.pio_data, val, size * count); trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_x86_ops->get_segment_base(vcpu, seg); } static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) { kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); } static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) { if (!need_emulate_wbinvd(vcpu)) return X86EMUL_CONTINUE; if (kvm_x86_ops->has_wbinvd_exit()) { int cpu = get_cpu(); cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, wbinvd_ipi, NULL, 1); put_cpu(); cpumask_clear(vcpu->arch.wbinvd_dirty_mask); } else wbinvd(); return X86EMUL_CONTINUE; } int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) { kvm_emulate_wbinvd_noskip(vcpu); return kvm_skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) { kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); } static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) { return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); } static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) { return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); } static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); unsigned long value; switch (cr) { case 0: value = kvm_read_cr0(vcpu); break; case 2: value = vcpu->arch.cr2; break; case 3: value = kvm_read_cr3(vcpu); break; case 4: value = kvm_read_cr4(vcpu); break; case 8: value = kvm_get_cr8(vcpu); break; default: kvm_err("%s: unexpected cr %u\n", __func__, cr); return 0; } return value; } static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); int res = 0; switch (cr) { case 0: res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); break; case 2: vcpu->arch.cr2 = val; break; case 3: res = kvm_set_cr3(vcpu, val); break; case 4: res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); break; case 8: res = kvm_set_cr8(vcpu, val); break; default: kvm_err("%s: unexpected cr %u\n", __func__, cr); res = -1; } return res; } static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) { return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); } static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); } static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); } static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); } static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); } static unsigned long emulator_get_cached_segment_base( struct x86_emulate_ctxt *ctxt, int seg) { return get_segment_base(emul_to_vcpu(ctxt), seg); } static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, struct desc_struct *desc, u32 *base3, int seg) { struct kvm_segment var; kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); *selector = var.selector; if (var.unusable) { memset(desc, 0, sizeof(*desc)); if (base3) *base3 = 0; return false; } if (var.g) var.limit >>= 12; set_desc_limit(desc, var.limit); set_desc_base(desc, (unsigned long)var.base); #ifdef CONFIG_X86_64 if (base3) *base3 = var.base >> 32; #endif desc->type = var.type; desc->s = var.s; desc->dpl = var.dpl; desc->p = var.present; desc->avl = var.avl; desc->l = var.l; desc->d = var.db; desc->g = var.g; return true; } static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, u32 base3, int seg) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); struct kvm_segment var; var.selector = selector; var.base = get_desc_base(desc); #ifdef CONFIG_X86_64 var.base |= ((u64)base3) << 32; #endif var.limit = get_desc_limit(desc); if (desc->g) var.limit = (var.limit << 12) | 0xfff; var.type = desc->type; var.dpl = desc->dpl; var.db = desc->d; var.s = desc->s; var.l = desc->l; var.g = desc->g; var.avl = desc->avl; var.present = desc->p; var.unusable = !var.present; var.padding = 0; kvm_set_segment(vcpu, &var, seg); return; } static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata) { struct msr_data msr; int r; msr.index = msr_index; msr.host_initiated = false; r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); if (r) return r; *pdata = msr.data; return 0; } static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 data) { struct msr_data msr; msr.data = data; msr.index = msr_index; msr.host_initiated = false; return kvm_set_msr(emul_to_vcpu(ctxt), &msr); } static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); return vcpu->arch.smbase; } static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); vcpu->arch.smbase = smbase; } static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc) { return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); } static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc, u64 *pdata) { return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); } static void emulator_halt(struct x86_emulate_ctxt *ctxt) { emul_to_vcpu(ctxt)->arch.halt_request = 1; } static int emulator_intercept(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage) { return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); } static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) { return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); } static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) { return kvm_register_read(emul_to_vcpu(ctxt), reg); } static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) { kvm_register_write(emul_to_vcpu(ctxt), reg, val); } static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) { kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); } static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) { return emul_to_vcpu(ctxt)->arch.hflags; } static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) { kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); } static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) { return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); } static const struct x86_emulate_ops emulate_ops = { .read_gpr = emulator_read_gpr, .write_gpr = emulator_write_gpr, .read_std = emulator_read_std, .write_std = emulator_write_std, .read_phys = kvm_read_guest_phys_system, .fetch = kvm_fetch_guest_virt, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, .invlpg = emulator_invlpg, .pio_in_emulated = emulator_pio_in_emulated, .pio_out_emulated = emulator_pio_out_emulated, .get_segment = emulator_get_segment, .set_segment = emulator_set_segment, .get_cached_segment_base = emulator_get_cached_segment_base, .get_gdt = emulator_get_gdt, .get_idt = emulator_get_idt, .set_gdt = emulator_set_gdt, .set_idt = emulator_set_idt, .get_cr = emulator_get_cr, .set_cr = emulator_set_cr, .cpl = emulator_get_cpl, .get_dr = emulator_get_dr, .set_dr = emulator_set_dr, .get_smbase = emulator_get_smbase, .set_smbase = emulator_set_smbase, .set_msr = emulator_set_msr, .get_msr = emulator_get_msr, .check_pmc = emulator_check_pmc, .read_pmc = emulator_read_pmc, .halt = emulator_halt, .wbinvd = emulator_wbinvd, .fix_hypercall = emulator_fix_hypercall, .intercept = emulator_intercept, .get_cpuid = emulator_get_cpuid, .set_nmi_mask = emulator_set_nmi_mask, .get_hflags = emulator_get_hflags, .set_hflags = emulator_set_hflags, .pre_leave_smm = emulator_pre_leave_smm, }; static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) { u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); /* * an sti; sti; sequence only disable interrupts for the first * instruction. So, if the last instruction, be it emulated or * not, left the system with the INT_STI flag enabled, it * means that the last instruction is an sti. We should not * leave the flag on in this case. The same goes for mov ss */ if (int_shadow & mask) mask = 0; if (unlikely(int_shadow || mask)) { kvm_x86_ops->set_interrupt_shadow(vcpu, mask); if (!mask) kvm_make_request(KVM_REQ_EVENT, vcpu); } } static bool inject_emulated_exception(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; if (ctxt->exception.vector == PF_VECTOR) return kvm_propagate_fault(vcpu, &ctxt->exception); if (ctxt->exception.error_code_valid) kvm_queue_exception_e(vcpu, ctxt->exception.vector, ctxt->exception.error_code); else kvm_queue_exception(vcpu, ctxt->exception.vector); return false; } static void init_emulate_ctxt(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int cs_db, cs_l; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); ctxt->eflags = kvm_get_rflags(vcpu); ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; ctxt->eip = kvm_rip_read(vcpu); ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); init_decode_cache(ctxt); vcpu->arch.emulate_regs_need_sync_from_vcpu = false; } int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int ret; init_emulate_ctxt(vcpu); ctxt->op_bytes = 2; ctxt->ad_bytes = 2; ctxt->_eip = ctxt->eip + inc_eip; ret = emulate_int_real(ctxt, irq); if (ret != X86EMUL_CONTINUE) return EMULATE_FAIL; ctxt->eip = ctxt->_eip; kvm_rip_write(vcpu, ctxt->eip); kvm_set_rflags(vcpu, ctxt->eflags); return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) { int r = EMULATE_DONE; ++vcpu->stat.insn_emulation_fail; trace_kvm_emulate_insn_failed(vcpu); if (emulation_type & EMULTYPE_NO_UD_ON_FAIL) return EMULATE_FAIL; if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; r = EMULATE_USER_EXIT; } kvm_queue_exception(vcpu, UD_VECTOR); return r; } static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, bool write_fault_to_shadow_pgtable, int emulation_type) { gpa_t gpa = cr2; kvm_pfn_t pfn; if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) return false; if (WARN_ON_ONCE(is_guest_mode(vcpu))) return false; if (!vcpu->arch.mmu.direct_map) { /* * Write permission should be allowed since only * write access need to be emulated. */ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); /* * If the mapping is invalid in guest, let cpu retry * it to generate fault. */ if (gpa == UNMAPPED_GVA) return true; } /* * Do not retry the unhandleable instruction if it faults on the * readonly host memory, otherwise it will goto a infinite loop: * retry instruction -> write #PF -> emulation fail -> retry * instruction -> ... */ pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); /* * If the instruction failed on the error pfn, it can not be fixed, * report the error to userspace. */ if (is_error_noslot_pfn(pfn)) return false; kvm_release_pfn_clean(pfn); /* The instructions are well-emulated on direct mmu. */ if (vcpu->arch.mmu.direct_map) { unsigned int indirect_shadow_pages; spin_lock(&vcpu->kvm->mmu_lock); indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; spin_unlock(&vcpu->kvm->mmu_lock); if (indirect_shadow_pages) kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); return true; } /* * if emulation was due to access to shadowed page table * and it failed try to unshadow page and re-enter the * guest to let CPU execute the instruction. */ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); /* * If the access faults on its page table, it can not * be fixed by unprotecting shadow page and it should * be reported to userspace. */ return !write_fault_to_shadow_pgtable; } static bool retry_instruction(struct x86_emulate_ctxt *ctxt, unsigned long cr2, int emulation_type) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); unsigned long last_retry_eip, last_retry_addr, gpa = cr2; last_retry_eip = vcpu->arch.last_retry_eip; last_retry_addr = vcpu->arch.last_retry_addr; /* * If the emulation is caused by #PF and it is non-page_table * writing instruction, it means the VM-EXIT is caused by shadow * page protected, we can zap the shadow page and retry this * instruction directly. * * Note: if the guest uses a non-page-table modifying instruction * on the PDE that points to the instruction, then we will unmap * the instruction and go to an infinite loop. So, we cache the * last retried eip and the last fault address, if we meet the eip * and the address again, we can break out of the potential infinite * loop. */ vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) return false; if (WARN_ON_ONCE(is_guest_mode(vcpu))) return false; if (x86_page_table_writing_insn(ctxt)) return false; if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) return false; vcpu->arch.last_retry_eip = ctxt->eip; vcpu->arch.last_retry_addr = cr2; if (!vcpu->arch.mmu.direct_map) gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); return true; } static int complete_emulated_mmio(struct kvm_vcpu *vcpu); static int complete_emulated_pio(struct kvm_vcpu *vcpu); static void kvm_smm_changed(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.hflags & HF_SMM_MASK)) { /* This is a good place to trace that we are exiting SMM. */ trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); /* Process a latched INIT or SMI, if any. */ kvm_make_request(KVM_REQ_EVENT, vcpu); } kvm_mmu_reset_context(vcpu); } static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) { unsigned changed = vcpu->arch.hflags ^ emul_flags; vcpu->arch.hflags = emul_flags; if (changed & HF_SMM_MASK) kvm_smm_changed(vcpu); } static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, unsigned long *db) { u32 dr6 = 0; int i; u32 enable, rwlen; enable = dr7; rwlen = dr7 >> 16; for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) dr6 |= (1 << i); return dr6; } static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) { struct kvm_run *kvm_run = vcpu->run; if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; kvm_run->debug.arch.exception = DB_VECTOR; kvm_run->exit_reason = KVM_EXIT_DEBUG; *r = EMULATE_USER_EXIT; } else { /* * "Certain debug exceptions may clear bit 0-3. The * remaining contents of the DR6 register are never * cleared by the processor". */ vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= DR6_BS | DR6_RTM; kvm_queue_exception(vcpu, DB_VECTOR); } } int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) { unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); int r = EMULATE_DONE; kvm_x86_ops->skip_emulated_instruction(vcpu); /* * rflags is the old, "raw" value of the flags. The new value has * not been saved yet. * * This is correct even for TF set by the guest, because "the * processor will not generate this exception after the instruction * that sets the TF flag". */ if (unlikely(rflags & X86_EFLAGS_TF)) kvm_vcpu_do_singlestep(vcpu, &r); return r == EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) { if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { struct kvm_run *kvm_run = vcpu->run; unsigned long eip = kvm_get_linear_rip(vcpu); u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, vcpu->arch.guest_debug_dr7, vcpu->arch.eff_db); if (dr6 != 0) { kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; kvm_run->debug.arch.pc = eip; kvm_run->debug.arch.exception = DB_VECTOR; kvm_run->exit_reason = KVM_EXIT_DEBUG; *r = EMULATE_USER_EXIT; return true; } } if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { unsigned long eip = kvm_get_linear_rip(vcpu); u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, vcpu->arch.dr7, vcpu->arch.db); if (dr6 != 0) { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= dr6 | DR6_RTM; kvm_queue_exception(vcpu, DB_VECTOR); *r = EMULATE_DONE; return true; } } return false; } static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) { switch (ctxt->opcode_len) { case 1: switch (ctxt->b) { case 0xe4: /* IN */ case 0xe5: case 0xec: case 0xed: case 0xe6: /* OUT */ case 0xe7: case 0xee: case 0xef: case 0x6c: /* INS */ case 0x6d: case 0x6e: /* OUTS */ case 0x6f: return true; } break; case 2: switch (ctxt->b) { case 0x33: /* RDPMC */ return true; } break; } return false; } int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2, int emulation_type, void *insn, int insn_len) { int r; struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; bool writeback = true; bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; vcpu->arch.l1tf_flush_l1d = true; /* * Clear write_fault_to_shadow_pgtable here to ensure it is * never reused. */ vcpu->arch.write_fault_to_shadow_pgtable = false; kvm_clear_exception_queue(vcpu); if (!(emulation_type & EMULTYPE_NO_DECODE)) { init_emulate_ctxt(vcpu); /* * We will reenter on the same instruction since * we do not set complete_userspace_io. This does not * handle watchpoints yet, those would be handled in * the emulate_ops. */ if (!(emulation_type & EMULTYPE_SKIP) && kvm_vcpu_check_breakpoint(vcpu, &r)) return r; ctxt->interruptibility = 0; ctxt->have_exception = false; ctxt->exception.vector = -1; ctxt->perm_ok = false; ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; r = x86_decode_insn(ctxt, insn, insn_len); trace_kvm_emulate_insn_start(vcpu); ++vcpu->stat.insn_emulation; if (r != EMULATION_OK) { if (emulation_type & EMULTYPE_TRAP_UD) return EMULATE_FAIL; if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, emulation_type)) return EMULATE_DONE; if (ctxt->have_exception && inject_emulated_exception(vcpu)) return EMULATE_DONE; if (emulation_type & EMULTYPE_SKIP) return EMULATE_FAIL; return handle_emulation_failure(vcpu, emulation_type); } } if ((emulation_type & EMULTYPE_VMWARE) && !is_vmware_backdoor_opcode(ctxt)) return EMULATE_FAIL; if (emulation_type & EMULTYPE_SKIP) { kvm_rip_write(vcpu, ctxt->_eip); if (ctxt->eflags & X86_EFLAGS_RF) kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); return EMULATE_DONE; } if (retry_instruction(ctxt, cr2, emulation_type)) return EMULATE_DONE; /* this is needed for vmware backdoor interface to work since it changes registers values during IO operation */ if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { vcpu->arch.emulate_regs_need_sync_from_vcpu = false; emulator_invalidate_register_cache(ctxt); } restart: /* Save the faulting GPA (cr2) in the address field */ ctxt->exception.address = cr2; r = x86_emulate_insn(ctxt); if (r == EMULATION_INTERCEPTED) return EMULATE_DONE; if (r == EMULATION_FAILED) { if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, emulation_type)) return EMULATE_DONE; return handle_emulation_failure(vcpu, emulation_type); } if (ctxt->have_exception) { r = EMULATE_DONE; if (inject_emulated_exception(vcpu)) return r; } else if (vcpu->arch.pio.count) { if (!vcpu->arch.pio.in) { /* FIXME: return into emulator if single-stepping. */ vcpu->arch.pio.count = 0; } else { writeback = false; vcpu->arch.complete_userspace_io = complete_emulated_pio; } r = EMULATE_USER_EXIT; } else if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) writeback = false; r = EMULATE_USER_EXIT; vcpu->arch.complete_userspace_io = complete_emulated_mmio; } else if (r == EMULATION_RESTART) goto restart; else r = EMULATE_DONE; if (writeback) { unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); toggle_interruptibility(vcpu, ctxt->interruptibility); vcpu->arch.emulate_regs_need_sync_to_vcpu = false; if (!ctxt->have_exception || exception_type(ctxt->exception.vector) == EXCPT_TRAP) { kvm_rip_write(vcpu, ctxt->eip); if (r == EMULATE_DONE && ctxt->tf) kvm_vcpu_do_singlestep(vcpu, &r); __kvm_set_rflags(vcpu, ctxt->eflags); } /* * For STI, interrupts are shadowed; so KVM_REQ_EVENT will * do nothing, and it will be requested again as soon as * the shadow expires. But we still need to check here, * because POPF has no interrupt shadow. */ if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) kvm_make_request(KVM_REQ_EVENT, vcpu); } else vcpu->arch.emulate_regs_need_sync_to_vcpu = true; return r; } int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) { return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); } EXPORT_SYMBOL_GPL(kvm_emulate_instruction); int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, void *insn, int insn_len) { return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); } EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) { vcpu->arch.pio.count = 0; return 1; } static int complete_fast_pio_out(struct kvm_vcpu *vcpu) { vcpu->arch.pio.count = 0; if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) return 1; return kvm_skip_emulated_instruction(vcpu); } static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) { unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, size, port, &val, 1); if (ret) return ret; /* * Workaround userspace that relies on old KVM behavior of %rip being * incremented prior to exiting to userspace to handle "OUT 0x7e". */ if (port == 0x7e && kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { vcpu->arch.complete_userspace_io = complete_fast_pio_out_port_0x7e; kvm_skip_emulated_instruction(vcpu); } else { vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); vcpu->arch.complete_userspace_io = complete_fast_pio_out; } return 0; } static int complete_fast_pio_in(struct kvm_vcpu *vcpu) { unsigned long val; /* We should only ever be called with arch.pio.count equal to 1 */ BUG_ON(vcpu->arch.pio.count != 1); if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { vcpu->arch.pio.count = 0; return 1; } /* For size less than 4 we merge, else we zero extend */ val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; /* * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform * the copy and tracing */ emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); kvm_register_write(vcpu, VCPU_REGS_RAX, val); return kvm_skip_emulated_instruction(vcpu); } static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) { unsigned long val; int ret; /* For size less than 4 we merge, else we zero extend */ val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, &val, 1); if (ret) { kvm_register_write(vcpu, VCPU_REGS_RAX, val); return ret; } vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); vcpu->arch.complete_userspace_io = complete_fast_pio_in; return 0; } int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) { int ret; if (in) ret = kvm_fast_pio_in(vcpu, size, port); else ret = kvm_fast_pio_out(vcpu, size, port); return ret && kvm_skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_fast_pio); static int kvmclock_cpu_down_prep(unsigned int cpu) { __this_cpu_write(cpu_tsc_khz, 0); return 0; } static void tsc_khz_changed(void *data) { struct cpufreq_freqs *freq = data; unsigned long khz = 0; if (data) khz = freq->new; else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) khz = cpufreq_quick_get(raw_smp_processor_id()); if (!khz) khz = tsc_khz; __this_cpu_write(cpu_tsc_khz, khz); } #ifdef CONFIG_X86_64 static void kvm_hyperv_tsc_notifier(void) { struct kvm *kvm; struct kvm_vcpu *vcpu; int cpu; spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) kvm_make_mclock_inprogress_request(kvm); hyperv_stop_tsc_emulation(); /* TSC frequency always matches when on Hyper-V */ for_each_present_cpu(cpu) per_cpu(cpu_tsc_khz, cpu) = tsc_khz; kvm_max_guest_tsc_khz = tsc_khz; list_for_each_entry(kvm, &vm_list, vm_list) { struct kvm_arch *ka = &kvm->arch; spin_lock(&ka->pvclock_gtod_sync_lock); pvclock_update_vm_gtod_copy(kvm); kvm_for_each_vcpu(cpu, vcpu, kvm) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); kvm_for_each_vcpu(cpu, vcpu, kvm) kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); spin_unlock(&ka->pvclock_gtod_sync_lock); } spin_unlock(&kvm_lock); } #endif static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct kvm *kvm; struct kvm_vcpu *vcpu; int i, send_ipi = 0; /* * We allow guests to temporarily run on slowing clocks, * provided we notify them after, or to run on accelerating * clocks, provided we notify them before. Thus time never * goes backwards. * * However, we have a problem. We can't atomically update * the frequency of a given CPU from this function; it is * merely a notifier, which can be called from any CPU. * Changing the TSC frequency at arbitrary points in time * requires a recomputation of local variables related to * the TSC for each VCPU. We must flag these local variables * to be updated and be sure the update takes place with the * new frequency before any guests proceed. * * Unfortunately, the combination of hotplug CPU and frequency * change creates an intractable locking scenario; the order * of when these callouts happen is undefined with respect to * CPU hotplug, and they can race with each other. As such, * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is * undefined; you can actually have a CPU frequency change take * place in between the computation of X and the setting of the * variable. To protect against this problem, all updates of * the per_cpu tsc_khz variable are done in an interrupt * protected IPI, and all callers wishing to update the value * must wait for a synchronous IPI to complete (which is trivial * if the caller is on the CPU already). This establishes the * necessary total order on variable updates. * * Note that because a guest time update may take place * anytime after the setting of the VCPU's request bit, the * correct TSC value must be set before the request. However, * to ensure the update actually makes it to any guest which * starts running in hardware virtualization between the set * and the acquisition of the spinlock, we must also ping the * CPU after setting the request bit. * */ if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) return 0; if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) return 0; smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->cpu != freq->cpu) continue; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != smp_processor_id()) send_ipi = 1; } } spin_unlock(&kvm_lock); if (freq->old < freq->new && send_ipi) { /* * We upscale the frequency. Must make the guest * doesn't see old kvmclock values while running with * the new frequency, otherwise we risk the guest sees * time go backwards. * * In case we update the frequency for another cpu * (which might be in guest context) send an interrupt * to kick the cpu out of guest context. Next time * guest context is entered kvmclock will be updated, * so the guest will not see stale values. */ smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); } return 0; } static struct notifier_block kvmclock_cpufreq_notifier_block = { .notifier_call = kvmclock_cpufreq_notifier }; static int kvmclock_cpu_online(unsigned int cpu) { tsc_khz_changed(NULL); return 0; } static void kvm_timer_init(void) { max_tsc_khz = tsc_khz; if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { #ifdef CONFIG_CPU_FREQ struct cpufreq_policy policy; int cpu; memset(&policy, 0, sizeof(policy)); cpu = get_cpu(); cpufreq_get_policy(&policy, cpu); if (policy.cpuinfo.max_freq) max_tsc_khz = policy.cpuinfo.max_freq; put_cpu(); #endif cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); } pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", kvmclock_cpu_online, kvmclock_cpu_down_prep); } DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); int kvm_is_in_guest(void) { return __this_cpu_read(current_vcpu) != NULL; } static int kvm_is_user_mode(void) { int user_mode = 3; if (__this_cpu_read(current_vcpu)) user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); return user_mode != 0; } static unsigned long kvm_get_guest_ip(void) { unsigned long ip = 0; if (__this_cpu_read(current_vcpu)) ip = kvm_rip_read(__this_cpu_read(current_vcpu)); return ip; } static struct perf_guest_info_callbacks kvm_guest_cbs = { .is_in_guest = kvm_is_in_guest, .is_user_mode = kvm_is_user_mode, .get_guest_ip = kvm_get_guest_ip, }; static void kvm_set_mmio_spte_mask(void) { u64 mask; int maxphyaddr = boot_cpu_data.x86_phys_bits; /* * Set the reserved bits and the present bit of an paging-structure * entry to generate page fault with PFER.RSV = 1. */ /* * Mask the uppermost physical address bit, which would be reserved as * long as the supported physical address width is less than 52. */ mask = 1ull << 51; /* Set the present bit. */ mask |= 1ull; /* * If reserved bit is not supported, clear the present bit to disable * mmio page fault. */ if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52) mask &= ~1ull; kvm_mmu_set_mmio_spte_mask(mask, mask); } #ifdef CONFIG_X86_64 static void pvclock_gtod_update_fn(struct work_struct *work) { struct kvm *kvm; struct kvm_vcpu *vcpu; int i; spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) kvm_for_each_vcpu(i, vcpu, kvm) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); atomic_set(&kvm_guest_has_master_clock, 0); spin_unlock(&kvm_lock); } static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); /* * Notification about pvclock gtod data update. */ static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, void *priv) { struct pvclock_gtod_data *gtod = &pvclock_gtod_data; struct timekeeper *tk = priv; update_pvclock_gtod(tk); /* disable master clock if host does not trust, or does not * use, TSC based clocksource. */ if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && atomic_read(&kvm_guest_has_master_clock) != 0) queue_work(system_long_wq, &pvclock_gtod_work); return 0; } static struct notifier_block pvclock_gtod_notifier = { .notifier_call = pvclock_gtod_notify, }; #endif int kvm_arch_init(void *opaque) { int r; struct kvm_x86_ops *ops = opaque; if (kvm_x86_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); r = -EEXIST; goto out; } if (!ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); r = -EOPNOTSUPP; goto out; } if (ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); r = -EOPNOTSUPP; goto out; } r = -ENOMEM; shared_msrs = alloc_percpu(struct kvm_shared_msrs); if (!shared_msrs) { printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); goto out; } r = kvm_mmu_module_init(); if (r) goto out_free_percpu; kvm_set_mmio_spte_mask(); kvm_x86_ops = ops; kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0, PT_PRESENT_MASK, 0, sme_me_mask); kvm_timer_init(); perf_register_guest_info_callbacks(&kvm_guest_cbs); if (boot_cpu_has(X86_FEATURE_XSAVE)) host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); kvm_lapic_init(); #ifdef CONFIG_X86_64 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); #endif return 0; out_free_percpu: free_percpu(shared_msrs); out: return r; } void kvm_arch_exit(void) { #ifdef CONFIG_X86_64 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) clear_hv_tscchange_cb(); #endif kvm_lapic_exit(); perf_unregister_guest_info_callbacks(&kvm_guest_cbs); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); #ifdef CONFIG_X86_64 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); #endif kvm_x86_ops = NULL; kvm_mmu_module_exit(); free_percpu(shared_msrs); } int kvm_vcpu_halt(struct kvm_vcpu *vcpu) { ++vcpu->stat.halt_exits; if (lapic_in_kernel(vcpu)) { vcpu->arch.mp_state = KVM_MP_STATE_HALTED; return 1; } else { vcpu->run->exit_reason = KVM_EXIT_HLT; return 0; } } EXPORT_SYMBOL_GPL(kvm_vcpu_halt); int kvm_emulate_halt(struct kvm_vcpu *vcpu) { int ret = kvm_skip_emulated_instruction(vcpu); /* * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered * KVM_EXIT_DEBUG here. */ return kvm_vcpu_halt(vcpu) && ret; } EXPORT_SYMBOL_GPL(kvm_emulate_halt); #ifdef CONFIG_X86_64 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, unsigned long clock_type) { struct kvm_clock_pairing clock_pairing; struct timespec64 ts; u64 cycle; int ret; if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) return -KVM_EOPNOTSUPP; if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) return -KVM_EOPNOTSUPP; clock_pairing.sec = ts.tv_sec; clock_pairing.nsec = ts.tv_nsec; clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); clock_pairing.flags = 0; memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); ret = 0; if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, sizeof(struct kvm_clock_pairing))) ret = -KVM_EFAULT; return ret; } #endif /* * kvm_pv_kick_cpu_op: Kick a vcpu. * * @apicid - apicid of vcpu to be kicked. */ static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) { struct kvm_lapic_irq lapic_irq; lapic_irq.shorthand = 0; lapic_irq.dest_mode = 0; lapic_irq.level = 0; lapic_irq.dest_id = apicid; lapic_irq.msi_redir_hint = false; lapic_irq.delivery_mode = APIC_DM_REMRD; kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); } void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) { vcpu->arch.apicv_active = false; kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) { unsigned long nr, a0, a1, a2, a3, ret; int op_64_bit; if (kvm_hv_hypercall_enabled(vcpu->kvm)) return kvm_hv_hypercall(vcpu); nr = kvm_register_read(vcpu, VCPU_REGS_RAX); a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); trace_kvm_hypercall(nr, a0, a1, a2, a3); op_64_bit = is_64_bit_mode(vcpu); if (!op_64_bit) { nr &= 0xFFFFFFFF; a0 &= 0xFFFFFFFF; a1 &= 0xFFFFFFFF; a2 &= 0xFFFFFFFF; a3 &= 0xFFFFFFFF; } if (kvm_x86_ops->get_cpl(vcpu) != 0) { ret = -KVM_EPERM; goto out; } switch (nr) { case KVM_HC_VAPIC_POLL_IRQ: ret = 0; break; case KVM_HC_KICK_CPU: kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); ret = 0; break; #ifdef CONFIG_X86_64 case KVM_HC_CLOCK_PAIRING: ret = kvm_pv_clock_pairing(vcpu, a0, a1); break; #endif case KVM_HC_SEND_IPI: ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); break; default: ret = -KVM_ENOSYS; break; } out: if (!op_64_bit) ret = (u32)ret; kvm_register_write(vcpu, VCPU_REGS_RAX, ret); ++vcpu->stat.hypercalls; return kvm_skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); char instruction[3]; unsigned long rip = kvm_rip_read(vcpu); kvm_x86_ops->patch_hypercall(vcpu, instruction); return emulator_write_emulated(ctxt, rip, instruction, 3, &ctxt->exception); } static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) { return vcpu->run->request_interrupt_window && likely(!pic_in_kernel(vcpu->kvm)); } static void post_kvm_run_save(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; kvm_run->cr8 = kvm_get_cr8(vcpu); kvm_run->apic_base = kvm_get_apic_base(vcpu); kvm_run->ready_for_interrupt_injection = pic_in_kernel(vcpu->kvm) || kvm_vcpu_ready_for_interrupt_injection(vcpu); } static void update_cr8_intercept(struct kvm_vcpu *vcpu) { int max_irr, tpr; if (!kvm_x86_ops->update_cr8_intercept) return; if (!lapic_in_kernel(vcpu)) return; if (vcpu->arch.apicv_active) return; if (!vcpu->arch.apic->vapic_addr) max_irr = kvm_lapic_find_highest_irr(vcpu); else max_irr = -1; if (max_irr != -1) max_irr >>= 4; tpr = kvm_lapic_get_cr8(vcpu); kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); } static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) { int r; /* try to reinject previous events if any */ if (vcpu->arch.exception.injected) kvm_x86_ops->queue_exception(vcpu); /* * Do not inject an NMI or interrupt if there is a pending * exception. Exceptions and interrupts are recognized at * instruction boundaries, i.e. the start of an instruction. * Trap-like exceptions, e.g. #DB, have higher priority than * NMIs and interrupts, i.e. traps are recognized before an * NMI/interrupt that's pending on the same instruction. * Fault-like exceptions, e.g. #GP and #PF, are the lowest * priority, but are only generated (pended) during instruction * execution, i.e. a pending fault-like exception means the * fault occurred on the *previous* instruction and must be * serviced prior to recognizing any new events in order to * fully complete the previous instruction. */ else if (!vcpu->arch.exception.pending) { if (vcpu->arch.nmi_injected) kvm_x86_ops->set_nmi(vcpu); else if (vcpu->arch.interrupt.injected) kvm_x86_ops->set_irq(vcpu); } /* * Call check_nested_events() even if we reinjected a previous event * in order for caller to determine if it should require immediate-exit * from L2 to L1 due to pending L1 events which require exit * from L2 to L1. */ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); if (r != 0) return r; } /* try to inject new event if pending */ if (vcpu->arch.exception.pending) { trace_kvm_inj_exception(vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code); WARN_ON_ONCE(vcpu->arch.exception.injected); vcpu->arch.exception.pending = false; vcpu->arch.exception.injected = true; if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | X86_EFLAGS_RF); if (vcpu->arch.exception.nr == DB_VECTOR && (vcpu->arch.dr7 & DR7_GD)) { vcpu->arch.dr7 &= ~DR7_GD; kvm_update_dr7(vcpu); } kvm_x86_ops->queue_exception(vcpu); } /* Don't consider new event if we re-injected an event */ if (kvm_event_needs_reinjection(vcpu)) return 0; if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) { vcpu->arch.smi_pending = false; ++vcpu->arch.smi_count; enter_smm(vcpu); } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { --vcpu->arch.nmi_pending; vcpu->arch.nmi_injected = true; kvm_x86_ops->set_nmi(vcpu); } else if (kvm_cpu_has_injectable_intr(vcpu)) { /* * Because interrupts can be injected asynchronously, we are * calling check_nested_events again here to avoid a race condition. * See https://lkml.org/lkml/2014/7/2/60 for discussion about this * proposal and current concerns. Perhaps we should be setting * KVM_REQ_EVENT only on certain events and not unconditionally? */ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); if (r != 0) return r; } if (kvm_x86_ops->interrupt_allowed(vcpu)) { kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); kvm_x86_ops->set_irq(vcpu); } } return 0; } static void process_nmi(struct kvm_vcpu *vcpu) { unsigned limit = 2; /* * x86 is limited to one NMI running, and one NMI pending after it. * If an NMI is already in progress, limit further NMIs to just one. * Otherwise, allow two (and we'll inject the first one immediately). */ if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) limit = 1; vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); kvm_make_request(KVM_REQ_EVENT, vcpu); } static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) { u32 flags = 0; flags |= seg->g << 23; flags |= seg->db << 22; flags |= seg->l << 21; flags |= seg->avl << 20; flags |= seg->present << 15; flags |= seg->dpl << 13; flags |= seg->s << 12; flags |= seg->type << 8; return flags; } static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) { struct kvm_segment seg; int offset; kvm_get_segment(vcpu, &seg, n); put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); if (n < 3) offset = 0x7f84 + n * 12; else offset = 0x7f2c + (n - 3) * 12; put_smstate(u32, buf, offset + 8, seg.base); put_smstate(u32, buf, offset + 4, seg.limit); put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); } #ifdef CONFIG_X86_64 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) { struct kvm_segment seg; int offset; u16 flags; kvm_get_segment(vcpu, &seg, n); offset = 0x7e00 + n * 16; flags = enter_smm_get_segment_flags(&seg) >> 8; put_smstate(u16, buf, offset, seg.selector); put_smstate(u16, buf, offset + 2, flags); put_smstate(u32, buf, offset + 4, seg.limit); put_smstate(u64, buf, offset + 8, seg.base); } #endif static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) { struct desc_ptr dt; struct kvm_segment seg; unsigned long val; int i; put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); for (i = 0; i < 8; i++) put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); kvm_get_dr(vcpu, 6, &val); put_smstate(u32, buf, 0x7fcc, (u32)val); kvm_get_dr(vcpu, 7, &val); put_smstate(u32, buf, 0x7fc8, (u32)val); kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); put_smstate(u32, buf, 0x7fc4, seg.selector); put_smstate(u32, buf, 0x7f64, seg.base); put_smstate(u32, buf, 0x7f60, seg.limit); put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); put_smstate(u32, buf, 0x7fc0, seg.selector); put_smstate(u32, buf, 0x7f80, seg.base); put_smstate(u32, buf, 0x7f7c, seg.limit); put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); kvm_x86_ops->get_gdt(vcpu, &dt); put_smstate(u32, buf, 0x7f74, dt.address); put_smstate(u32, buf, 0x7f70, dt.size); kvm_x86_ops->get_idt(vcpu, &dt); put_smstate(u32, buf, 0x7f58, dt.address); put_smstate(u32, buf, 0x7f54, dt.size); for (i = 0; i < 6; i++) enter_smm_save_seg_32(vcpu, buf, i); put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); /* revision id */ put_smstate(u32, buf, 0x7efc, 0x00020000); put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); } #ifdef CONFIG_X86_64 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) { struct desc_ptr dt; struct kvm_segment seg; unsigned long val; int i; for (i = 0; i < 16; i++) put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); kvm_get_dr(vcpu, 6, &val); put_smstate(u64, buf, 0x7f68, val); kvm_get_dr(vcpu, 7, &val); put_smstate(u64, buf, 0x7f60, val); put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); /* revision id */ put_smstate(u32, buf, 0x7efc, 0x00020064); put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); put_smstate(u16, buf, 0x7e90, seg.selector); put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); put_smstate(u32, buf, 0x7e94, seg.limit); put_smstate(u64, buf, 0x7e98, seg.base); kvm_x86_ops->get_idt(vcpu, &dt); put_smstate(u32, buf, 0x7e84, dt.size); put_smstate(u64, buf, 0x7e88, dt.address); kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); put_smstate(u16, buf, 0x7e70, seg.selector); put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); put_smstate(u32, buf, 0x7e74, seg.limit); put_smstate(u64, buf, 0x7e78, seg.base); kvm_x86_ops->get_gdt(vcpu, &dt); put_smstate(u32, buf, 0x7e64, dt.size); put_smstate(u64, buf, 0x7e68, dt.address); for (i = 0; i < 6; i++) enter_smm_save_seg_64(vcpu, buf, i); } #endif static void enter_smm(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ds; struct desc_ptr dt; char buf[512]; u32 cr0; trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); memset(buf, 0, 512); #ifdef CONFIG_X86_64 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) enter_smm_save_state_64(vcpu, buf); else #endif enter_smm_save_state_32(vcpu, buf); /* * Give pre_enter_smm() a chance to make ISA-specific changes to the * vCPU state (e.g. leave guest mode) after we've saved the state into * the SMM state-save area. */ kvm_x86_ops->pre_enter_smm(vcpu, buf); vcpu->arch.hflags |= HF_SMM_MASK; kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); if (kvm_x86_ops->get_nmi_mask(vcpu)) vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; else kvm_x86_ops->set_nmi_mask(vcpu, true); kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); kvm_rip_write(vcpu, 0x8000); cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); kvm_x86_ops->set_cr0(vcpu, cr0); vcpu->arch.cr0 = cr0; kvm_x86_ops->set_cr4(vcpu, 0); /* Undocumented: IDT limit is set to zero on entry to SMM. */ dt.address = dt.size = 0; kvm_x86_ops->set_idt(vcpu, &dt); __kvm_set_dr(vcpu, 7, DR7_FIXED_1); cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; cs.base = vcpu->arch.smbase; ds.selector = 0; ds.base = 0; cs.limit = ds.limit = 0xffffffff; cs.type = ds.type = 0x3; cs.dpl = ds.dpl = 0; cs.db = ds.db = 0; cs.s = ds.s = 1; cs.l = ds.l = 0; cs.g = ds.g = 1; cs.avl = ds.avl = 0; cs.present = ds.present = 1; cs.unusable = ds.unusable = 0; cs.padding = ds.padding = 0; kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); #ifdef CONFIG_X86_64 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) kvm_x86_ops->set_efer(vcpu, 0); #endif kvm_update_cpuid(vcpu); kvm_mmu_reset_context(vcpu); } static void process_smi(struct kvm_vcpu *vcpu) { vcpu->arch.smi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); } void kvm_make_scan_ioapic_request(struct kvm *kvm) { kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); } static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) { if (!kvm_apic_present(vcpu)) return; bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); if (irqchip_split(vcpu->kvm)) kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); else { if (vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); if (ioapic_in_kernel(vcpu->kvm)) kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); } if (is_guest_mode(vcpu)) vcpu->arch.load_eoi_exitmap_pending = true; else kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); } static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) { u64 eoi_exit_bitmap[4]; if (!kvm_apic_hw_enabled(vcpu->arch.apic)) return; bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, vcpu_to_synic(vcpu)->vec_bitmap, 256); kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); } int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, unsigned long start, unsigned long end, bool blockable) { unsigned long apic_address; /* * The physical address of apic access page is stored in the VMCS. * Update it when it becomes invalid. */ apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); if (start <= apic_address && apic_address < end) kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); return 0; } void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) { struct page *page = NULL; if (!lapic_in_kernel(vcpu)) return; if (!kvm_x86_ops->set_apic_access_page_addr) return; page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); if (is_error_page(page)) return; kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); /* * Do not pin apic access page in memory, the MMU notifier * will call us again if it is migrated or swapped out. */ put_page(page); } EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) { smp_send_reschedule(vcpu->cpu); } EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); /* * Returns 1 to let vcpu_run() continue the guest execution loop without * exiting to the userspace. Otherwise, the value will be returned to the * userspace. */ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) { int r; bool req_int_win = dm_request_for_irq_injection(vcpu) && kvm_cpu_accept_dm_intr(vcpu); bool req_immediate_exit = false; if (kvm_request_pending(vcpu)) { if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) kvm_x86_ops->get_vmcs12_pages(vcpu); if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) kvm_mmu_unload(vcpu); if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) __kvm_migrate_timers(vcpu); if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) kvm_gen_update_masterclock(vcpu->kvm); if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) kvm_gen_kvmclock_update(vcpu); if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { r = kvm_guest_time_update(vcpu); if (unlikely(r)) goto out; } if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) kvm_mmu_sync_roots(vcpu); if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) kvm_mmu_load_cr3(vcpu); if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvm_vcpu_flush_tlb(vcpu, true); if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; r = 0; goto out; } if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; vcpu->mmio_needed = 0; r = 0; goto out; } if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { /* Page is swapped out. Do synthetic halt */ vcpu->arch.apf.halted = true; r = 1; goto out; } if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) record_steal_time(vcpu); if (kvm_check_request(KVM_REQ_SMI, vcpu)) process_smi(vcpu); if (kvm_check_request(KVM_REQ_NMI, vcpu)) process_nmi(vcpu); if (kvm_check_request(KVM_REQ_PMU, vcpu)) kvm_pmu_handle_event(vcpu); if (kvm_check_request(KVM_REQ_PMI, vcpu)) kvm_pmu_deliver_pmi(vcpu); if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); if (test_bit(vcpu->arch.pending_ioapic_eoi, vcpu->arch.ioapic_handled_vectors)) { vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; vcpu->run->eoi.vector = vcpu->arch.pending_ioapic_eoi; r = 0; goto out; } } if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) vcpu_scan_ioapic(vcpu); if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) vcpu_load_eoi_exitmap(vcpu); if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) kvm_vcpu_reload_apic_access_page(vcpu); if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; r = 0; goto out; } if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; r = 0; goto out; } if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_HYPERV; vcpu->run->hyperv = vcpu->arch.hyperv.exit; r = 0; goto out; } /* * KVM_REQ_HV_STIMER has to be processed after * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers * depend on the guest clock being up-to-date */ if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) kvm_hv_process_stimers(vcpu); } if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { ++vcpu->stat.req_event; kvm_apic_accept_events(vcpu); if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { r = 1; goto out; } if (inject_pending_event(vcpu, req_int_win) != 0) req_immediate_exit = true; else { /* Enable SMI/NMI/IRQ window open exits if needed. * * SMIs have three cases: * 1) They can be nested, and then there is nothing to * do here because RSM will cause a vmexit anyway. * 2) There is an ISA-specific reason why SMI cannot be * injected, and the moment when this changes can be * intercepted. * 3) Or the SMI can be pending because * inject_pending_event has completed the injection * of an IRQ or NMI from the previous vmexit, and * then we request an immediate exit to inject the * SMI. */ if (vcpu->arch.smi_pending && !is_smm(vcpu)) if (!kvm_x86_ops->enable_smi_window(vcpu)) req_immediate_exit = true; if (vcpu->arch.nmi_pending) kvm_x86_ops->enable_nmi_window(vcpu); if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) kvm_x86_ops->enable_irq_window(vcpu); WARN_ON(vcpu->arch.exception.pending); } if (kvm_lapic_enabled(vcpu)) { update_cr8_intercept(vcpu); kvm_lapic_sync_to_vapic(vcpu); } } r = kvm_mmu_reload(vcpu); if (unlikely(r)) { goto cancel_injection; } preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); /* * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt * IPI are then delayed after guest entry, which ensures that they * result in virtual interrupt delivery. */ local_irq_disable(); vcpu->mode = IN_GUEST_MODE; srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); /* * 1) We should set ->mode before checking ->requests. Please see * the comment in kvm_vcpu_exiting_guest_mode(). * * 2) For APICv, we should set ->mode before checking PIR.ON. This * pairs with the memory barrier implicit in pi_test_and_set_on * (see vmx_deliver_posted_interrupt). * * 3) This also orders the write to mode from any reads to the page * tables done while the VCPU is running. Please see the comment * in kvm_flush_remote_tlbs. */ smp_mb__after_srcu_read_unlock(); /* * This handles the case where a posted interrupt was * notified with kvm_vcpu_kick. */ if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || need_resched() || signal_pending(current)) { vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); local_irq_enable(); preempt_enable(); vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = 1; goto cancel_injection; } if (req_immediate_exit) { kvm_make_request(KVM_REQ_EVENT, vcpu); kvm_x86_ops->request_immediate_exit(vcpu); } trace_kvm_entry(vcpu->vcpu_id); if (lapic_timer_advance_ns) wait_lapic_expire(vcpu); guest_enter_irqoff(); if (unlikely(vcpu->arch.switch_db_regs)) { set_debugreg(0, 7); set_debugreg(vcpu->arch.eff_db[0], 0); set_debugreg(vcpu->arch.eff_db[1], 1); set_debugreg(vcpu->arch.eff_db[2], 2); set_debugreg(vcpu->arch.eff_db[3], 3); set_debugreg(vcpu->arch.dr6, 6); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; } kvm_x86_ops->run(vcpu); /* * Do this here before restoring debug registers on the host. And * since we do this before handling the vmexit, a DR access vmexit * can (a) read the correct value of the debug registers, (b) set * KVM_DEBUGREG_WONT_EXIT again. */ if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); kvm_x86_ops->sync_dirty_debug_regs(vcpu); kvm_update_dr0123(vcpu); kvm_update_dr6(vcpu); kvm_update_dr7(vcpu); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; } /* * If the guest has used debug registers, at least dr7 * will be disabled while returning to the host. * If we don't have active breakpoints in the host, we don't * care about the messed up debug address registers. But if * we have some of them active, restore the old state. */ if (hw_breakpoint_active()) hw_breakpoint_restore(); vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); kvm_before_interrupt(vcpu); kvm_x86_ops->handle_external_intr(vcpu); kvm_after_interrupt(vcpu); ++vcpu->stat.exits; guest_exit_irqoff(); local_irq_enable(); preempt_enable(); vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) { unsigned long rip = kvm_rip_read(vcpu); profile_hit(KVM_PROFILING, (void *)rip); } if (unlikely(vcpu->arch.tsc_always_catchup)) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->arch.apic_attention) kvm_lapic_sync_from_vapic(vcpu); vcpu->arch.gpa_available = false; r = kvm_x86_ops->handle_exit(vcpu); return r; cancel_injection: kvm_x86_ops->cancel_injection(vcpu); if (unlikely(vcpu->arch.apic_attention)) kvm_lapic_sync_from_vapic(vcpu); out: return r; } static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) { if (!kvm_arch_vcpu_runnable(vcpu) && (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_vcpu_block(vcpu); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); if (kvm_x86_ops->post_block) kvm_x86_ops->post_block(vcpu); if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) return 1; } kvm_apic_accept_events(vcpu); switch(vcpu->arch.mp_state) { case KVM_MP_STATE_HALTED: vcpu->arch.pv.pv_unhalted = false; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; case KVM_MP_STATE_RUNNABLE: vcpu->arch.apf.halted = false; break; case KVM_MP_STATE_INIT_RECEIVED: break; default: return -EINTR; break; } return 1; } static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) kvm_x86_ops->check_nested_events(vcpu, false); return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted); } static int vcpu_run(struct kvm_vcpu *vcpu) { int r; struct kvm *kvm = vcpu->kvm; vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); vcpu->arch.l1tf_flush_l1d = true; for (;;) { if (kvm_vcpu_running(vcpu)) { r = vcpu_enter_guest(vcpu); } else { r = vcpu_block(kvm, vcpu); } if (r <= 0) break; kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); if (kvm_cpu_has_pending_timer(vcpu)) kvm_inject_pending_timer_irqs(vcpu); if (dm_request_for_irq_injection(vcpu) && kvm_vcpu_ready_for_interrupt_injection(vcpu)) { r = 0; vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; ++vcpu->stat.request_irq_exits; break; } kvm_check_async_pf_completion(vcpu); if (signal_pending(current)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; break; } if (need_resched()) { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); cond_resched(); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); } } srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); return r; } static inline int complete_emulated_io(struct kvm_vcpu *vcpu) { int r; vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); if (r != EMULATE_DONE) return 0; return 1; } static int complete_emulated_pio(struct kvm_vcpu *vcpu) { BUG_ON(!vcpu->arch.pio.count); return complete_emulated_io(vcpu); } /* * Implements the following, as a state machine: * * read: * for each fragment * for each mmio piece in the fragment * write gpa, len * exit * copy data * execute insn * * write: * for each fragment * for each mmio piece in the fragment * write gpa, len * copy data * exit */ static int complete_emulated_mmio(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; struct kvm_mmio_fragment *frag; unsigned len; BUG_ON(!vcpu->mmio_needed); /* Complete previous fragment */ frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; len = min(8u, frag->len); if (!vcpu->mmio_is_write) memcpy(frag->data, run->mmio.data, len); if (frag->len <= 8) { /* Switch to the next fragment. */ frag++; vcpu->mmio_cur_fragment++; } else { /* Go forward to the next mmio piece. */ frag->data += len; frag->gpa += len; frag->len -= len; } if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { vcpu->mmio_needed = 0; /* FIXME: return into emulator if single-stepping. */ if (vcpu->mmio_is_write) return 1; vcpu->mmio_read_completed = 1; return complete_emulated_io(vcpu); } run->exit_reason = KVM_EXIT_MMIO; run->mmio.phys_addr = frag->gpa; if (vcpu->mmio_is_write) memcpy(run->mmio.data, frag->data, min(8u, frag->len)); run->mmio.len = min(8u, frag->len); run->mmio.is_write = vcpu->mmio_is_write; vcpu->arch.complete_userspace_io = complete_emulated_mmio; return 0; } /* Swap (qemu) user FPU context for the guest FPU context. */ static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); /* PKRU is separately restored in kvm_x86_ops->run. */ __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, ~XFEATURE_MASK_PKRU); preempt_enable(); trace_kvm_fpu(1); } /* When vcpu_run ends, restore user space FPU context. */ static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); preempt_enable(); ++vcpu->stat.fpu_reload; trace_kvm_fpu(0); } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; vcpu_load(vcpu); kvm_sigset_activate(vcpu); kvm_load_guest_fpu(vcpu); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { if (kvm_run->immediate_exit) { r = -EINTR; goto out; } kvm_vcpu_block(vcpu); kvm_apic_accept_events(vcpu); kvm_clear_request(KVM_REQ_UNHALT, vcpu); r = -EAGAIN; if (signal_pending(current)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; } goto out; } if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { r = -EINVAL; goto out; } if (vcpu->run->kvm_dirty_regs) { r = sync_regs(vcpu); if (r != 0) goto out; } /* re-sync apic's tpr */ if (!lapic_in_kernel(vcpu)) { if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { r = -EINVAL; goto out; } } if (unlikely(vcpu->arch.complete_userspace_io)) { int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; vcpu->arch.complete_userspace_io = NULL; r = cui(vcpu); if (r <= 0) goto out; } else WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); if (kvm_run->immediate_exit) r = -EINTR; else r = vcpu_run(vcpu); out: kvm_put_guest_fpu(vcpu); if (vcpu->run->kvm_valid_regs) store_regs(vcpu); post_kvm_run_save(vcpu); kvm_sigset_deactivate(vcpu); vcpu_put(vcpu); return r; } static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { /* * We are here if userspace calls get_regs() in the middle of * instruction emulation. Registers state needs to be copied * back from emulation context to vcpu. Userspace shouldn't do * that usually, but some bad designed PV devices (vmware * backdoor interface) need this to work */ emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); vcpu->arch.emulate_regs_need_sync_to_vcpu = false; } regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); #ifdef CONFIG_X86_64 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); #endif regs->rip = kvm_rip_read(vcpu); regs->rflags = kvm_get_rflags(vcpu); } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); __get_regs(vcpu, regs); vcpu_put(vcpu); return 0; } static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu->arch.emulate_regs_need_sync_from_vcpu = true; vcpu->arch.emulate_regs_need_sync_to_vcpu = false; kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); #ifdef CONFIG_X86_64 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); #endif kvm_rip_write(vcpu, regs->rip); kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); vcpu->arch.exception.pending = false; kvm_make_request(KVM_REQ_EVENT, vcpu); } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); __set_regs(vcpu, regs); vcpu_put(vcpu); return 0; } void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); *db = cs.db; *l = cs.l; } EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct desc_ptr dt; kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_x86_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.size; sregs->idt.base = dt.address; kvm_x86_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.size; sregs->gdt.base = dt.address; sregs->cr0 = kvm_read_cr0(vcpu); sregs->cr2 = vcpu->arch.cr2; sregs->cr3 = kvm_read_cr3(vcpu); sregs->cr4 = kvm_read_cr4(vcpu); sregs->cr8 = kvm_get_cr8(vcpu); sregs->efer = vcpu->arch.efer; sregs->apic_base = kvm_get_apic_base(vcpu); memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) set_bit(vcpu->arch.interrupt.nr, (unsigned long *)sregs->interrupt_bitmap); } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { vcpu_load(vcpu); __get_sregs(vcpu, sregs); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu_load(vcpu); kvm_apic_accept_events(vcpu); if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && vcpu->arch.pv.pv_unhalted) mp_state->mp_state = KVM_MP_STATE_RUNNABLE; else mp_state->mp_state = vcpu->arch.mp_state; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int ret = -EINVAL; vcpu_load(vcpu); if (!lapic_in_kernel(vcpu) && mp_state->mp_state != KVM_MP_STATE_RUNNABLE) goto out; /* INITs are latched while in SMM */ if ((is_smm(vcpu) || vcpu->arch.smi_pending) && (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) goto out; if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); } else vcpu->arch.mp_state = mp_state->mp_state; kvm_make_request(KVM_REQ_EVENT, vcpu); ret = 0; out: vcpu_put(vcpu); return ret; } int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int ret; init_emulate_ctxt(vcpu); ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, has_error_code, error_code); if (ret) return EMULATE_FAIL; kvm_rip_write(vcpu, ctxt->eip); kvm_set_rflags(vcpu, ctxt->eflags); kvm_make_request(KVM_REQ_EVENT, vcpu); return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_task_switch); static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (sregs->cr4 & X86_CR4_OSXSAVE)) return -EINVAL; if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { /* * When EFER.LME and CR0.PG are set, the processor is in * 64-bit mode (though maybe in a 32-bit code segment). * CR4.PAE and EFER.LMA must be set. */ if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) return -EINVAL; } else { /* * Not in 64-bit mode: EFER.LMA is clear and the code * segment cannot be 64-bit. */ if (sregs->efer & EFER_LMA || sregs->cs.l) return -EINVAL; } return 0; } static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct msr_data apic_base_msr; int mmu_reset_needed = 0; int cpuid_update_needed = 0; int pending_vec, max_bits, idx; struct desc_ptr dt; int ret = -EINVAL; if (kvm_valid_sregs(vcpu, sregs)) goto out; apic_base_msr.data = sregs->apic_base; apic_base_msr.host_initiated = true; if (kvm_set_apic_base(vcpu, &apic_base_msr)) goto out; dt.size = sregs->idt.limit; dt.address = sregs->idt.base; kvm_x86_ops->set_idt(vcpu, &dt); dt.size = sregs->gdt.limit; dt.address = sregs->gdt.base; kvm_x86_ops->set_gdt(vcpu, &dt); vcpu->arch.cr2 = sregs->cr2; mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; vcpu->arch.cr3 = sregs->cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); kvm_set_cr8(vcpu, sregs->cr8); mmu_reset_needed |= vcpu->arch.efer != sregs->efer; kvm_x86_ops->set_efer(vcpu, sregs->efer); mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; kvm_x86_ops->set_cr0(vcpu, sregs->cr0); vcpu->arch.cr0 = sregs->cr0; mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)); kvm_x86_ops->set_cr4(vcpu, sregs->cr4); if (cpuid_update_needed) kvm_update_cpuid(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) { load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); mmu_reset_needed = 1; } srcu_read_unlock(&vcpu->kvm->srcu, idx); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); max_bits = KVM_NR_INTERRUPTS; pending_vec = find_first_bit( (const unsigned long *)sregs->interrupt_bitmap, max_bits); if (pending_vec < max_bits) { kvm_queue_interrupt(vcpu, pending_vec, false); pr_debug("Set back pending irq %d\n", pending_vec); } kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); update_cr8_intercept(vcpu); /* Older userspace won't unhalt the vcpu on reset. */ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && !is_protmode(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; kvm_make_request(KVM_REQ_EVENT, vcpu); ret = 0; out: return ret; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int ret; vcpu_load(vcpu); ret = __set_sregs(vcpu, sregs); vcpu_put(vcpu); return ret; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { unsigned long rflags; int i, r; vcpu_load(vcpu); if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { r = -EBUSY; if (vcpu->arch.exception.pending) goto out; if (dbg->control & KVM_GUESTDBG_INJECT_DB) kvm_queue_exception(vcpu, DB_VECTOR); else kvm_queue_exception(vcpu, BP_VECTOR); } /* * Read rflags as long as potentially injected trace flags are still * filtered out. */ rflags = kvm_get_rflags(vcpu); vcpu->guest_debug = dbg->control; if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) vcpu->guest_debug = 0; if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { for (i = 0; i < KVM_NR_DB_REGS; ++i) vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; } else { for (i = 0; i < KVM_NR_DB_REGS; i++) vcpu->arch.eff_db[i] = vcpu->arch.db[i]; } kvm_update_dr7(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + get_segment_base(vcpu, VCPU_SREG_CS); /* * Trigger an rflags update that will inject or remove the trace * flags. */ kvm_set_rflags(vcpu, rflags); kvm_x86_ops->update_bp_intercept(vcpu); r = 0; out: vcpu_put(vcpu); return r; } /* * Translate a guest virtual address to a guest physical address. */ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; gpa_t gpa; int idx; vcpu_load(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); srcu_read_unlock(&vcpu->kvm->srcu, idx); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxregs_state *fxsave; vcpu_load(vcpu); fxsave = &vcpu->arch.guest_fpu.state.fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; fpu->ftwx = fxsave->twd; fpu->last_opcode = fxsave->fop; fpu->last_ip = fxsave->rip; fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxregs_state *fxsave; vcpu_load(vcpu); fxsave = &vcpu->arch.guest_fpu.state.fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; fxsave->swd = fpu->fsw; fxsave->twd = fpu->ftwx; fxsave->fop = fpu->last_opcode; fxsave->rip = fpu->last_ip; fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } static void store_regs(struct kvm_vcpu *vcpu) { BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) __get_regs(vcpu, &vcpu->run->s.regs.regs); if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) __get_sregs(vcpu, &vcpu->run->s.regs.sregs); if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) kvm_vcpu_ioctl_x86_get_vcpu_events( vcpu, &vcpu->run->s.regs.events); } static int sync_regs(struct kvm_vcpu *vcpu) { if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) return -EINVAL; if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { __set_regs(vcpu, &vcpu->run->s.regs.regs); vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; } if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) return -EINVAL; vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; } if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { if (kvm_vcpu_ioctl_x86_set_vcpu_events( vcpu, &vcpu->run->s.regs.events)) return -EINVAL; vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; } return 0; } static void fx_init(struct kvm_vcpu *vcpu) { fpstate_init(&vcpu->arch.guest_fpu.state); if (boot_cpu_has(X86_FEATURE_XSAVES)) vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; /* * Ensure guest xcr0 is valid for loading */ vcpu->arch.xcr0 = XFEATURE_MASK_FP; vcpu->arch.cr0 |= X86_CR0_ET; } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; kvmclock_reset(vcpu); kvm_x86_ops->vcpu_free(vcpu); free_cpumask_var(wbinvd_dirty_mask); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) printk_once(KERN_WARNING "kvm: SMP vm created on host with unstable TSC; " "guest TSC will not be reliable\n"); vcpu = kvm_x86_ops->vcpu_create(kvm, id); return vcpu; } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); kvm_vcpu_mtrr_init(vcpu); vcpu_load(vcpu); kvm_vcpu_reset(vcpu, false); kvm_mmu_setup(vcpu); vcpu_put(vcpu); return 0; } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { struct msr_data msr; struct kvm *kvm = vcpu->kvm; kvm_hv_vcpu_postcreate(vcpu); if (mutex_lock_killable(&vcpu->mutex)) return; vcpu_load(vcpu); msr.data = 0x0; msr.index = MSR_IA32_TSC; msr.host_initiated = true; kvm_write_tsc(vcpu, &msr); vcpu_put(vcpu); mutex_unlock(&vcpu->mutex); if (!kvmclock_periodic_sync) return; schedule_delayed_work(&kvm->arch.kvmclock_sync_work, KVMCLOCK_SYNC_PERIOD); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { vcpu->arch.apf.msr_val = 0; vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); kvm_x86_ops->vcpu_free(vcpu); } void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { kvm_lapic_reset(vcpu, init_event); vcpu->arch.hflags = 0; vcpu->arch.smi_pending = 0; vcpu->arch.smi_count = 0; atomic_set(&vcpu->arch.nmi_queued, 0); vcpu->arch.nmi_pending = 0; vcpu->arch.nmi_injected = false; kvm_clear_interrupt_queue(vcpu); kvm_clear_exception_queue(vcpu); vcpu->arch.exception.pending = false; memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); kvm_update_dr0123(vcpu); vcpu->arch.dr6 = DR6_INIT; kvm_update_dr6(vcpu); vcpu->arch.dr7 = DR7_FIXED_1; kvm_update_dr7(vcpu); vcpu->arch.cr2 = 0; kvm_make_request(KVM_REQ_EVENT, vcpu); vcpu->arch.apf.msr_val = 0; vcpu->arch.st.msr_val = 0; kvmclock_reset(vcpu); kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); vcpu->arch.apf.halted = false; if (kvm_mpx_supported()) { void *mpx_state_buffer; /* * To avoid have the INIT path from kvm_apic_has_events() that be * called with loaded FPU and does not let userspace fix the state. */ if (init_event) kvm_put_guest_fpu(vcpu); mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, XFEATURE_MASK_BNDREGS); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, XFEATURE_MASK_BNDCSR); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); if (init_event) kvm_load_guest_fpu(vcpu); } if (!init_event) { kvm_pmu_reset(vcpu); vcpu->arch.smbase = 0x30000; vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; vcpu->arch.msr_misc_features_enables = 0; vcpu->arch.xcr0 = XFEATURE_MASK_FP; } memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); vcpu->arch.regs_avail = ~0; vcpu->arch.regs_dirty = ~0; vcpu->arch.ia32_xss = 0; kvm_x86_ops->vcpu_reset(vcpu, init_event); } void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) { struct kvm_segment cs; kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); cs.selector = vector << 8; cs.base = vector << 12; kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); kvm_rip_write(vcpu, 0); } int kvm_arch_hardware_enable(void) { struct kvm *kvm; struct kvm_vcpu *vcpu; int i; int ret; u64 local_tsc; u64 max_tsc = 0; bool stable, backwards_tsc = false; kvm_shared_msr_cpu_online(); ret = kvm_x86_ops->hardware_enable(); if (ret != 0) return ret; local_tsc = rdtsc(); stable = !kvm_check_tsc_unstable(); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (!stable && vcpu->cpu == smp_processor_id()) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (stable && vcpu->arch.last_host_tsc > local_tsc) { backwards_tsc = true; if (vcpu->arch.last_host_tsc > max_tsc) max_tsc = vcpu->arch.last_host_tsc; } } } /* * Sometimes, even reliable TSCs go backwards. This happens on * platforms that reset TSC during suspend or hibernate actions, but * maintain synchronization. We must compensate. Fortunately, we can * detect that condition here, which happens early in CPU bringup, * before any KVM threads can be running. Unfortunately, we can't * bring the TSCs fully up to date with real time, as we aren't yet far * enough into CPU bringup that we know how much real time has actually * elapsed; our helper function, ktime_get_boot_ns() will be using boot * variables that haven't been updated yet. * * So we simply find the maximum observed TSC above, then record the * adjustment to TSC in each VCPU. When the VCPU later gets loaded, * the adjustment will be applied. Note that we accumulate * adjustments, in case multiple suspend cycles happen before some VCPU * gets a chance to run again. In the event that no KVM threads get a * chance to run, we will miss the entire elapsed period, as we'll have * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may * loose cycle time. This isn't too big a deal, since the loss will be * uniform across all VCPUs (not to mention the scenario is extremely * unlikely). It is possible that a second hibernate recovery happens * much faster than a first, causing the observed TSC here to be * smaller; this would require additional padding adjustment, which is * why we set last_host_tsc to the local tsc observed here. * * N.B. - this code below runs only on platforms with reliable TSC, * as that is the only way backwards_tsc is set above. Also note * that this runs for ALL vcpus, which is not a bug; all VCPUs should * have the same delta_cyc adjustment applied if backwards_tsc * is detected. Note further, this adjustment is only done once, * as we reset last_host_tsc on all VCPUs to stop this from being * called multiple times (one for each physical CPU bringup). * * Platforms with unreliable TSCs don't have to deal with this, they * will be compensated by the logic in vcpu_load, which sets the TSC to * catchup mode. This will catchup all VCPUs to real time, but cannot * guarantee that they stay in perfect synchronization. */ if (backwards_tsc) { u64 delta_cyc = max_tsc - local_tsc; list_for_each_entry(kvm, &vm_list, vm_list) { kvm->arch.backwards_tsc_observed = true; kvm_for_each_vcpu(i, vcpu, kvm) { vcpu->arch.tsc_offset_adjustment += delta_cyc; vcpu->arch.last_host_tsc = local_tsc; kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); } /* * We have to disable TSC offset matching.. if you were * booting a VM while issuing an S4 host suspend.... * you may have some problem. Solving this issue is * left as an exercise to the reader. */ kvm->arch.last_tsc_nsec = 0; kvm->arch.last_tsc_write = 0; } } return 0; } void kvm_arch_hardware_disable(void) { kvm_x86_ops->hardware_disable(); drop_user_return_notifiers(); } int kvm_arch_hardware_setup(void) { int r; r = kvm_x86_ops->hardware_setup(); if (r != 0) return r; if (kvm_has_tsc_control) { /* * Make sure the user can only configure tsc_khz values that * fit into a signed integer. * A min value is not calculated because it will always * be 1 on all machines. */ u64 max = min(0x7fffffffULL, __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); kvm_max_guest_tsc_khz = max; kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; } kvm_init_msr_list(); return 0; } void kvm_arch_hardware_unsetup(void) { kvm_x86_ops->hardware_unsetup(); } void kvm_arch_check_processor_compat(void *rtn) { kvm_x86_ops->check_processor_compatibility(rtn); } bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) { return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; } EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) { return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; } struct static_key kvm_no_apic_vcpu __read_mostly; EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct page *page; int r; vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); vcpu->arch.emulate_ctxt.ops = &emulate_ops; if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->arch.pio_data = page_address(page); kvm_set_tsc_khz(vcpu, max_tsc_khz); r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; if (irqchip_in_kernel(vcpu->kvm)) { r = kvm_create_lapic(vcpu); if (r < 0) goto fail_mmu_destroy; } else static_key_slow_inc(&kvm_no_apic_vcpu); vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, GFP_KERNEL); if (!vcpu->arch.mce_banks) { r = -ENOMEM; goto fail_free_lapic; } vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { r = -ENOMEM; goto fail_free_mce_banks; } fx_init(vcpu); vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; kvm_async_pf_hash_reset(vcpu); kvm_pmu_init(vcpu); vcpu->arch.pending_external_vector = -1; vcpu->arch.preempted_in_kernel = false; kvm_hv_vcpu_init(vcpu); return 0; fail_free_mce_banks: kfree(vcpu->arch.mce_banks); fail_free_lapic: kvm_free_lapic(vcpu); fail_mmu_destroy: kvm_mmu_destroy(vcpu); fail_free_pio_data: free_page((unsigned long)vcpu->arch.pio_data); fail: return r; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { int idx; kvm_hv_vcpu_uninit(vcpu); kvm_pmu_destroy(vcpu); kfree(vcpu->arch.mce_banks); kvm_free_lapic(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_mmu_destroy(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, idx); free_page((unsigned long)vcpu->arch.pio_data); if (!lapic_in_kernel(vcpu)) static_key_slow_dec(&kvm_no_apic_vcpu); } void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) { vcpu->arch.l1tf_flush_l1d = true; kvm_x86_ops->sched_in(vcpu, cpu); } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { if (type) return -EINVAL; INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); atomic_set(&kvm->arch.noncoherent_dma_count, 0); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); raw_spin_lock_init(&kvm->arch.tsc_write_lock); mutex_init(&kvm->arch.apic_map_lock); spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); pvclock_update_vm_gtod_copy(kvm); kvm->arch.guest_can_read_msr_platform_info = true; INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); kvm_hv_init_vm(kvm); kvm_page_track_init(kvm); kvm_mmu_init_vm(kvm); if (kvm_x86_ops->vm_init) return kvm_x86_ops->vm_init(kvm); return 0; } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; /* * Unpin any mmu pages first. */ kvm_for_each_vcpu(i, vcpu, kvm) { kvm_clear_async_pf_completion_queue(vcpu); kvm_unload_vcpu_mmu(vcpu); } kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); mutex_unlock(&kvm->lock); } void kvm_arch_sync_events(struct kvm *kvm) { cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); kvm_free_pit(kvm); } int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) { int i, r; unsigned long hva; struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *slot, old; /* Called with kvm->slots_lock held. */ if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) return -EINVAL; slot = id_to_memslot(slots, id); if (size) { if (slot->npages) return -EEXIST; /* * MAP_SHARED to prevent internal slot pages from being moved * by fork()/COW. */ hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 0); if (IS_ERR((void *)hva)) return PTR_ERR((void *)hva); } else { if (!slot->npages) return 0; hva = 0; } old = *slot; for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { struct kvm_userspace_memory_region m; m.slot = id | (i << 16); m.flags = 0; m.guest_phys_addr = gpa; m.userspace_addr = hva; m.memory_size = size; r = __kvm_set_memory_region(kvm, &m); if (r < 0) return r; } if (!size) vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); return 0; } EXPORT_SYMBOL_GPL(__x86_set_memory_region); int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) { int r; mutex_lock(&kvm->slots_lock); r = __x86_set_memory_region(kvm, id, gpa, size); mutex_unlock(&kvm->slots_lock); return r; } EXPORT_SYMBOL_GPL(x86_set_memory_region); void kvm_arch_destroy_vm(struct kvm *kvm) { if (current->mm == kvm->mm) { /* * Free memory regions allocated on behalf of userspace, * unless the the memory map has changed due to process exit * or fd copying. */ x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); } if (kvm_x86_ops->vm_destroy) kvm_x86_ops->vm_destroy(kvm); kvm_pic_destroy(kvm); kvm_ioapic_destroy(kvm); kvm_free_vcpus(kvm); kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); kvm_mmu_uninit_vm(kvm); kvm_page_track_cleanup(kvm); kvm_hv_destroy_vm(kvm); } void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { int i; for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { kvfree(free->arch.rmap[i]); free->arch.rmap[i] = NULL; } if (i == 0) continue; if (!dont || free->arch.lpage_info[i - 1] != dont->arch.lpage_info[i - 1]) { kvfree(free->arch.lpage_info[i - 1]); free->arch.lpage_info[i - 1] = NULL; } } kvm_page_track_free_memslot(free, dont); } int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, unsigned long npages) { int i; for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { struct kvm_lpage_info *linfo; unsigned long ugfn; int lpages; int level = i + 1; lpages = gfn_to_index(slot->base_gfn + npages - 1, slot->base_gfn, level) + 1; slot->arch.rmap[i] = kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), GFP_KERNEL); if (!slot->arch.rmap[i]) goto out_free; if (i == 0) continue; linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL); if (!linfo) goto out_free; slot->arch.lpage_info[i - 1] = linfo; if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) linfo[0].disallow_lpage = 1; if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) linfo[lpages - 1].disallow_lpage = 1; ugfn = slot->userspace_addr >> PAGE_SHIFT; /* * If the gfn and userspace address are not aligned wrt each * other, or if explicitly asked to, disable large page * support for this slot */ if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || !kvm_largepages_enabled()) { unsigned long j; for (j = 0; j < lpages; ++j) linfo[j].disallow_lpage = 1; } } if (kvm_page_track_create_memslot(slot, npages)) goto out_free; return 0; out_free: for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { kvfree(slot->arch.rmap[i]); slot->arch.rmap[i] = NULL; if (i == 0) continue; kvfree(slot->arch.lpage_info[i - 1]); slot->arch.lpage_info[i - 1] = NULL; } return -ENOMEM; } void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) { /* * memslots->generation has been incremented. * mmio generation may have reached its maximum value. */ kvm_mmu_invalidate_mmio_sptes(kvm, gen); } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change) { return 0; } static void kvm_mmu_slot_apply_flags(struct kvm *kvm, struct kvm_memory_slot *new) { /* Still write protect RO slot */ if (new->flags & KVM_MEM_READONLY) { kvm_mmu_slot_remove_write_access(kvm, new); return; } /* * Call kvm_x86_ops dirty logging hooks when they are valid. * * kvm_x86_ops->slot_disable_log_dirty is called when: * * - KVM_MR_CREATE with dirty logging is disabled * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag * * The reason is, in case of PML, we need to set D-bit for any slots * with dirty logging disabled in order to eliminate unnecessary GPA * logging in PML buffer (and potential PML buffer full VMEXT). This * guarantees leaving PML enabled during guest's lifetime won't have * any additonal overhead from PML when guest is running with dirty * logging disabled for memory slots. * * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot * to dirty logging mode. * * If kvm_x86_ops dirty logging hooks are invalid, use write protect. * * In case of write protect: * * Write protect all pages for dirty logging. * * All the sptes including the large sptes which point to this * slot are set to readonly. We can not create any new large * spte on this slot until the end of the logging. * * See the comments in fast_page_fault(). */ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { if (kvm_x86_ops->slot_enable_log_dirty) kvm_x86_ops->slot_enable_log_dirty(kvm, new); else kvm_mmu_slot_remove_write_access(kvm, new); } else { if (kvm_x86_ops->slot_disable_log_dirty) kvm_x86_ops->slot_disable_log_dirty(kvm, new); } } void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { int nr_mmu_pages = 0; if (!kvm->arch.n_requested_mmu_pages) nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); if (nr_mmu_pages) kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); /* * Dirty logging tracks sptes in 4k granularity, meaning that large * sptes have to be split. If live migration is successful, the guest * in the source machine will be destroyed and large sptes will be * created in the destination. However, if the guest continues to run * in the source machine (for example if live migration fails), small * sptes will remain around and cause bad performance. * * Scan sptes if dirty logging has been stopped, dropping those * which can be collapsed into a single large-page spte. Later * page faults will create the large-page sptes. */ if ((change != KVM_MR_DELETE) && (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) kvm_mmu_zap_collapsible_sptes(kvm, new); /* * Set up write protection and/or dirty logging for the new slot. * * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have * been zapped so no dirty logging staff is needed for old slot. For * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the * new and it's also covered when dealing with the new slot. * * FIXME: const-ify all uses of struct kvm_memory_slot. */ if (change != KVM_MR_DELETE) kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_mmu_invalidate_zap_all_pages(kvm); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_page_track_flush_slot(kvm, slot); } static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) { return (is_guest_mode(vcpu) && kvm_x86_ops->guest_apic_has_interrupt && kvm_x86_ops->guest_apic_has_interrupt(vcpu)); } static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) { if (!list_empty_careful(&vcpu->async_pf.done)) return true; if (kvm_apic_has_events(vcpu)) return true; if (vcpu->arch.pv.pv_unhalted) return true; if (vcpu->arch.exception.pending) return true; if (kvm_test_request(KVM_REQ_NMI, vcpu) || (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu))) return true; if (kvm_test_request(KVM_REQ_SMI, vcpu) || (vcpu->arch.smi_pending && !is_smm(vcpu))) return true; if (kvm_arch_interrupt_allowed(vcpu) && (kvm_cpu_has_interrupt(vcpu) || kvm_guest_apic_has_interrupt(vcpu))) return true; if (kvm_hv_has_stimer_pending(vcpu)) return true; return false; } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); } bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) { if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) return true; if (kvm_test_request(KVM_REQ_NMI, vcpu) || kvm_test_request(KVM_REQ_SMI, vcpu) || kvm_test_request(KVM_REQ_EVENT, vcpu)) return true; if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu)) return true; return false; } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return vcpu->arch.preempted_in_kernel; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) { return kvm_x86_ops->interrupt_allowed(vcpu); } unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) { if (is_64_bit_mode(vcpu)) return kvm_rip_read(vcpu); return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + kvm_rip_read(vcpu)); } EXPORT_SYMBOL_GPL(kvm_get_linear_rip); bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) { return kvm_get_linear_rip(vcpu) == linear_rip; } EXPORT_SYMBOL_GPL(kvm_is_linear_rip); unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags; rflags = kvm_x86_ops->get_rflags(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) rflags &= ~X86_EFLAGS_TF; return rflags; } EXPORT_SYMBOL_GPL(kvm_get_rflags); static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) rflags |= X86_EFLAGS_TF; kvm_x86_ops->set_rflags(vcpu, rflags); } void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { __kvm_set_rflags(vcpu, rflags); kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_set_rflags); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { int r; if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || work->wakeup_all) return; r = kvm_mmu_reload(vcpu); if (unlikely(r)) return; if (!vcpu->arch.mmu.direct_map && work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) return; vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); } static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) { return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); } static inline u32 kvm_async_pf_next_probe(u32 key) { return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); } static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 key = kvm_async_pf_hash_fn(gfn); while (vcpu->arch.apf.gfns[key] != ~0) key = kvm_async_pf_next_probe(key); vcpu->arch.apf.gfns[key] = gfn; } static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) { int i; u32 key = kvm_async_pf_hash_fn(gfn); for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && (vcpu->arch.apf.gfns[key] != gfn && vcpu->arch.apf.gfns[key] != ~0); i++) key = kvm_async_pf_next_probe(key); return key; } bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; } static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 i, j, k; i = j = kvm_async_pf_gfn_slot(vcpu, gfn); while (true) { vcpu->arch.apf.gfns[i] = ~0; do { j = kvm_async_pf_next_probe(j); if (vcpu->arch.apf.gfns[j] == ~0) return; k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); /* * k lies cyclically in ]i,j] * | i.k.j | * |....j i.k.| or |.k..j i...| */ } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; i = j; } } static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) { return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, sizeof(val)); } static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) { return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, sizeof(u32)); } void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; trace_kvm_async_pf_not_present(work->arch.token, work->gva); kvm_add_async_pf_gfn(vcpu, work->arch.gfn); if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || (vcpu->arch.apf.send_user_only && kvm_x86_ops->get_cpl(vcpu) == 0)) kvm_make_request(KVM_REQ_APF_HALT, vcpu); else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; fault.async_page_fault = true; kvm_inject_page_fault(vcpu, &fault); } } void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; u32 val; if (work->wakeup_all) work->arch.token = ~0; /* broadcast wakeup */ else kvm_del_async_pf_gfn(vcpu, work->arch.gfn); trace_kvm_async_pf_ready(work->arch.token, work->gva); if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && !apf_get_user(vcpu, &val)) { if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR && !apf_put_user(vcpu, 0)) { vcpu->arch.exception.injected = false; vcpu->arch.exception.pending = false; vcpu->arch.exception.nr = 0; vcpu->arch.exception.has_error_code = false; vcpu->arch.exception.error_code = 0; } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; fault.async_page_fault = true; kvm_inject_page_fault(vcpu, &fault); } } vcpu->arch.apf.halted = false; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) return true; else return kvm_can_do_async_pf(vcpu); } void kvm_arch_start_assignment(struct kvm *kvm) { atomic_inc(&kvm->arch.assigned_device_count); } EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); void kvm_arch_end_assignment(struct kvm *kvm) { atomic_dec(&kvm->arch.assigned_device_count); } EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); bool kvm_arch_has_assigned_device(struct kvm *kvm) { return atomic_read(&kvm->arch.assigned_device_count); } EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { atomic_inc(&kvm->arch.noncoherent_dma_count); } EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) { atomic_dec(&kvm->arch.noncoherent_dma_count); } EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) { return atomic_read(&kvm->arch.noncoherent_dma_count); } EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); bool kvm_arch_has_irq_bypass(void) { return kvm_x86_ops->update_pi_irte != NULL; } int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); irqfd->producer = prod; return kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 1); } void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { int ret; struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); WARN_ON(irqfd->producer != prod); irqfd->producer = NULL; /* * When producer of consumer is unregistered, we change back to * remapped mode, so we can re-use the current implementation * when the irq is masked/disabled or the consumer side (KVM * int this case doesn't want to receive the interrupts. */ ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); if (ret) printk(KERN_INFO "irq bypass consumer (token %p) unregistration" " fails: %d\n", irqfd->consumer.token, ret); } int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set) { if (!kvm_x86_ops->update_pi_irte) return -EINVAL; return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); } bool kvm_vector_hashing_enabled(void) { return vector_hashing; } EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);