/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "irq.h" #include "mmu.h" #include "cpuid.h" #include "lapic.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_cache_regs.h" #include "x86.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "pmu.h" #include "vmx_evmcs.h" #define __ex(x) __kvm_handle_fault_on_reboot(x) #define __ex_clear(x, reg) \ ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static const struct x86_cpu_id vmx_cpu_id[] = { X86_FEATURE_MATCH(X86_FEATURE_VMX), {} }; MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); static bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly enable_vnmi = 1; module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); static bool __read_mostly flexpriority_enabled = 1; module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); static bool __read_mostly enable_ept = 1; module_param_named(ept, enable_ept, bool, S_IRUGO); static bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, enable_unrestricted_guest, bool, S_IRUGO); static bool __read_mostly enable_ept_ad_bits = 1; module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); static bool __read_mostly emulate_invalid_guest_state = true; module_param(emulate_invalid_guest_state, bool, S_IRUGO); static bool __read_mostly fasteoi = 1; module_param(fasteoi, bool, S_IRUGO); static bool __read_mostly enable_apicv = 1; module_param(enable_apicv, bool, S_IRUGO); static bool __read_mostly enable_shadow_vmcs = 1; module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); /* * If nested=1, nested virtualization is supported, i.e., guests may use * VMX and be a hypervisor for its own guests. If nested=0, guests may not * use VMX instructions. */ static bool __read_mostly nested = 0; module_param(nested, bool, S_IRUGO); static u64 __read_mostly host_xss; static bool __read_mostly enable_pml = 1; module_param_named(pml, enable_pml, bool, S_IRUGO); #define MSR_TYPE_R 1 #define MSR_TYPE_W 2 #define MSR_TYPE_RW 3 #define MSR_BITMAP_MODE_X2APIC 1 #define MSR_BITMAP_MODE_X2APIC_APICV 2 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ static int __read_mostly cpu_preemption_timer_multi; static bool __read_mostly enable_preemption_timer = 1; #ifdef CONFIG_X86_64 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); #endif #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD) #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE #define KVM_VM_CR0_ALWAYS_ON \ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) #define KVM_CR4_GUEST_OWNED_BITS \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 /* * Hyper-V requires all of these, so mark them as supported even though * they are just treated the same as all-context. */ #define VMX_VPID_EXTENT_SUPPORTED_MASK \ (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * ple_gap: upper bound on the amount of time between two successive * executions of PAUSE in a loop. Also indicate if ple enabled. * According to test, this time is usually smaller than 128 cycles. * ple_window: upper bound on the amount of time a guest is allowed to execute * in a PAUSE loop. Tests indicate that most spinlocks are held for * less than 2^12 cycles * Time is measured based on a counter that runs at the same rate as the TSC, * refer SDM volume 3b section 21.6.13 & 22.1.3. */ static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; module_param(ple_gap, uint, 0444); static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; module_param(ple_window, uint, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(ple_window_grow, uint, 0444); /* Default resets per-vcpu window every exit to ple_window. */ static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(ple_window_shrink, uint, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; module_param(ple_window_max, uint, 0444); extern const ulong vmx_return; static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); static DEFINE_MUTEX(vmx_l1d_flush_mutex); /* Storage for pre module init parameter parsing */ static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; static const struct { const char *option; bool for_parse; } vmentry_l1d_param[] = { [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, [VMENTER_L1D_FLUSH_COND] = {"cond", true}, [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, }; #define L1D_CACHE_ORDER 4 static void *vmx_l1d_flush_pages; static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) { struct page *page; unsigned int i; if (!enable_ept) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; return 0; } if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { u64 msr; rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } } /* If set to auto use the default l1tf mitigation method */ if (l1tf == VMENTER_L1D_FLUSH_AUTO) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: l1tf = VMENTER_L1D_FLUSH_NEVER; break; case L1TF_MITIGATION_FLUSH_NOWARN: case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: l1tf = VMENTER_L1D_FLUSH_COND; break; case L1TF_MITIGATION_FULL: case L1TF_MITIGATION_FULL_FORCE: l1tf = VMENTER_L1D_FLUSH_ALWAYS; break; } } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { l1tf = VMENTER_L1D_FLUSH_ALWAYS; } if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); if (!page) return -ENOMEM; vmx_l1d_flush_pages = page_address(page); /* * Initialize each page with a different pattern in * order to protect against KSM in the nested * virtualization case. */ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, PAGE_SIZE); } } l1tf_vmx_mitigation = l1tf; if (l1tf != VMENTER_L1D_FLUSH_NEVER) static_branch_enable(&vmx_l1d_should_flush); else static_branch_disable(&vmx_l1d_should_flush); if (l1tf == VMENTER_L1D_FLUSH_COND) static_branch_enable(&vmx_l1d_flush_cond); else static_branch_disable(&vmx_l1d_flush_cond); return 0; } static int vmentry_l1d_flush_parse(const char *s) { unsigned int i; if (s) { for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { if (vmentry_l1d_param[i].for_parse && sysfs_streq(s, vmentry_l1d_param[i].option)) return i; } } return -EINVAL; } static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) { int l1tf, ret; l1tf = vmentry_l1d_flush_parse(s); if (l1tf < 0) return l1tf; if (!boot_cpu_has(X86_BUG_L1TF)) return 0; /* * Has vmx_init() run already? If not then this is the pre init * parameter parsing. In that case just store the value and let * vmx_init() do the proper setup after enable_ept has been * established. */ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { vmentry_l1d_flush_param = l1tf; return 0; } mutex_lock(&vmx_l1d_flush_mutex); ret = vmx_setup_l1d_flush(l1tf); mutex_unlock(&vmx_l1d_flush_mutex); return ret; } static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) { if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) return sprintf(s, "???\n"); return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); } static const struct kernel_param_ops vmentry_l1d_flush_ops = { .set = vmentry_l1d_flush_set, .get = vmentry_l1d_flush_get, }; module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); enum ept_pointers_status { EPT_POINTERS_CHECK = 0, EPT_POINTERS_MATCH = 1, EPT_POINTERS_MISMATCH = 2 }; struct kvm_vmx { struct kvm kvm; unsigned int tss_addr; bool ept_identity_pagetable_done; gpa_t ept_identity_map_addr; enum ept_pointers_status ept_pointers_match; spinlock_t ept_pointer_lock; }; #define NR_AUTOLOAD_MSRS 8 struct vmcs_hdr { u32 revision_id:31; u32 shadow_vmcs:1; }; struct vmcs { struct vmcs_hdr hdr; u32 abort; char data[0]; }; /* * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT * and whose values change infrequently, but are not constant. I.e. this is * used as a write-through cache of the corresponding VMCS fields. */ struct vmcs_host_state { unsigned long cr3; /* May not match real cr3 */ unsigned long cr4; /* May not match real cr4 */ unsigned long gs_base; unsigned long fs_base; u16 fs_sel, gs_sel, ldt_sel; #ifdef CONFIG_X86_64 u16 ds_sel, es_sel; #endif }; /* * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs * loaded on this CPU (so we can clear them if the CPU goes down). */ struct loaded_vmcs { struct vmcs *vmcs; struct vmcs *shadow_vmcs; int cpu; bool launched; bool nmi_known_unmasked; bool hv_timer_armed; /* Support for vnmi-less CPUs */ int soft_vnmi_blocked; ktime_t entry_time; s64 vnmi_blocked_time; unsigned long *msr_bitmap; struct list_head loaded_vmcss_on_cpu_link; struct vmcs_host_state host_state; }; struct shared_msr_entry { unsigned index; u64 data; u64 mask; }; /* * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a * single nested guest (L2), hence the name vmcs12. Any VMX implementation has * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is * stored in guest memory specified by VMPTRLD, but is opaque to the guest, * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. * More than one of these structures may exist, if L1 runs multiple L2 guests. * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the * underlying hardware which will be used to run L2. * This structure is packed to ensure that its layout is identical across * machines (necessary for live migration). * * IMPORTANT: Changing the layout of existing fields in this structure * will break save/restore compatibility with older kvm releases. When * adding new fields, either use space in the reserved padding* arrays * or add the new fields to the end of the structure. */ typedef u64 natural_width; struct __packed vmcs12 { /* According to the Intel spec, a VMCS region must start with the * following two fields. Then follow implementation-specific data. */ struct vmcs_hdr hdr; u32 abort; u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ u32 padding[7]; /* room for future expansion */ u64 io_bitmap_a; u64 io_bitmap_b; u64 msr_bitmap; u64 vm_exit_msr_store_addr; u64 vm_exit_msr_load_addr; u64 vm_entry_msr_load_addr; u64 tsc_offset; u64 virtual_apic_page_addr; u64 apic_access_addr; u64 posted_intr_desc_addr; u64 ept_pointer; u64 eoi_exit_bitmap0; u64 eoi_exit_bitmap1; u64 eoi_exit_bitmap2; u64 eoi_exit_bitmap3; u64 xss_exit_bitmap; u64 guest_physical_address; u64 vmcs_link_pointer; u64 guest_ia32_debugctl; u64 guest_ia32_pat; u64 guest_ia32_efer; u64 guest_ia32_perf_global_ctrl; u64 guest_pdptr0; u64 guest_pdptr1; u64 guest_pdptr2; u64 guest_pdptr3; u64 guest_bndcfgs; u64 host_ia32_pat; u64 host_ia32_efer; u64 host_ia32_perf_global_ctrl; u64 vmread_bitmap; u64 vmwrite_bitmap; u64 vm_function_control; u64 eptp_list_address; u64 pml_address; u64 padding64[3]; /* room for future expansion */ /* * To allow migration of L1 (complete with its L2 guests) between * machines of different natural widths (32 or 64 bit), we cannot have * unsigned long fields with no explict size. We use u64 (aliased * natural_width) instead. Luckily, x86 is little-endian. */ natural_width cr0_guest_host_mask; natural_width cr4_guest_host_mask; natural_width cr0_read_shadow; natural_width cr4_read_shadow; natural_width cr3_target_value0; natural_width cr3_target_value1; natural_width cr3_target_value2; natural_width cr3_target_value3; natural_width exit_qualification; natural_width guest_linear_address; natural_width guest_cr0; natural_width guest_cr3; natural_width guest_cr4; natural_width guest_es_base; natural_width guest_cs_base; natural_width guest_ss_base; natural_width guest_ds_base; natural_width guest_fs_base; natural_width guest_gs_base; natural_width guest_ldtr_base; natural_width guest_tr_base; natural_width guest_gdtr_base; natural_width guest_idtr_base; natural_width guest_dr7; natural_width guest_rsp; natural_width guest_rip; natural_width guest_rflags; natural_width guest_pending_dbg_exceptions; natural_width guest_sysenter_esp; natural_width guest_sysenter_eip; natural_width host_cr0; natural_width host_cr3; natural_width host_cr4; natural_width host_fs_base; natural_width host_gs_base; natural_width host_tr_base; natural_width host_gdtr_base; natural_width host_idtr_base; natural_width host_ia32_sysenter_esp; natural_width host_ia32_sysenter_eip; natural_width host_rsp; natural_width host_rip; natural_width paddingl[8]; /* room for future expansion */ u32 pin_based_vm_exec_control; u32 cpu_based_vm_exec_control; u32 exception_bitmap; u32 page_fault_error_code_mask; u32 page_fault_error_code_match; u32 cr3_target_count; u32 vm_exit_controls; u32 vm_exit_msr_store_count; u32 vm_exit_msr_load_count; u32 vm_entry_controls; u32 vm_entry_msr_load_count; u32 vm_entry_intr_info_field; u32 vm_entry_exception_error_code; u32 vm_entry_instruction_len; u32 tpr_threshold; u32 secondary_vm_exec_control; u32 vm_instruction_error; u32 vm_exit_reason; u32 vm_exit_intr_info; u32 vm_exit_intr_error_code; u32 idt_vectoring_info_field; u32 idt_vectoring_error_code; u32 vm_exit_instruction_len; u32 vmx_instruction_info; u32 guest_es_limit; u32 guest_cs_limit; u32 guest_ss_limit; u32 guest_ds_limit; u32 guest_fs_limit; u32 guest_gs_limit; u32 guest_ldtr_limit; u32 guest_tr_limit; u32 guest_gdtr_limit; u32 guest_idtr_limit; u32 guest_es_ar_bytes; u32 guest_cs_ar_bytes; u32 guest_ss_ar_bytes; u32 guest_ds_ar_bytes; u32 guest_fs_ar_bytes; u32 guest_gs_ar_bytes; u32 guest_ldtr_ar_bytes; u32 guest_tr_ar_bytes; u32 guest_interruptibility_info; u32 guest_activity_state; u32 guest_sysenter_cs; u32 host_ia32_sysenter_cs; u32 vmx_preemption_timer_value; u32 padding32[7]; /* room for future expansion */ u16 virtual_processor_id; u16 posted_intr_nv; u16 guest_es_selector; u16 guest_cs_selector; u16 guest_ss_selector; u16 guest_ds_selector; u16 guest_fs_selector; u16 guest_gs_selector; u16 guest_ldtr_selector; u16 guest_tr_selector; u16 guest_intr_status; u16 host_es_selector; u16 host_cs_selector; u16 host_ss_selector; u16 host_ds_selector; u16 host_fs_selector; u16 host_gs_selector; u16 host_tr_selector; u16 guest_pml_index; }; /* * For save/restore compatibility, the vmcs12 field offsets must not change. */ #define CHECK_OFFSET(field, loc) \ BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \ "Offset of " #field " in struct vmcs12 has changed.") static inline void vmx_check_vmcs12_offsets(void) { CHECK_OFFSET(hdr, 0); CHECK_OFFSET(abort, 4); CHECK_OFFSET(launch_state, 8); CHECK_OFFSET(io_bitmap_a, 40); CHECK_OFFSET(io_bitmap_b, 48); CHECK_OFFSET(msr_bitmap, 56); CHECK_OFFSET(vm_exit_msr_store_addr, 64); CHECK_OFFSET(vm_exit_msr_load_addr, 72); CHECK_OFFSET(vm_entry_msr_load_addr, 80); CHECK_OFFSET(tsc_offset, 88); CHECK_OFFSET(virtual_apic_page_addr, 96); CHECK_OFFSET(apic_access_addr, 104); CHECK_OFFSET(posted_intr_desc_addr, 112); CHECK_OFFSET(ept_pointer, 120); CHECK_OFFSET(eoi_exit_bitmap0, 128); CHECK_OFFSET(eoi_exit_bitmap1, 136); CHECK_OFFSET(eoi_exit_bitmap2, 144); CHECK_OFFSET(eoi_exit_bitmap3, 152); CHECK_OFFSET(xss_exit_bitmap, 160); CHECK_OFFSET(guest_physical_address, 168); CHECK_OFFSET(vmcs_link_pointer, 176); CHECK_OFFSET(guest_ia32_debugctl, 184); CHECK_OFFSET(guest_ia32_pat, 192); CHECK_OFFSET(guest_ia32_efer, 200); CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208); CHECK_OFFSET(guest_pdptr0, 216); CHECK_OFFSET(guest_pdptr1, 224); CHECK_OFFSET(guest_pdptr2, 232); CHECK_OFFSET(guest_pdptr3, 240); CHECK_OFFSET(guest_bndcfgs, 248); CHECK_OFFSET(host_ia32_pat, 256); CHECK_OFFSET(host_ia32_efer, 264); CHECK_OFFSET(host_ia32_perf_global_ctrl, 272); CHECK_OFFSET(vmread_bitmap, 280); CHECK_OFFSET(vmwrite_bitmap, 288); CHECK_OFFSET(vm_function_control, 296); CHECK_OFFSET(eptp_list_address, 304); CHECK_OFFSET(pml_address, 312); CHECK_OFFSET(cr0_guest_host_mask, 344); CHECK_OFFSET(cr4_guest_host_mask, 352); CHECK_OFFSET(cr0_read_shadow, 360); CHECK_OFFSET(cr4_read_shadow, 368); CHECK_OFFSET(cr3_target_value0, 376); CHECK_OFFSET(cr3_target_value1, 384); CHECK_OFFSET(cr3_target_value2, 392); CHECK_OFFSET(cr3_target_value3, 400); CHECK_OFFSET(exit_qualification, 408); CHECK_OFFSET(guest_linear_address, 416); CHECK_OFFSET(guest_cr0, 424); CHECK_OFFSET(guest_cr3, 432); CHECK_OFFSET(guest_cr4, 440); CHECK_OFFSET(guest_es_base, 448); CHECK_OFFSET(guest_cs_base, 456); CHECK_OFFSET(guest_ss_base, 464); CHECK_OFFSET(guest_ds_base, 472); CHECK_OFFSET(guest_fs_base, 480); CHECK_OFFSET(guest_gs_base, 488); CHECK_OFFSET(guest_ldtr_base, 496); CHECK_OFFSET(guest_tr_base, 504); CHECK_OFFSET(guest_gdtr_base, 512); CHECK_OFFSET(guest_idtr_base, 520); CHECK_OFFSET(guest_dr7, 528); CHECK_OFFSET(guest_rsp, 536); CHECK_OFFSET(guest_rip, 544); CHECK_OFFSET(guest_rflags, 552); CHECK_OFFSET(guest_pending_dbg_exceptions, 560); CHECK_OFFSET(guest_sysenter_esp, 568); CHECK_OFFSET(guest_sysenter_eip, 576); CHECK_OFFSET(host_cr0, 584); CHECK_OFFSET(host_cr3, 592); CHECK_OFFSET(host_cr4, 600); CHECK_OFFSET(host_fs_base, 608); CHECK_OFFSET(host_gs_base, 616); CHECK_OFFSET(host_tr_base, 624); CHECK_OFFSET(host_gdtr_base, 632); CHECK_OFFSET(host_idtr_base, 640); CHECK_OFFSET(host_ia32_sysenter_esp, 648); CHECK_OFFSET(host_ia32_sysenter_eip, 656); CHECK_OFFSET(host_rsp, 664); CHECK_OFFSET(host_rip, 672); CHECK_OFFSET(pin_based_vm_exec_control, 744); CHECK_OFFSET(cpu_based_vm_exec_control, 748); CHECK_OFFSET(exception_bitmap, 752); CHECK_OFFSET(page_fault_error_code_mask, 756); CHECK_OFFSET(page_fault_error_code_match, 760); CHECK_OFFSET(cr3_target_count, 764); CHECK_OFFSET(vm_exit_controls, 768); CHECK_OFFSET(vm_exit_msr_store_count, 772); CHECK_OFFSET(vm_exit_msr_load_count, 776); CHECK_OFFSET(vm_entry_controls, 780); CHECK_OFFSET(vm_entry_msr_load_count, 784); CHECK_OFFSET(vm_entry_intr_info_field, 788); CHECK_OFFSET(vm_entry_exception_error_code, 792); CHECK_OFFSET(vm_entry_instruction_len, 796); CHECK_OFFSET(tpr_threshold, 800); CHECK_OFFSET(secondary_vm_exec_control, 804); CHECK_OFFSET(vm_instruction_error, 808); CHECK_OFFSET(vm_exit_reason, 812); CHECK_OFFSET(vm_exit_intr_info, 816); CHECK_OFFSET(vm_exit_intr_error_code, 820); CHECK_OFFSET(idt_vectoring_info_field, 824); CHECK_OFFSET(idt_vectoring_error_code, 828); CHECK_OFFSET(vm_exit_instruction_len, 832); CHECK_OFFSET(vmx_instruction_info, 836); CHECK_OFFSET(guest_es_limit, 840); CHECK_OFFSET(guest_cs_limit, 844); CHECK_OFFSET(guest_ss_limit, 848); CHECK_OFFSET(guest_ds_limit, 852); CHECK_OFFSET(guest_fs_limit, 856); CHECK_OFFSET(guest_gs_limit, 860); CHECK_OFFSET(guest_ldtr_limit, 864); CHECK_OFFSET(guest_tr_limit, 868); CHECK_OFFSET(guest_gdtr_limit, 872); CHECK_OFFSET(guest_idtr_limit, 876); CHECK_OFFSET(guest_es_ar_bytes, 880); CHECK_OFFSET(guest_cs_ar_bytes, 884); CHECK_OFFSET(guest_ss_ar_bytes, 888); CHECK_OFFSET(guest_ds_ar_bytes, 892); CHECK_OFFSET(guest_fs_ar_bytes, 896); CHECK_OFFSET(guest_gs_ar_bytes, 900); CHECK_OFFSET(guest_ldtr_ar_bytes, 904); CHECK_OFFSET(guest_tr_ar_bytes, 908); CHECK_OFFSET(guest_interruptibility_info, 912); CHECK_OFFSET(guest_activity_state, 916); CHECK_OFFSET(guest_sysenter_cs, 920); CHECK_OFFSET(host_ia32_sysenter_cs, 924); CHECK_OFFSET(vmx_preemption_timer_value, 928); CHECK_OFFSET(virtual_processor_id, 960); CHECK_OFFSET(posted_intr_nv, 962); CHECK_OFFSET(guest_es_selector, 964); CHECK_OFFSET(guest_cs_selector, 966); CHECK_OFFSET(guest_ss_selector, 968); CHECK_OFFSET(guest_ds_selector, 970); CHECK_OFFSET(guest_fs_selector, 972); CHECK_OFFSET(guest_gs_selector, 974); CHECK_OFFSET(guest_ldtr_selector, 976); CHECK_OFFSET(guest_tr_selector, 978); CHECK_OFFSET(guest_intr_status, 980); CHECK_OFFSET(host_es_selector, 982); CHECK_OFFSET(host_cs_selector, 984); CHECK_OFFSET(host_ss_selector, 986); CHECK_OFFSET(host_ds_selector, 988); CHECK_OFFSET(host_fs_selector, 990); CHECK_OFFSET(host_gs_selector, 992); CHECK_OFFSET(host_tr_selector, 994); CHECK_OFFSET(guest_pml_index, 996); } /* * VMCS12_REVISION is an arbitrary id that should be changed if the content or * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. * * IMPORTANT: Changing this value will break save/restore compatibility with * older kvm releases. */ #define VMCS12_REVISION 0x11e57ed0 /* * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region * and any VMCS region. Although only sizeof(struct vmcs12) are used by the * current implementation, 4K are reserved to avoid future complications. */ #define VMCS12_SIZE 0x1000 /* * VMCS12_MAX_FIELD_INDEX is the highest index value used in any * supported VMCS12 field encoding. */ #define VMCS12_MAX_FIELD_INDEX 0x17 struct nested_vmx_msrs { /* * We only store the "true" versions of the VMX capability MSRs. We * generate the "non-true" versions by setting the must-be-1 bits * according to the SDM. */ u32 procbased_ctls_low; u32 procbased_ctls_high; u32 secondary_ctls_low; u32 secondary_ctls_high; u32 pinbased_ctls_low; u32 pinbased_ctls_high; u32 exit_ctls_low; u32 exit_ctls_high; u32 entry_ctls_low; u32 entry_ctls_high; u32 misc_low; u32 misc_high; u32 ept_caps; u32 vpid_caps; u64 basic; u64 cr0_fixed0; u64 cr0_fixed1; u64 cr4_fixed0; u64 cr4_fixed1; u64 vmcs_enum; u64 vmfunc_controls; }; /* * The nested_vmx structure is part of vcpu_vmx, and holds information we need * for correct emulation of VMX (i.e., nested VMX) on this vcpu. */ struct nested_vmx { /* Has the level1 guest done vmxon? */ bool vmxon; gpa_t vmxon_ptr; bool pml_full; /* The guest-physical address of the current VMCS L1 keeps for L2 */ gpa_t current_vmptr; /* * Cache of the guest's VMCS, existing outside of guest memory. * Loaded from guest memory during VMPTRLD. Flushed to guest * memory during VMCLEAR and VMPTRLD. */ struct vmcs12 *cached_vmcs12; /* * Cache of the guest's shadow VMCS, existing outside of guest * memory. Loaded from guest memory during VM entry. Flushed * to guest memory during VM exit. */ struct vmcs12 *cached_shadow_vmcs12; /* * Indicates if the shadow vmcs must be updated with the * data hold by vmcs12 */ bool sync_shadow_vmcs; bool dirty_vmcs12; bool change_vmcs01_virtual_apic_mode; /* L2 must run next, and mustn't decide to exit to L1. */ bool nested_run_pending; struct loaded_vmcs vmcs02; /* * Guest pages referred to in the vmcs02 with host-physical * pointers, so we must keep them pinned while L2 runs. */ struct page *apic_access_page; struct page *virtual_apic_page; struct page *pi_desc_page; struct pi_desc *pi_desc; bool pi_pending; u16 posted_intr_nv; struct hrtimer preemption_timer; bool preemption_timer_expired; /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ u64 vmcs01_debugctl; u64 vmcs01_guest_bndcfgs; u16 vpid02; u16 last_vpid; struct nested_vmx_msrs msrs; /* SMM related state */ struct { /* in VMX operation on SMM entry? */ bool vmxon; /* in guest mode on SMM entry? */ bool guest_mode; } smm; }; #define POSTED_INTR_ON 0 #define POSTED_INTR_SN 1 /* Posted-Interrupt Descriptor */ struct pi_desc { u32 pir[8]; /* Posted interrupt requested */ union { struct { /* bit 256 - Outstanding Notification */ u16 on : 1, /* bit 257 - Suppress Notification */ sn : 1, /* bit 271:258 - Reserved */ rsvd_1 : 14; /* bit 279:272 - Notification Vector */ u8 nv; /* bit 287:280 - Reserved */ u8 rsvd_2; /* bit 319:288 - Notification Destination */ u32 ndst; }; u64 control; }; u32 rsvd[6]; } __aligned(64); static bool pi_test_and_set_on(struct pi_desc *pi_desc) { return test_and_set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static bool pi_test_and_clear_on(struct pi_desc *pi_desc) { return test_and_clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) { return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); } static inline void pi_clear_sn(struct pi_desc *pi_desc) { return clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline void pi_set_sn(struct pi_desc *pi_desc) { return set_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline void pi_clear_on(struct pi_desc *pi_desc) { clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline int pi_test_on(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline int pi_test_sn(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } struct vmx_msrs { unsigned int nr; struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; }; struct vcpu_vmx { struct kvm_vcpu vcpu; unsigned long host_rsp; u8 fail; u8 msr_bitmap_mode; u32 exit_intr_info; u32 idt_vectoring_info; ulong rflags; struct shared_msr_entry *guest_msrs; int nmsrs; int save_nmsrs; bool guest_msrs_dirty; unsigned long host_idt_base; #ifdef CONFIG_X86_64 u64 msr_host_kernel_gs_base; u64 msr_guest_kernel_gs_base; #endif u64 spec_ctrl; u32 vm_entry_controls_shadow; u32 vm_exit_controls_shadow; u32 secondary_exec_control; /* * loaded_vmcs points to the VMCS currently used in this vcpu. For a * non-nested (L1) guest, it always points to vmcs01. For a nested * guest (L2), it points to a different VMCS. loaded_cpu_state points * to the VMCS whose state is loaded into the CPU registers that only * need to be switched when transitioning to/from the kernel; a NULL * value indicates that host state is loaded. */ struct loaded_vmcs vmcs01; struct loaded_vmcs *loaded_vmcs; struct loaded_vmcs *loaded_cpu_state; bool __launched; /* temporary, used in vmx_vcpu_run */ struct msr_autoload { struct vmx_msrs guest; struct vmx_msrs host; } msr_autoload; struct { int vm86_active; ulong save_rflags; struct kvm_segment segs[8]; } rmode; struct { u32 bitmask; /* 4 bits per segment (1 bit per field) */ struct kvm_save_segment { u16 selector; unsigned long base; u32 limit; u32 ar; } seg[8]; } segment_cache; int vpid; bool emulation_required; u32 exit_reason; /* Posted interrupt descriptor */ struct pi_desc pi_desc; /* Support for a guest hypervisor (nested VMX) */ struct nested_vmx nested; /* Dynamic PLE window. */ int ple_window; bool ple_window_dirty; bool req_immediate_exit; /* Support for PML */ #define PML_ENTITY_NUM 512 struct page *pml_pg; /* apic deadline value in host tsc */ u64 hv_deadline_tsc; u64 current_tsc_ratio; u32 host_pkru; unsigned long host_debugctlmsr; /* * Only bits masked by msr_ia32_feature_control_valid_bits can be set in * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included * in msr_ia32_feature_control_valid_bits. */ u64 msr_ia32_feature_control; u64 msr_ia32_feature_control_valid_bits; u64 ept_pointer; }; enum segment_cache_field { SEG_FIELD_SEL = 0, SEG_FIELD_BASE = 1, SEG_FIELD_LIMIT = 2, SEG_FIELD_AR = 3, SEG_FIELD_NR = 4 }; static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) { return container_of(kvm, struct kvm_vmx, kvm); } static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_vmx, vcpu); } static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) { return &(to_vmx(vcpu)->pi_desc); } #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) #define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name) #define FIELD64(number, name) \ FIELD(number, name), \ [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32) static u16 shadow_read_only_fields[] = { #define SHADOW_FIELD_RO(x) x, #include "vmx_shadow_fields.h" }; static int max_shadow_read_only_fields = ARRAY_SIZE(shadow_read_only_fields); static u16 shadow_read_write_fields[] = { #define SHADOW_FIELD_RW(x) x, #include "vmx_shadow_fields.h" }; static int max_shadow_read_write_fields = ARRAY_SIZE(shadow_read_write_fields); static const unsigned short vmcs_field_to_offset_table[] = { FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), FIELD(POSTED_INTR_NV, posted_intr_nv), FIELD(GUEST_ES_SELECTOR, guest_es_selector), FIELD(GUEST_CS_SELECTOR, guest_cs_selector), FIELD(GUEST_SS_SELECTOR, guest_ss_selector), FIELD(GUEST_DS_SELECTOR, guest_ds_selector), FIELD(GUEST_FS_SELECTOR, guest_fs_selector), FIELD(GUEST_GS_SELECTOR, guest_gs_selector), FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), FIELD(GUEST_TR_SELECTOR, guest_tr_selector), FIELD(GUEST_INTR_STATUS, guest_intr_status), FIELD(GUEST_PML_INDEX, guest_pml_index), FIELD(HOST_ES_SELECTOR, host_es_selector), FIELD(HOST_CS_SELECTOR, host_cs_selector), FIELD(HOST_SS_SELECTOR, host_ss_selector), FIELD(HOST_DS_SELECTOR, host_ds_selector), FIELD(HOST_FS_SELECTOR, host_fs_selector), FIELD(HOST_GS_SELECTOR, host_gs_selector), FIELD(HOST_TR_SELECTOR, host_tr_selector), FIELD64(IO_BITMAP_A, io_bitmap_a), FIELD64(IO_BITMAP_B, io_bitmap_b), FIELD64(MSR_BITMAP, msr_bitmap), FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), FIELD64(PML_ADDRESS, pml_address), FIELD64(TSC_OFFSET, tsc_offset), FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), FIELD64(APIC_ACCESS_ADDR, apic_access_addr), FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), FIELD64(VM_FUNCTION_CONTROL, vm_function_control), FIELD64(EPT_POINTER, ept_pointer), FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), FIELD64(VMREAD_BITMAP, vmread_bitmap), FIELD64(VMWRITE_BITMAP, vmwrite_bitmap), FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), FIELD64(GUEST_IA32_PAT, guest_ia32_pat), FIELD64(GUEST_IA32_EFER, guest_ia32_efer), FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), FIELD64(GUEST_PDPTR0, guest_pdptr0), FIELD64(GUEST_PDPTR1, guest_pdptr1), FIELD64(GUEST_PDPTR2, guest_pdptr2), FIELD64(GUEST_PDPTR3, guest_pdptr3), FIELD64(GUEST_BNDCFGS, guest_bndcfgs), FIELD64(HOST_IA32_PAT, host_ia32_pat), FIELD64(HOST_IA32_EFER, host_ia32_efer), FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), FIELD(EXCEPTION_BITMAP, exception_bitmap), FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), FIELD(CR3_TARGET_COUNT, cr3_target_count), FIELD(VM_EXIT_CONTROLS, vm_exit_controls), FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), FIELD(TPR_THRESHOLD, tpr_threshold), FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), FIELD(VM_EXIT_REASON, vm_exit_reason), FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), FIELD(GUEST_ES_LIMIT, guest_es_limit), FIELD(GUEST_CS_LIMIT, guest_cs_limit), FIELD(GUEST_SS_LIMIT, guest_ss_limit), FIELD(GUEST_DS_LIMIT, guest_ds_limit), FIELD(GUEST_FS_LIMIT, guest_fs_limit), FIELD(GUEST_GS_LIMIT, guest_gs_limit), FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), FIELD(GUEST_TR_LIMIT, guest_tr_limit), FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), FIELD(CR0_READ_SHADOW, cr0_read_shadow), FIELD(CR4_READ_SHADOW, cr4_read_shadow), FIELD(CR3_TARGET_VALUE0, cr3_target_value0), FIELD(CR3_TARGET_VALUE1, cr3_target_value1), FIELD(CR3_TARGET_VALUE2, cr3_target_value2), FIELD(CR3_TARGET_VALUE3, cr3_target_value3), FIELD(EXIT_QUALIFICATION, exit_qualification), FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), FIELD(GUEST_CR0, guest_cr0), FIELD(GUEST_CR3, guest_cr3), FIELD(GUEST_CR4, guest_cr4), FIELD(GUEST_ES_BASE, guest_es_base), FIELD(GUEST_CS_BASE, guest_cs_base), FIELD(GUEST_SS_BASE, guest_ss_base), FIELD(GUEST_DS_BASE, guest_ds_base), FIELD(GUEST_FS_BASE, guest_fs_base), FIELD(GUEST_GS_BASE, guest_gs_base), FIELD(GUEST_LDTR_BASE, guest_ldtr_base), FIELD(GUEST_TR_BASE, guest_tr_base), FIELD(GUEST_GDTR_BASE, guest_gdtr_base), FIELD(GUEST_IDTR_BASE, guest_idtr_base), FIELD(GUEST_DR7, guest_dr7), FIELD(GUEST_RSP, guest_rsp), FIELD(GUEST_RIP, guest_rip), FIELD(GUEST_RFLAGS, guest_rflags), FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), FIELD(HOST_CR0, host_cr0), FIELD(HOST_CR3, host_cr3), FIELD(HOST_CR4, host_cr4), FIELD(HOST_FS_BASE, host_fs_base), FIELD(HOST_GS_BASE, host_gs_base), FIELD(HOST_TR_BASE, host_tr_base), FIELD(HOST_GDTR_BASE, host_gdtr_base), FIELD(HOST_IDTR_BASE, host_idtr_base), FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), FIELD(HOST_RSP, host_rsp), FIELD(HOST_RIP, host_rip), }; static inline short vmcs_field_to_offset(unsigned long field) { const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table); unsigned short offset; unsigned index; if (field >> 15) return -ENOENT; index = ROL16(field, 6); if (index >= size) return -ENOENT; index = array_index_nospec(index, size); offset = vmcs_field_to_offset_table[index]; if (offset == 0) return -ENOENT; return offset; } static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.cached_vmcs12; } static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.cached_shadow_vmcs12; } static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu); static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); static bool vmx_xsaves_supported(void); static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); static void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); static bool guest_state_valid(struct kvm_vcpu *vcpu); static u32 vmx_segment_access_rights(struct kvm_segment *var); static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, u16 error_code); static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type); static DEFINE_PER_CPU(struct vmcs *, vmxarea); static DEFINE_PER_CPU(struct vmcs *, current_vmcs); /* * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. */ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); /* * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we * can find which vCPU should be waken up. */ static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); enum { VMX_VMREAD_BITMAP, VMX_VMWRITE_BITMAP, VMX_BITMAP_NR }; static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) static bool cpu_has_load_ia32_efer; static bool cpu_has_load_perf_global_ctrl; static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); static DEFINE_SPINLOCK(vmx_vpid_lock); static struct vmcs_config { int size; int order; u32 basic_cap; u32 revision_id; u32 pin_based_exec_ctrl; u32 cpu_based_exec_ctrl; u32 cpu_based_2nd_exec_ctrl; u32 vmexit_ctrl; u32 vmentry_ctrl; struct nested_vmx_msrs nested; } vmcs_config; static struct vmx_capability { u32 ept; u32 vpid; } vmx_capability; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static const struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; static u64 host_efer; static void ept_save_pdptrs(struct kvm_vcpu *vcpu); /* * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it * away by decrementing the array size. */ static const u32 vmx_msr_index[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, #endif MSR_EFER, MSR_TSC_AUX, MSR_STAR, }; DEFINE_STATIC_KEY_FALSE(enable_evmcs); #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs)) #define KVM_EVMCS_VERSION 1 #if IS_ENABLED(CONFIG_HYPERV) static bool __read_mostly enlightened_vmcs = true; module_param(enlightened_vmcs, bool, 0444); static inline void evmcs_write64(unsigned long field, u64 value) { u16 clean_field; int offset = get_evmcs_offset(field, &clean_field); if (offset < 0) return; *(u64 *)((char *)current_evmcs + offset) = value; current_evmcs->hv_clean_fields &= ~clean_field; } static inline void evmcs_write32(unsigned long field, u32 value) { u16 clean_field; int offset = get_evmcs_offset(field, &clean_field); if (offset < 0) return; *(u32 *)((char *)current_evmcs + offset) = value; current_evmcs->hv_clean_fields &= ~clean_field; } static inline void evmcs_write16(unsigned long field, u16 value) { u16 clean_field; int offset = get_evmcs_offset(field, &clean_field); if (offset < 0) return; *(u16 *)((char *)current_evmcs + offset) = value; current_evmcs->hv_clean_fields &= ~clean_field; } static inline u64 evmcs_read64(unsigned long field) { int offset = get_evmcs_offset(field, NULL); if (offset < 0) return 0; return *(u64 *)((char *)current_evmcs + offset); } static inline u32 evmcs_read32(unsigned long field) { int offset = get_evmcs_offset(field, NULL); if (offset < 0) return 0; return *(u32 *)((char *)current_evmcs + offset); } static inline u16 evmcs_read16(unsigned long field) { int offset = get_evmcs_offset(field, NULL); if (offset < 0) return 0; return *(u16 *)((char *)current_evmcs + offset); } static inline void evmcs_touch_msr_bitmap(void) { if (unlikely(!current_evmcs)) return; if (current_evmcs->hv_enlightenments_control.msr_bitmap) current_evmcs->hv_clean_fields &= ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; } static void evmcs_load(u64 phys_addr) { struct hv_vp_assist_page *vp_ap = hv_get_vp_assist_page(smp_processor_id()); vp_ap->current_nested_vmcs = phys_addr; vp_ap->enlighten_vmentry = 1; } static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) { /* * Enlightened VMCSv1 doesn't support these: * * POSTED_INTR_NV = 0x00000002, * GUEST_INTR_STATUS = 0x00000810, * APIC_ACCESS_ADDR = 0x00002014, * POSTED_INTR_DESC_ADDR = 0x00002016, * EOI_EXIT_BITMAP0 = 0x0000201c, * EOI_EXIT_BITMAP1 = 0x0000201e, * EOI_EXIT_BITMAP2 = 0x00002020, * EOI_EXIT_BITMAP3 = 0x00002022, */ vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_APIC_REGISTER_VIRT; /* * GUEST_PML_INDEX = 0x00000812, * PML_ADDRESS = 0x0000200e, */ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML; /* VM_FUNCTION_CONTROL = 0x00002018, */ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC; /* * EPTP_LIST_ADDRESS = 0x00002024, * VMREAD_BITMAP = 0x00002026, * VMWRITE_BITMAP = 0x00002028, */ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS; /* * TSC_MULTIPLIER = 0x00002032, */ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING; /* * PLE_GAP = 0x00004020, * PLE_WINDOW = 0x00004022, */ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; /* * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E, */ vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; /* * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808, * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04, */ vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; /* * Currently unsupported in KVM: * GUEST_IA32_RTIT_CTL = 0x00002814, */ } /* check_ept_pointer() should be under protection of ept_pointer_lock. */ static void check_ept_pointer_match(struct kvm *kvm) { struct kvm_vcpu *vcpu; u64 tmp_eptp = INVALID_PAGE; int i; kvm_for_each_vcpu(i, vcpu, kvm) { if (!VALID_PAGE(tmp_eptp)) { tmp_eptp = to_vmx(vcpu)->ept_pointer; } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MISMATCH; return; } } to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; } static int vmx_hv_remote_flush_tlb(struct kvm *kvm) { int ret; spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) check_ept_pointer_match(kvm); if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { ret = -ENOTSUPP; goto out; } /* * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the * base of EPT PML4 table, strip off EPT configuration information. */ ret = hyperv_flush_guest_mapping( to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK); out: spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); return ret; } #else /* !IS_ENABLED(CONFIG_HYPERV) */ static inline void evmcs_write64(unsigned long field, u64 value) {} static inline void evmcs_write32(unsigned long field, u32 value) {} static inline void evmcs_write16(unsigned long field, u16 value) {} static inline u64 evmcs_read64(unsigned long field) { return 0; } static inline u32 evmcs_read32(unsigned long field) { return 0; } static inline u16 evmcs_read16(unsigned long field) { return 0; } static inline void evmcs_load(u64 phys_addr) {} static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {} static inline void evmcs_touch_msr_bitmap(void) {} #endif /* IS_ENABLED(CONFIG_HYPERV) */ static inline bool is_exception_n(u32 intr_info, u8 vector) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); } static inline bool is_debug(u32 intr_info) { return is_exception_n(intr_info, DB_VECTOR); } static inline bool is_breakpoint(u32 intr_info) { return is_exception_n(intr_info, BP_VECTOR); } static inline bool is_page_fault(u32 intr_info) { return is_exception_n(intr_info, PF_VECTOR); } static inline bool is_no_device(u32 intr_info) { return is_exception_n(intr_info, NM_VECTOR); } static inline bool is_invalid_opcode(u32 intr_info) { return is_exception_n(intr_info, UD_VECTOR); } static inline bool is_gp_fault(u32 intr_info) { return is_exception_n(intr_info, GP_VECTOR); } static inline bool is_external_interrupt(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); } static inline bool is_machine_check(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); } /* Undocumented: icebp/int1 */ static inline bool is_icebp(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); } static inline bool cpu_has_vmx_msr_bitmap(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; } static inline bool cpu_has_vmx_tpr_shadow(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; } static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) { return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); } static inline bool cpu_has_secondary_exec_ctrls(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; } static inline bool cpu_has_vmx_virtualize_apic_accesses(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; } static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; } static inline bool cpu_has_vmx_apic_register_virt(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_APIC_REGISTER_VIRT; } static inline bool cpu_has_vmx_virtual_intr_delivery(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; } static inline bool cpu_has_vmx_encls_vmexit(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENCLS_EXITING; } /* * Comment's format: document - errata name - stepping - processor name. * Refer from * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp */ static u32 vmx_preemption_cpu_tfms[] = { /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 0x000206E6, /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020652, /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020655, /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ /* * 320767.pdf - AAP86 - B1 - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile */ 0x000106E5, /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 0x000106A0, /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 0x000106A1, /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 0x000106A4, /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 0x000106A5, }; static inline bool cpu_has_broken_vmx_preemption_timer(void) { u32 eax = cpuid_eax(0x00000001), i; /* Clear the reserved bits */ eax &= ~(0x3U << 14 | 0xfU << 28); for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) if (eax == vmx_preemption_cpu_tfms[i]) return true; return false; } static inline bool cpu_has_vmx_preemption_timer(void) { return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VMX_PREEMPTION_TIMER; } static inline bool cpu_has_vmx_posted_intr(void) { return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; } static inline bool cpu_has_vmx_apicv(void) { return cpu_has_vmx_apic_register_virt() && cpu_has_vmx_virtual_intr_delivery() && cpu_has_vmx_posted_intr(); } static inline bool cpu_has_vmx_flexpriority(void) { return cpu_has_vmx_tpr_shadow() && cpu_has_vmx_virtualize_apic_accesses(); } static inline bool cpu_has_vmx_ept_execute_only(void) { return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; } static inline bool cpu_has_vmx_ept_2m_page(void) { return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; } static inline bool cpu_has_vmx_ept_1g_page(void) { return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; } static inline bool cpu_has_vmx_ept_4levels(void) { return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; } static inline bool cpu_has_vmx_ept_mt_wb(void) { return vmx_capability.ept & VMX_EPTP_WB_BIT; } static inline bool cpu_has_vmx_ept_5levels(void) { return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; } static inline bool cpu_has_vmx_ept_ad_bits(void) { return vmx_capability.ept & VMX_EPT_AD_BIT; } static inline bool cpu_has_vmx_invept_context(void) { return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; } static inline bool cpu_has_vmx_invept_global(void) { return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; } static inline bool cpu_has_vmx_invvpid_individual_addr(void) { return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT; } static inline bool cpu_has_vmx_invvpid_single(void) { return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; } static inline bool cpu_has_vmx_invvpid_global(void) { return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; } static inline bool cpu_has_vmx_invvpid(void) { return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; } static inline bool cpu_has_vmx_ept(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_EPT; } static inline bool cpu_has_vmx_unrestricted_guest(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_UNRESTRICTED_GUEST; } static inline bool cpu_has_vmx_ple(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PAUSE_LOOP_EXITING; } static inline bool cpu_has_vmx_basic_inout(void) { return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); } static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) { return flexpriority_enabled && lapic_in_kernel(vcpu); } static inline bool cpu_has_vmx_vpid(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_VPID; } static inline bool cpu_has_vmx_rdtscp(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_RDTSCP; } static inline bool cpu_has_vmx_invpcid(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_INVPCID; } static inline bool cpu_has_virtual_nmis(void) { return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; } static inline bool cpu_has_vmx_wbinvd_exit(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_WBINVD_EXITING; } static inline bool cpu_has_vmx_shadow_vmcs(void) { u64 vmx_msr; rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); /* check if the cpu supports writing r/o exit information fields */ if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) return false; return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_SHADOW_VMCS; } static inline bool cpu_has_vmx_pml(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; } static inline bool cpu_has_vmx_tsc_scaling(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_TSC_SCALING; } static inline bool cpu_has_vmx_vmfunc(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_VMFUNC; } static bool vmx_umip_emulated(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_DESC; } static inline bool report_flexpriority(void) { return flexpriority_enabled; } static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) { return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low); } /* * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE * to modify any valid field of the VMCS, or are the VM-exit * information fields read-only? */ static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.msrs.misc_low & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS; } static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS; } static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.msrs.procbased_ctls_high & CPU_BASED_MONITOR_TRAP_FLAG; } static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_SHADOW_VMCS; } static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) { return vmcs12->cpu_based_vm_exec_control & bit; } static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) { return (vmcs12->cpu_based_vm_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && (vmcs12->secondary_vm_exec_control & bit); } static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER; } static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; } static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; } static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); } static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); } static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); } static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); } static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); } static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); } static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); } static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; } static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); } static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) { return nested_cpu_has_vmfunc(vmcs12) && (vmcs12->vm_function_control & VMX_VMFUNC_EPTP_SWITCHING); } static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS); } static inline bool is_nmi(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); } static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification); static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 reason, unsigned long qualification); static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) { int i; for (i = 0; i < vmx->nmsrs; ++i) if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) return i; return -1; } static inline void __invvpid(int ext, u16 vpid, gva_t gva) { struct { u64 vpid : 16; u64 rsvd : 48; u64 gva; } operand = { vpid, 0, gva }; bool error; asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na) : CC_OUT(na) (error) : "a"(&operand), "c"(ext) : "memory"); BUG_ON(error); } static inline void __invept(int ext, u64 eptp, gpa_t gpa) { struct { u64 eptp, gpa; } operand = {eptp, gpa}; bool error; asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na) : CC_OUT(na) (error) : "a" (&operand), "c" (ext) : "memory"); BUG_ON(error); } static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) { int i; i = __find_msr_index(vmx, msr); if (i >= 0) return &vmx->guest_msrs[i]; return NULL; } static void vmcs_clear(struct vmcs *vmcs) { u64 phys_addr = __pa(vmcs); bool error; asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na) : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr) : "memory"); if (unlikely(error)) printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", vmcs, phys_addr); } static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) { vmcs_clear(loaded_vmcs->vmcs); if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) vmcs_clear(loaded_vmcs->shadow_vmcs); loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; } static void vmcs_load(struct vmcs *vmcs) { u64 phys_addr = __pa(vmcs); bool error; if (static_branch_unlikely(&enable_evmcs)) return evmcs_load(phys_addr); asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na) : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr) : "memory"); if (unlikely(error)) printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", vmcs, phys_addr); } #ifdef CONFIG_KEXEC_CORE /* * This bitmap is used to indicate whether the vmclear * operation is enabled on all cpus. All disabled by * default. */ static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; static inline void crash_enable_local_vmclear(int cpu) { cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline void crash_disable_local_vmclear(int cpu) { cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline int crash_local_vmclear_enabled(int cpu) { return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); } static void crash_vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v; if (!crash_local_vmclear_enabled(cpu)) return; list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) vmcs_clear(v->vmcs); } #else static inline void crash_enable_local_vmclear(int cpu) { } static inline void crash_disable_local_vmclear(int cpu) { } #endif /* CONFIG_KEXEC_CORE */ static void __loaded_vmcs_clear(void *arg) { struct loaded_vmcs *loaded_vmcs = arg; int cpu = raw_smp_processor_id(); if (loaded_vmcs->cpu != cpu) return; /* vcpu migration can race with cpu offline */ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) per_cpu(current_vmcs, cpu) = NULL; crash_disable_local_vmclear(cpu); list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); /* * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link * is before setting loaded_vmcs->vcpu to -1 which is done in * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist * then adds the vmcs into percpu list before it is deleted. */ smp_wmb(); loaded_vmcs_init(loaded_vmcs); crash_enable_local_vmclear(cpu); } static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) { int cpu = loaded_vmcs->cpu; if (cpu != -1) smp_call_function_single(cpu, __loaded_vmcs_clear, loaded_vmcs, 1); } static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr) { if (vpid == 0) return true; if (cpu_has_vmx_invvpid_individual_addr()) { __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr); return true; } return false; } static inline void vpid_sync_vcpu_single(int vpid) { if (vpid == 0) return; if (cpu_has_vmx_invvpid_single()) __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); } static inline void vpid_sync_vcpu_global(void) { if (cpu_has_vmx_invvpid_global()) __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); } static inline void vpid_sync_context(int vpid) { if (cpu_has_vmx_invvpid_single()) vpid_sync_vcpu_single(vpid); else vpid_sync_vcpu_global(); } static inline void ept_sync_global(void) { __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); } static inline void ept_sync_context(u64 eptp) { if (cpu_has_vmx_invept_context()) __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); else ept_sync_global(); } static __always_inline void vmcs_check16(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, "16-bit accessor invalid for 64-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "16-bit accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "16-bit accessor invalid for 32-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "16-bit accessor invalid for natural width field"); } static __always_inline void vmcs_check32(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "32-bit accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "32-bit accessor invalid for natural width field"); } static __always_inline void vmcs_check64(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "64-bit accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "64-bit accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "64-bit accessor invalid for 32-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "64-bit accessor invalid for natural width field"); } static __always_inline void vmcs_checkl(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "Natural width accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, "Natural width accessor invalid for 64-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "Natural width accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "Natural width accessor invalid for 32-bit field"); } static __always_inline unsigned long __vmcs_readl(unsigned long field) { unsigned long value; asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") : "=a"(value) : "d"(field) : "cc"); return value; } static __always_inline u16 vmcs_read16(unsigned long field) { vmcs_check16(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_read16(field); return __vmcs_readl(field); } static __always_inline u32 vmcs_read32(unsigned long field) { vmcs_check32(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_read32(field); return __vmcs_readl(field); } static __always_inline u64 vmcs_read64(unsigned long field) { vmcs_check64(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_read64(field); #ifdef CONFIG_X86_64 return __vmcs_readl(field); #else return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); #endif } static __always_inline unsigned long vmcs_readl(unsigned long field) { vmcs_checkl(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_read64(field); return __vmcs_readl(field); } static noinline void vmwrite_error(unsigned long field, unsigned long value) { printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); dump_stack(); } static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) { bool error; asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na) : CC_OUT(na) (error) : "a"(value), "d"(field)); if (unlikely(error)) vmwrite_error(field, value); } static __always_inline void vmcs_write16(unsigned long field, u16 value) { vmcs_check16(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write16(field, value); __vmcs_writel(field, value); } static __always_inline void vmcs_write32(unsigned long field, u32 value) { vmcs_check32(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write32(field, value); __vmcs_writel(field, value); } static __always_inline void vmcs_write64(unsigned long field, u64 value) { vmcs_check64(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write64(field, value); __vmcs_writel(field, value); #ifndef CONFIG_X86_64 asm volatile (""); __vmcs_writel(field+1, value >> 32); #endif } static __always_inline void vmcs_writel(unsigned long field, unsigned long value) { vmcs_checkl(field); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write64(field, value); __vmcs_writel(field, value); } static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, "vmcs_clear_bits does not support 64-bit fields"); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write32(field, evmcs_read32(field) & ~mask); __vmcs_writel(field, __vmcs_readl(field) & ~mask); } static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, "vmcs_set_bits does not support 64-bit fields"); if (static_branch_unlikely(&enable_evmcs)) return evmcs_write32(field, evmcs_read32(field) | mask); __vmcs_writel(field, __vmcs_readl(field) | mask); } static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) { vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); } static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VM_ENTRY_CONTROLS, val); vmx->vm_entry_controls_shadow = val; } static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) { if (vmx->vm_entry_controls_shadow != val) vm_entry_controls_init(vmx, val); } static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) { return vmx->vm_entry_controls_shadow; } static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) { vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); } static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) { vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); } static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) { vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); } static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VM_EXIT_CONTROLS, val); vmx->vm_exit_controls_shadow = val; } static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) { if (vmx->vm_exit_controls_shadow != val) vm_exit_controls_init(vmx, val); } static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) { return vmx->vm_exit_controls_shadow; } static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) { vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); } static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) { vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); } static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) { vmx->segment_cache.bitmask = 0; } static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, unsigned field) { bool ret; u32 mask = 1 << (seg * SEG_FIELD_NR + field); if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); vmx->segment_cache.bitmask = 0; } ret = vmx->segment_cache.bitmask & mask; vmx->segment_cache.bitmask |= mask; return ret; } static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) { u16 *p = &vmx->segment_cache.seg[seg].selector; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); return *p; } static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) { ulong *p = &vmx->segment_cache.seg[seg].base; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); return *p; } static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].limit; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); return *p; } static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].ar; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); return *p; } static void update_exception_bitmap(struct kvm_vcpu *vcpu) { u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) eb |= (1u << GP_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) eb |= 1u << BP_VECTOR; if (to_vmx(vcpu)->rmode.vm86_active) eb = ~0; if (enable_ept) eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass * them to L1. When running L2, we will only handle the exceptions * specified above if L1 did not want them. */ if (is_guest_mode(vcpu)) eb |= get_vmcs12(vcpu)->exception_bitmap; vmcs_write32(EXCEPTION_BITMAP, eb); } /* * Check if MSR is intercepted for currently loaded MSR bitmap. */ static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) { unsigned long *msr_bitmap; int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return true; msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; if (msr <= 0x1fff) { return !!test_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; return !!test_bit(msr, msr_bitmap + 0xc00 / f); } return true; } /* * Check if MSR is intercepted for L01 MSR bitmap. */ static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) { unsigned long *msr_bitmap; int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return true; msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; if (msr <= 0x1fff) { return !!test_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; return !!test_bit(msr, msr_bitmap + 0xc00 / f); } return true; } static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit) { vm_entry_controls_clearbit(vmx, entry); vm_exit_controls_clearbit(vmx, exit); } static int find_msr(struct vmx_msrs *m, unsigned int msr) { unsigned int i; for (i = 0; i < m->nr; ++i) { if (m->val[i].index == msr) return i; } return -ENOENT; } static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) { int i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); return; } break; } i = find_msr(&m->guest, msr); if (i < 0) goto skip_guest; --m->guest.nr; m->guest.val[i] = m->guest.val[m->guest.nr]; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); skip_guest: i = find_msr(&m->host, msr); if (i < 0) return; --m->host.nr; m->host.val[i] = m->host.val[m->host.nr]; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit, unsigned long guest_val_vmcs, unsigned long host_val_vmcs, u64 guest_val, u64 host_val) { vmcs_write64(guest_val_vmcs, guest_val); vmcs_write64(host_val_vmcs, host_val); vm_entry_controls_setbit(vmx, entry); vm_exit_controls_setbit(vmx, exit); } static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, u64 guest_val, u64 host_val, bool entry_only) { int i, j = 0; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER, GUEST_IA32_EFER, HOST_IA32_EFER, guest_val, host_val); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, GUEST_IA32_PERF_GLOBAL_CTRL, HOST_IA32_PERF_GLOBAL_CTRL, guest_val, host_val); return; } break; case MSR_IA32_PEBS_ENABLE: /* PEBS needs a quiescent period after being disabled (to write * a record). Disabling PEBS through VMX MSR swapping doesn't * provide that period, so a CPU could write host's record into * guest's memory. */ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } i = find_msr(&m->guest, msr); if (!entry_only) j = find_msr(&m->host, msr); if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { printk_once(KERN_WARNING "Not enough msr switch entries. " "Can't add msr %x\n", msr); return; } if (i < 0) { i = m->guest.nr++; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); } m->guest.val[i].index = msr; m->guest.val[i].value = guest_val; if (entry_only) return; if (j < 0) { j = m->host.nr++; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } m->host.val[j].index = msr; m->host.val[j].value = host_val; } static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) { u64 guest_efer = vmx->vcpu.arch.efer; u64 ignore_bits = 0; if (!enable_ept) { /* * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing * host CPUID is more efficient than testing guest CPUID * or CR4. Host SMEP is anyway a requirement for guest SMEP. */ if (boot_cpu_has(X86_FEATURE_SMEP)) guest_efer |= EFER_NX; else if (!(guest_efer & EFER_NX)) ignore_bits |= EFER_NX; } /* * LMA and LME handled by hardware; SCE meaningless outside long mode. */ ignore_bits |= EFER_SCE; #ifdef CONFIG_X86_64 ignore_bits |= EFER_LMA | EFER_LME; /* SCE is meaningful only in long mode on Intel */ if (guest_efer & EFER_LMA) ignore_bits &= ~(u64)EFER_SCE; #endif clear_atomic_switch_msr(vmx, MSR_EFER); /* * On EPT, we can't emulate NX, so we must switch EFER atomically. * On CPUs that support "load IA32_EFER", always switch EFER * atomically, since it's faster than switching it manually. */ if (cpu_has_load_ia32_efer || (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { if (!(guest_efer & EFER_LMA)) guest_efer &= ~EFER_LME; if (guest_efer != host_efer) add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer, false); return false; } else { guest_efer &= ~ignore_bits; guest_efer |= host_efer & ignore_bits; vmx->guest_msrs[efer_offset].data = guest_efer; vmx->guest_msrs[efer_offset].mask = ~ignore_bits; return true; } } #ifdef CONFIG_X86_32 /* * On 32-bit kernels, VM exits still load the FS and GS bases from the * VMCS rather than the segment table. KVM uses this helper to figure * out the current bases to poke them into the VMCS before entry. */ static unsigned long segment_base(u16 selector) { struct desc_struct *table; unsigned long v; if (!(selector & ~SEGMENT_RPL_MASK)) return 0; table = get_current_gdt_ro(); if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { u16 ldt_selector = kvm_read_ldt(); if (!(ldt_selector & ~SEGMENT_RPL_MASK)) return 0; table = (struct desc_struct *)segment_base(ldt_selector); } v = get_desc_base(&table[selector >> 3]); return v; } #endif static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs_host_state *host_state; #ifdef CONFIG_X86_64 int cpu = raw_smp_processor_id(); #endif unsigned long fs_base, gs_base; u16 fs_sel, gs_sel; int i; vmx->req_immediate_exit = false; /* * Note that guest MSRs to be saved/restored can also be changed * when guest state is loaded. This happens when guest transitions * to/from long-mode by setting MSR_EFER.LMA. */ if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { vmx->guest_msrs_dirty = false; for (i = 0; i < vmx->save_nmsrs; ++i) kvm_set_shared_msr(vmx->guest_msrs[i].index, vmx->guest_msrs[i].data, vmx->guest_msrs[i].mask); } if (vmx->loaded_cpu_state) return; vmx->loaded_cpu_state = vmx->loaded_vmcs; host_state = &vmx->loaded_cpu_state->host_state; /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ host_state->ldt_sel = kvm_read_ldt(); #ifdef CONFIG_X86_64 savesegment(ds, host_state->ds_sel); savesegment(es, host_state->es_sel); gs_base = cpu_kernelmode_gs_base(cpu); if (likely(is_64bit_mm(current->mm))) { save_fsgs_for_kvm(); fs_sel = current->thread.fsindex; gs_sel = current->thread.gsindex; fs_base = current->thread.fsbase; vmx->msr_host_kernel_gs_base = current->thread.gsbase; } else { savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = read_msr(MSR_FS_BASE); vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); } wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #else savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = segment_base(fs_sel); gs_base = segment_base(gs_sel); #endif if (unlikely(fs_sel != host_state->fs_sel)) { if (!(fs_sel & 7)) vmcs_write16(HOST_FS_SELECTOR, fs_sel); else vmcs_write16(HOST_FS_SELECTOR, 0); host_state->fs_sel = fs_sel; } if (unlikely(gs_sel != host_state->gs_sel)) { if (!(gs_sel & 7)) vmcs_write16(HOST_GS_SELECTOR, gs_sel); else vmcs_write16(HOST_GS_SELECTOR, 0); host_state->gs_sel = gs_sel; } if (unlikely(fs_base != host_state->fs_base)) { vmcs_writel(HOST_FS_BASE, fs_base); host_state->fs_base = fs_base; } if (unlikely(gs_base != host_state->gs_base)) { vmcs_writel(HOST_GS_BASE, gs_base); host_state->gs_base = gs_base; } } static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) { struct vmcs_host_state *host_state; if (!vmx->loaded_cpu_state) return; WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); host_state = &vmx->loaded_cpu_state->host_state; ++vmx->vcpu.stat.host_state_reload; vmx->loaded_cpu_state = NULL; #ifdef CONFIG_X86_64 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (host_state->ldt_sel || (host_state->gs_sel & 7)) { kvm_load_ldt(host_state->ldt_sel); #ifdef CONFIG_X86_64 load_gs_index(host_state->gs_sel); #else loadsegment(gs, host_state->gs_sel); #endif } if (host_state->fs_sel & 7) loadsegment(fs, host_state->fs_sel); #ifdef CONFIG_X86_64 if (unlikely(host_state->ds_sel | host_state->es_sel)) { loadsegment(ds, host_state->ds_sel); loadsegment(es, host_state->es_sel); } #endif invalidate_tss_limit(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif load_fixmap_gdt(raw_smp_processor_id()); } #ifdef CONFIG_X86_64 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) { preempt_disable(); if (vmx->loaded_cpu_state) rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); preempt_enable(); return vmx->msr_guest_kernel_gs_base; } static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) { preempt_disable(); if (vmx->loaded_cpu_state) wrmsrl(MSR_KERNEL_GS_BASE, data); preempt_enable(); vmx->msr_guest_kernel_gs_base = data; } #endif static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; /* * In case of hot-plug or hot-unplug, we may have to undo * vmx_vcpu_pi_put even if there is no assigned device. And we * always keep PI.NDST up to date for simplicity: it makes the * code easier, and CPU migration is not a fast path. */ if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) return; /* * First handle the simple case where no cmpxchg is necessary; just * allow posting non-urgent interrupts. * * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change * PI.NDST: pi_post_block will do it for us and the wakeup_handler * expects the VCPU to be on the blocked_vcpu_list that matches * PI.NDST. */ if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) { pi_clear_sn(pi_desc); return; } /* The full case. */ do { old.control = new.control = pi_desc->control; dest = cpu_physical_id(cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; new.sn = 0; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); } static void decache_tsc_multiplier(struct vcpu_vmx *vmx) { vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool already_loaded = vmx->loaded_vmcs->cpu == cpu; if (!already_loaded) { loaded_vmcs_clear(vmx->loaded_vmcs); local_irq_disable(); crash_disable_local_vmclear(cpu); /* * Read loaded_vmcs->cpu should be before fetching * loaded_vmcs->loaded_vmcss_on_cpu_link. * See the comments in __loaded_vmcs_clear(). */ smp_rmb(); list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, &per_cpu(loaded_vmcss_on_cpu, cpu)); crash_enable_local_vmclear(cpu); local_irq_enable(); } if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; vmcs_load(vmx->loaded_vmcs->vmcs); indirect_branch_prediction_barrier(); } if (!already_loaded) { void *gdt = get_current_gdt_ro(); unsigned long sysenter_esp; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. See 22.2.4. */ vmcs_writel(HOST_TR_BASE, (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ /* * VM exits change the host TR limit to 0x67 after a VM * exit. This is okay, since 0x67 covers everything except * the IO bitmap and have have code to handle the IO bitmap * being lost after a VM exit. */ BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ vmx->loaded_vmcs->cpu = cpu; } /* Setup TSC multiplier */ if (kvm_has_tsc_control && vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) decache_tsc_multiplier(vmx); vmx_vcpu_pi_load(vcpu, cpu); vmx->host_pkru = read_pkru(); vmx->host_debugctlmsr = get_debugctlmsr(); } static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(vcpu)) return; /* Set SN when the vCPU is preempted */ if (vcpu->preempted) pi_set_sn(pi_desc); } static void vmx_vcpu_put(struct kvm_vcpu *vcpu) { vmx_vcpu_pi_put(vcpu); vmx_prepare_switch_to_host(to_vmx(vcpu)); } static bool emulation_required(struct kvm_vcpu *vcpu) { return emulate_invalid_guest_state && !guest_state_valid(vcpu); } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); /* * Return the cr0 value that a nested guest would read. This is a combination * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by * its hypervisor (cr0_read_shadow). */ static inline unsigned long nested_read_cr0(struct vmcs12 *fields) { return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | (fields->cr0_read_shadow & fields->cr0_guest_host_mask); } static inline unsigned long nested_read_cr4(struct vmcs12 *fields) { return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | (fields->cr4_read_shadow & fields->cr4_guest_host_mask); } static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags, save_rflags; if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); rflags = vmcs_readl(GUEST_RFLAGS); if (to_vmx(vcpu)->rmode.vm86_active) { rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; save_rflags = to_vmx(vcpu)->rmode.save_rflags; rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; } to_vmx(vcpu)->rflags = rflags; } return to_vmx(vcpu)->rflags; } static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { unsigned long old_rflags = vmx_get_rflags(vcpu); __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); to_vmx(vcpu)->rflags = rflags; if (to_vmx(vcpu)->rmode.vm86_active) { to_vmx(vcpu)->rmode.save_rflags = rflags; rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; } vmcs_writel(GUEST_RFLAGS, rflags); if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) to_vmx(vcpu)->emulation_required = emulation_required(vcpu); } static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) { u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); int ret = 0; if (interruptibility & GUEST_INTR_STATE_STI) ret |= KVM_X86_SHADOW_INT_STI; if (interruptibility & GUEST_INTR_STATE_MOV_SS) ret |= KVM_X86_SHADOW_INT_MOV_SS; return ret; } static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); u32 interruptibility = interruptibility_old; interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); if (mask & KVM_X86_SHADOW_INT_MOV_SS) interruptibility |= GUEST_INTR_STATE_MOV_SS; else if (mask & KVM_X86_SHADOW_INT_STI) interruptibility |= GUEST_INTR_STATE_STI; if ((interruptibility != interruptibility_old)) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { unsigned long rip; rip = kvm_rip_read(vcpu); rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_rip_write(vcpu, rip); /* skipping an emulated instruction also counts */ vmx_set_interrupt_shadow(vcpu, 0); } static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, unsigned long exit_qual) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned int nr = vcpu->arch.exception.nr; u32 intr_info = nr | INTR_INFO_VALID_MASK; if (vcpu->arch.exception.has_error_code) { vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (kvm_exception_is_soft(nr)) intr_info |= INTR_TYPE_SOFT_EXCEPTION; else intr_info |= INTR_TYPE_HARD_EXCEPTION; if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && vmx_get_nmi_mask(vcpu)) intr_info |= INTR_INFO_UNBLOCK_NMI; nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); } /* * KVM wants to inject page-faults which it got to the guest. This function * checks whether in a nested guest, we need to inject them to L1 or L2. */ static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned int nr = vcpu->arch.exception.nr; if (nr == PF_VECTOR) { if (vcpu->arch.exception.nested_apf) { *exit_qual = vcpu->arch.apf.nested_apf_token; return 1; } /* * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception. * The fix is to add the ancillary datum (CR2 or DR6) to structs * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 * can be written only when inject_pending_event runs. This should be * conditional on a new capability---if the capability is disabled, * kvm_multiple_exception would write the ancillary information to * CR2 or DR6, for backwards ABI-compatibility. */ if (nested_vmx_is_page_fault_vmexit(vmcs12, vcpu->arch.exception.error_code)) { *exit_qual = vcpu->arch.cr2; return 1; } } else { if (vmcs12->exception_bitmap & (1u << nr)) { if (nr == DB_VECTOR) { *exit_qual = vcpu->arch.dr6; *exit_qual &= ~(DR6_FIXED_1 | DR6_BT); *exit_qual ^= DR6_RTM; } else { *exit_qual = 0; } return 1; } } return 0; } static void vmx_clear_hlt(struct kvm_vcpu *vcpu) { /* * Ensure that we clear the HLT state in the VMCS. We don't need to * explicitly skip the instruction because if the HLT state is set, * then the instruction is already executing and RIP has already been * advanced. */ if (kvm_hlt_in_guest(vcpu->kvm) && vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); } static void vmx_queue_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned nr = vcpu->arch.exception.nr; bool has_error_code = vcpu->arch.exception.has_error_code; u32 error_code = vcpu->arch.exception.error_code; u32 intr_info = nr | INTR_INFO_VALID_MASK; if (has_error_code) { vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (vmx->rmode.vm86_active) { int inc_eip = 0; if (kvm_exception_is_soft(nr)) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } WARN_ON_ONCE(vmx->emulation_required); if (kvm_exception_is_soft(nr)) { vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); intr_info |= INTR_TYPE_SOFT_EXCEPTION; } else intr_info |= INTR_TYPE_HARD_EXCEPTION; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); vmx_clear_hlt(vcpu); } static bool vmx_rdtscp_supported(void) { return cpu_has_vmx_rdtscp(); } static bool vmx_invpcid_supported(void) { return cpu_has_vmx_invpcid(); } /* * Swap MSR entry in host/guest MSR entry array. */ static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) { struct shared_msr_entry tmp; tmp = vmx->guest_msrs[to]; vmx->guest_msrs[to] = vmx->guest_msrs[from]; vmx->guest_msrs[from] = tmp; } /* * Set up the vmcs to automatically save and restore system * msrs. Don't touch the 64-bit msrs if the guest is in legacy * mode, as fiddling with msrs is very expensive. */ static void setup_msrs(struct vcpu_vmx *vmx) { int save_nmsrs, index; save_nmsrs = 0; #ifdef CONFIG_X86_64 if (is_long_mode(&vmx->vcpu)) { index = __find_msr_index(vmx, MSR_SYSCALL_MASK); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_LSTAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_CSTAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_TSC_AUX); if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) move_msr_up(vmx, index, save_nmsrs++); /* * MSR_STAR is only needed on long mode guests, and only * if efer.sce is enabled. */ index = __find_msr_index(vmx, MSR_STAR); if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) move_msr_up(vmx, index, save_nmsrs++); } #endif index = __find_msr_index(vmx, MSR_EFER); if (index >= 0 && update_transition_efer(vmx, index)) move_msr_up(vmx, index, save_nmsrs++); vmx->save_nmsrs = save_nmsrs; vmx->guest_msrs_dirty = true; if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(&vmx->vcpu); } static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (is_guest_mode(vcpu) && (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) return vcpu->arch.tsc_offset - vmcs12->tsc_offset; return vcpu->arch.tsc_offset; } static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { u64 active_offset = offset; if (is_guest_mode(vcpu)) { /* * We're here if L1 chose not to trap WRMSR to TSC. According * to the spec, this should set L1's TSC; The offset that L1 * set for L2 remains unchanged, and still needs to be added * to the newly set TSC to get L2's TSC. */ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING)) active_offset += vmcs12->tsc_offset; } else { trace_kvm_write_tsc_offset(vcpu->vcpu_id, vmcs_read64(TSC_OFFSET), offset); } vmcs_write64(TSC_OFFSET, active_offset); return active_offset; } /* * nested_vmx_allowed() checks whether a guest should be allowed to use VMX * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for * all guests if the "nested" module option is off, and can also be disabled * for a single guest by disabling its VMX cpuid bit. */ static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) { return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); } /* * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be * returned for the various VMX controls MSRs when nested VMX is enabled. * The same values should also be used to verify that vmcs12 control fields are * valid during nested entry from L1 to L2. * Each of these control msrs has a low and high 32-bit half: A low bit is on * if the corresponding bit in the (32-bit) control field *must* be on, and a * bit in the high half is on if the corresponding bit in the control field * may be on. See also vmx_control_verify(). */ static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv) { if (!nested) { memset(msrs, 0, sizeof(*msrs)); return; } /* * Note that as a general rule, the high half of the MSRs (bits in * the control fields which may be 1) should be initialized by the * intersection of the underlying hardware's MSR (i.e., features which * can be supported) and the list of features we want to expose - * because they are known to be properly supported in our code. * Also, usually, the low half of the MSRs (bits which must be 1) can * be set to 0, meaning that L1 may turn off any of these bits. The * reason is that if one of these bits is necessary, it will appear * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control * fields of vmcs01 and vmcs02, will turn these bits off - and * nested_vmx_exit_reflected() will not pass related exits to L1. * These rules have exceptions below. */ /* pin-based controls */ rdmsr(MSR_IA32_VMX_PINBASED_CTLS, msrs->pinbased_ctls_low, msrs->pinbased_ctls_high); msrs->pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; msrs->pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS | (apicv ? PIN_BASED_POSTED_INTR : 0); msrs->pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | PIN_BASED_VMX_PREEMPTION_TIMER; /* exit controls */ rdmsr(MSR_IA32_VMX_EXIT_CTLS, msrs->exit_ctls_low, msrs->exit_ctls_high); msrs->exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; msrs->exit_ctls_high &= #ifdef CONFIG_X86_64 VM_EXIT_HOST_ADDR_SPACE_SIZE | #endif VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; msrs->exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; /* We support free control of debug control saving. */ msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; /* entry controls */ rdmsr(MSR_IA32_VMX_ENTRY_CTLS, msrs->entry_ctls_low, msrs->entry_ctls_high); msrs->entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; msrs->entry_ctls_high &= #ifdef CONFIG_X86_64 VM_ENTRY_IA32E_MODE | #endif VM_ENTRY_LOAD_IA32_PAT; msrs->entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); /* We support free control of debug control loading. */ msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; /* cpu-based controls */ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, msrs->procbased_ctls_low, msrs->procbased_ctls_high); msrs->procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; msrs->procbased_ctls_high &= CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | #ifdef CONFIG_X86_64 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | #endif CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; /* * We can allow some features even when not supported by the * hardware. For example, L1 can specify an MSR bitmap - and we * can use it to avoid exits to L1 - even when L0 runs L2 * without MSR bitmaps. */ msrs->procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | CPU_BASED_USE_MSR_BITMAPS; /* We support free control of CR3 access interception. */ msrs->procbased_ctls_low &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); /* * secondary cpu-based controls. Do not include those that * depend on CPUID bits, they are added later by vmx_cpuid_update. */ if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, msrs->secondary_ctls_low, msrs->secondary_ctls_high); msrs->secondary_ctls_low = 0; msrs->secondary_ctls_high &= SECONDARY_EXEC_DESC | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_WBINVD_EXITING; /* * We can emulate "VMCS shadowing," even if the hardware * doesn't support it. */ msrs->secondary_ctls_high |= SECONDARY_EXEC_SHADOW_VMCS; if (enable_ept) { /* nested EPT: emulate EPT also to L1 */ msrs->secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT; msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; if (cpu_has_vmx_ept_execute_only()) msrs->ept_caps |= VMX_EPT_EXECUTE_ONLY_BIT; msrs->ept_caps &= vmx_capability.ept; msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | VMX_EPT_1GB_PAGE_BIT; if (enable_ept_ad_bits) { msrs->secondary_ctls_high |= SECONDARY_EXEC_ENABLE_PML; msrs->ept_caps |= VMX_EPT_AD_BIT; } } if (cpu_has_vmx_vmfunc()) { msrs->secondary_ctls_high |= SECONDARY_EXEC_ENABLE_VMFUNC; /* * Advertise EPTP switching unconditionally * since we emulate it */ if (enable_ept) msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING; } /* * Old versions of KVM use the single-context version without * checking for support, so declare that it is supported even * though it is treated as global context. The alternative is * not failing the single-context invvpid, and it is worse. */ if (enable_vpid) { msrs->secondary_ctls_high |= SECONDARY_EXEC_ENABLE_VPID; msrs->vpid_caps = VMX_VPID_INVVPID_BIT | VMX_VPID_EXTENT_SUPPORTED_MASK; } if (enable_unrestricted_guest) msrs->secondary_ctls_high |= SECONDARY_EXEC_UNRESTRICTED_GUEST; if (flexpriority_enabled) msrs->secondary_ctls_high |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; /* miscellaneous data */ rdmsr(MSR_IA32_VMX_MISC, msrs->misc_low, msrs->misc_high); msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; msrs->misc_low |= MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | VMX_MISC_ACTIVITY_HLT; msrs->misc_high = 0; /* * This MSR reports some information about VMX support. We * should return information about the VMX we emulate for the * guest, and the VMCS structure we give it - not about the * VMX support of the underlying hardware. */ msrs->basic = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS | ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); if (cpu_has_vmx_basic_inout()) msrs->basic |= VMX_BASIC_INOUT; /* * These MSRs specify bits which the guest must keep fixed on * while L1 is in VMXON mode (in L1's root mode, or running an L2). * We picked the standard core2 setting. */ #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) #define VMXON_CR4_ALWAYSON X86_CR4_VMXE msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; /* These MSRs specify bits which the guest must keep fixed off. */ rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); /* highest index: VMX_PREEMPTION_TIMER_VALUE */ msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; } /* * if fixed0[i] == 1: val[i] must be 1 * if fixed1[i] == 0: val[i] must be 0 */ static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) { return ((val & fixed1) | fixed0) == val; } static inline bool vmx_control_verify(u32 control, u32 low, u32 high) { return fixed_bits_valid(control, low, high); } static inline u64 vmx_control_msr(u32 low, u32 high) { return low | ((u64)high << 32); } static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) { superset &= mask; subset &= mask; return (superset | subset) == superset; } static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) { const u64 feature_and_reserved = /* feature (except bit 48; see below) */ BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | /* reserved */ BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); u64 vmx_basic = vmx->nested.msrs.basic; if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) return -EINVAL; /* * KVM does not emulate a version of VMX that constrains physical * addresses of VMX structures (e.g. VMCS) to 32-bits. */ if (data & BIT_ULL(48)) return -EINVAL; if (vmx_basic_vmcs_revision_id(vmx_basic) != vmx_basic_vmcs_revision_id(data)) return -EINVAL; if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) return -EINVAL; vmx->nested.msrs.basic = data; return 0; } static int vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) { u64 supported; u32 *lowp, *highp; switch (msr_index) { case MSR_IA32_VMX_TRUE_PINBASED_CTLS: lowp = &vmx->nested.msrs.pinbased_ctls_low; highp = &vmx->nested.msrs.pinbased_ctls_high; break; case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: lowp = &vmx->nested.msrs.procbased_ctls_low; highp = &vmx->nested.msrs.procbased_ctls_high; break; case MSR_IA32_VMX_TRUE_EXIT_CTLS: lowp = &vmx->nested.msrs.exit_ctls_low; highp = &vmx->nested.msrs.exit_ctls_high; break; case MSR_IA32_VMX_TRUE_ENTRY_CTLS: lowp = &vmx->nested.msrs.entry_ctls_low; highp = &vmx->nested.msrs.entry_ctls_high; break; case MSR_IA32_VMX_PROCBASED_CTLS2: lowp = &vmx->nested.msrs.secondary_ctls_low; highp = &vmx->nested.msrs.secondary_ctls_high; break; default: BUG(); } supported = vmx_control_msr(*lowp, *highp); /* Check must-be-1 bits are still 1. */ if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) return -EINVAL; /* Check must-be-0 bits are still 0. */ if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) return -EINVAL; *lowp = data; *highp = data >> 32; return 0; } static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) { const u64 feature_and_reserved_bits = /* feature */ BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | /* reserved */ GENMASK_ULL(13, 9) | BIT_ULL(31); u64 vmx_misc; vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, vmx->nested.msrs.misc_high); if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) return -EINVAL; if ((vmx->nested.msrs.pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) && vmx_misc_preemption_timer_rate(data) != vmx_misc_preemption_timer_rate(vmx_misc)) return -EINVAL; if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) return -EINVAL; if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) return -EINVAL; if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) return -EINVAL; vmx->nested.msrs.misc_low = data; vmx->nested.msrs.misc_high = data >> 32; /* * If L1 has read-only VM-exit information fields, use the * less permissive vmx_vmwrite_bitmap to specify write * permissions for the shadow VMCS. */ if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); return 0; } static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) { u64 vmx_ept_vpid_cap; vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, vmx->nested.msrs.vpid_caps); /* Every bit is either reserved or a feature bit. */ if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) return -EINVAL; vmx->nested.msrs.ept_caps = data; vmx->nested.msrs.vpid_caps = data >> 32; return 0; } static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) { u64 *msr; switch (msr_index) { case MSR_IA32_VMX_CR0_FIXED0: msr = &vmx->nested.msrs.cr0_fixed0; break; case MSR_IA32_VMX_CR4_FIXED0: msr = &vmx->nested.msrs.cr4_fixed0; break; default: BUG(); } /* * 1 bits (which indicates bits which "must-be-1" during VMX operation) * must be 1 in the restored value. */ if (!is_bitwise_subset(data, *msr, -1ULL)) return -EINVAL; *msr = data; return 0; } /* * Called when userspace is restoring VMX MSRs. * * Returns 0 on success, non-0 otherwise. */ static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Don't allow changes to the VMX capability MSRs while the vCPU * is in VMX operation. */ if (vmx->nested.vmxon) return -EBUSY; switch (msr_index) { case MSR_IA32_VMX_BASIC: return vmx_restore_vmx_basic(vmx, data); case MSR_IA32_VMX_PINBASED_CTLS: case MSR_IA32_VMX_PROCBASED_CTLS: case MSR_IA32_VMX_EXIT_CTLS: case MSR_IA32_VMX_ENTRY_CTLS: /* * The "non-true" VMX capability MSRs are generated from the * "true" MSRs, so we do not support restoring them directly. * * If userspace wants to emulate VMX_BASIC[55]=0, userspace * should restore the "true" MSRs with the must-be-1 bits * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND * DEFAULT SETTINGS". */ return -EINVAL; case MSR_IA32_VMX_TRUE_PINBASED_CTLS: case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: case MSR_IA32_VMX_TRUE_EXIT_CTLS: case MSR_IA32_VMX_TRUE_ENTRY_CTLS: case MSR_IA32_VMX_PROCBASED_CTLS2: return vmx_restore_control_msr(vmx, msr_index, data); case MSR_IA32_VMX_MISC: return vmx_restore_vmx_misc(vmx, data); case MSR_IA32_VMX_CR0_FIXED0: case MSR_IA32_VMX_CR4_FIXED0: return vmx_restore_fixed0_msr(vmx, msr_index, data); case MSR_IA32_VMX_CR0_FIXED1: case MSR_IA32_VMX_CR4_FIXED1: /* * These MSRs are generated based on the vCPU's CPUID, so we * do not support restoring them directly. */ return -EINVAL; case MSR_IA32_VMX_EPT_VPID_CAP: return vmx_restore_vmx_ept_vpid_cap(vmx, data); case MSR_IA32_VMX_VMCS_ENUM: vmx->nested.msrs.vmcs_enum = data; return 0; default: /* * The rest of the VMX capability MSRs do not support restore. */ return -EINVAL; } } /* Returns 0 on success, non-0 otherwise. */ static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) { switch (msr_index) { case MSR_IA32_VMX_BASIC: *pdata = msrs->basic; break; case MSR_IA32_VMX_TRUE_PINBASED_CTLS: case MSR_IA32_VMX_PINBASED_CTLS: *pdata = vmx_control_msr( msrs->pinbased_ctls_low, msrs->pinbased_ctls_high); if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; break; case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: case MSR_IA32_VMX_PROCBASED_CTLS: *pdata = vmx_control_msr( msrs->procbased_ctls_low, msrs->procbased_ctls_high); if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; break; case MSR_IA32_VMX_TRUE_EXIT_CTLS: case MSR_IA32_VMX_EXIT_CTLS: *pdata = vmx_control_msr( msrs->exit_ctls_low, msrs->exit_ctls_high); if (msr_index == MSR_IA32_VMX_EXIT_CTLS) *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; break; case MSR_IA32_VMX_TRUE_ENTRY_CTLS: case MSR_IA32_VMX_ENTRY_CTLS: *pdata = vmx_control_msr( msrs->entry_ctls_low, msrs->entry_ctls_high); if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; break; case MSR_IA32_VMX_MISC: *pdata = vmx_control_msr( msrs->misc_low, msrs->misc_high); break; case MSR_IA32_VMX_CR0_FIXED0: *pdata = msrs->cr0_fixed0; break; case MSR_IA32_VMX_CR0_FIXED1: *pdata = msrs->cr0_fixed1; break; case MSR_IA32_VMX_CR4_FIXED0: *pdata = msrs->cr4_fixed0; break; case MSR_IA32_VMX_CR4_FIXED1: *pdata = msrs->cr4_fixed1; break; case MSR_IA32_VMX_VMCS_ENUM: *pdata = msrs->vmcs_enum; break; case MSR_IA32_VMX_PROCBASED_CTLS2: *pdata = vmx_control_msr( msrs->secondary_ctls_low, msrs->secondary_ctls_high); break; case MSR_IA32_VMX_EPT_VPID_CAP: *pdata = msrs->ept_caps | ((u64)msrs->vpid_caps << 32); break; case MSR_IA32_VMX_VMFUNC: *pdata = msrs->vmfunc_controls; break; default: return 1; } return 0; } static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, uint64_t val) { uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; return !(val & ~valid_bits); } static int vmx_get_msr_feature(struct kvm_msr_entry *msr) { switch (msr->index) { case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!nested) return 1; return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); default: return 1; } return 0; } /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr; switch (msr_info->index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: msr_info->data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: msr_info->data = vmcs_readl(GUEST_GS_BASE); break; case MSR_KERNEL_GS_BASE: msr_info->data = vmx_read_guest_kernel_gs_base(vmx); break; #endif case MSR_EFER: return kvm_get_msr_common(vcpu, msr_info); case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; msr_info->data = to_vmx(vcpu)->spec_ctrl; break; case MSR_IA32_SYSENTER_CS: msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; msr_info->data = vmcs_read64(GUEST_BNDCFGS); break; case MSR_IA32_MCG_EXT_CTL: if (!msr_info->host_initiated && !(vmx->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) return 1; msr_info->data = vcpu->arch.mcg_ext_ctl; break; case MSR_IA32_FEATURE_CONTROL: msr_info->data = vmx->msr_ia32_feature_control; break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!nested_vmx_allowed(vcpu)) return 1; return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, &msr_info->data); case MSR_IA32_XSS: if (!vmx_xsaves_supported() || (!msr_info->host_initiated && !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) return 1; msr_info->data = vcpu->arch.ia32_xss; break; case MSR_TSC_AUX: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(vmx, msr_info->index); if (msr) { msr_info->data = msr->data; break; } return kvm_get_msr_common(vcpu, msr_info); } return 0; } static void vmx_leave_nested(struct kvm_vcpu *vcpu); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr; int ret = 0; u32 msr_index = msr_info->index; u64 data = msr_info->data; switch (msr_index) { case MSR_EFER: ret = kvm_set_msr_common(vcpu, msr_info); break; #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_GS_BASE, data); break; case MSR_KERNEL_GS_BASE: vmx_write_guest_kernel_gs_base(vmx, data); break; #endif case MSR_IA32_SYSENTER_CS: vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: vmcs_writel(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: vmcs_writel(GUEST_SYSENTER_ESP, data); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; if (is_noncanonical_address(data & PAGE_MASK, vcpu) || (data & MSR_IA32_BNDCFGS_RSVD)) return 1; vmcs_write64(GUEST_BNDCFGS, data); break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; /* The STIBP bit doesn't fault even if it's not advertised */ if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) return 1; vmx->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_merge_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. We update the vmcs01 here for L1 as well * since it will end up touching the MSR anyway now. */ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); break; case MSR_IA32_PRED_CMD: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; if (data & ~PRED_CMD_IBPB) return 1; if (!data) break; wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_merge_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. */ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, MSR_TYPE_W); break; case MSR_IA32_CR_PAT: if (!kvm_pat_valid(data)) return 1; if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, data); vcpu->arch.pat = data; break; } ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_TSC_ADJUST: ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_MCG_EXT_CTL: if ((!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) || (data & ~MCG_EXT_CTL_LMCE_EN)) return 1; vcpu->arch.mcg_ext_ctl = data; break; case MSR_IA32_FEATURE_CONTROL: if (!vmx_feature_control_msr_valid(vcpu, data) || (to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) return 1; vmx->msr_ia32_feature_control = data; if (msr_info->host_initiated && data == 0) vmx_leave_nested(vcpu); break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!msr_info->host_initiated) return 1; /* they are read-only */ if (!nested_vmx_allowed(vcpu)) return 1; return vmx_set_vmx_msr(vcpu, msr_index, data); case MSR_IA32_XSS: if (!vmx_xsaves_supported() || (!msr_info->host_initiated && !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) return 1; /* * The only supported bit as of Skylake is bit 8, but * it is not supported on KVM. */ if (data != 0) return 1; vcpu->arch.ia32_xss = data; if (vcpu->arch.ia32_xss != host_xss) add_atomic_switch_msr(vmx, MSR_IA32_XSS, vcpu->arch.ia32_xss, host_xss, false); else clear_atomic_switch_msr(vmx, MSR_IA32_XSS); break; case MSR_TSC_AUX: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) return 1; /* Check reserved bit, higher 32 bits should be zero */ if ((data >> 32) != 0) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(vmx, msr_index); if (msr) { u64 old_msr_data = msr->data; msr->data = data; if (msr - vmx->guest_msrs < vmx->save_nmsrs) { preempt_disable(); ret = kvm_set_shared_msr(msr->index, msr->data, msr->mask); preempt_enable(); if (ret) msr->data = old_msr_data; } break; } ret = kvm_set_msr_common(vcpu, msr_info); } return ret; } static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); switch (reg) { case VCPU_REGS_RSP: vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); break; case VCPU_REGS_RIP: vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); break; case VCPU_EXREG_PDPTR: if (enable_ept) ept_save_pdptrs(vcpu); break; default: break; } } static __init int cpu_has_kvm_support(void) { return cpu_has_vmx(); } static __init int vmx_disabled_by_bios(void) { u64 msr; rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); if (msr & FEATURE_CONTROL_LOCKED) { /* launched w/ TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && tboot_enabled()) return 1; /* launched w/o TXT and VMX only enabled w/ TXT */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && !tboot_enabled()) { printk(KERN_WARNING "kvm: disable TXT in the BIOS or " "activate TXT before enabling KVM\n"); return 1; } /* launched w/o TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && !tboot_enabled()) return 1; } return 0; } static void kvm_cpu_vmxon(u64 addr) { cr4_set_bits(X86_CR4_VMXE); intel_pt_handle_vmx(1); asm volatile (ASM_VMX_VMXON_RAX : : "a"(&addr), "m"(addr) : "memory", "cc"); } static int hardware_enable(void) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); u64 old, test_bits; if (cr4_read_shadow() & X86_CR4_VMXE) return -EBUSY; /* * This can happen if we hot-added a CPU but failed to allocate * VP assist page for it. */ if (static_branch_unlikely(&enable_evmcs) && !hv_get_vp_assist_page(cpu)) return -EFAULT; INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); /* * Now we can enable the vmclear operation in kdump * since the loaded_vmcss_on_cpu list on this cpu * has been initialized. * * Though the cpu is not in VMX operation now, there * is no problem to enable the vmclear operation * for the loaded_vmcss_on_cpu list is empty! */ crash_enable_local_vmclear(cpu); rdmsrl(MSR_IA32_FEATURE_CONTROL, old); test_bits = FEATURE_CONTROL_LOCKED; test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (tboot_enabled()) test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; if ((old & test_bits) != test_bits) { /* enable and lock */ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); } kvm_cpu_vmxon(phys_addr); if (enable_ept) ept_sync_global(); return 0; } static void vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v, *n; list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) __loaded_vmcs_clear(v); } /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() * tricks. */ static void kvm_cpu_vmxoff(void) { asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); intel_pt_handle_vmx(0); cr4_clear_bits(X86_CR4_VMXE); } static void hardware_disable(void) { vmclear_local_loaded_vmcss(); kvm_cpu_vmxoff(); } static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) { u32 vmx_msr_low, vmx_msr_high; u32 ctl = ctl_min | ctl_opt; rdmsr(msr, vmx_msr_low, vmx_msr_high); ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ /* Ensure minimum (required) set of control bits are supported. */ if (ctl_min & ~ctl) return -EIO; *result = ctl; return 0; } static __init bool allow_1_setting(u32 msr, u32 ctl) { u32 vmx_msr_low, vmx_msr_high; rdmsr(msr, vmx_msr_low, vmx_msr_high); return vmx_msr_high & ctl; } static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) { u32 vmx_msr_low, vmx_msr_high; u32 min, opt, min2, opt2; u32 _pin_based_exec_control = 0; u32 _cpu_based_exec_control = 0; u32 _cpu_based_2nd_exec_control = 0; u32 _vmexit_control = 0; u32 _vmentry_control = 0; memset(vmcs_conf, 0, sizeof(*vmcs_conf)); min = CPU_BASED_HLT_EXITING | #ifdef CONFIG_X86_64 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | #endif CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_UNCOND_IO_EXITING | CPU_BASED_MOV_DR_EXITING | CPU_BASED_USE_TSC_OFFSETING | CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_RDPMC_EXITING; opt = CPU_BASED_TPR_SHADOW | CPU_BASED_USE_MSR_BITMAPS | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, &_cpu_based_exec_control) < 0) return -EIO; #ifdef CONFIG_X86_64 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & ~CPU_BASED_CR8_STORE_EXITING; #endif if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { min2 = 0; opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_WBINVD_EXITING | SECONDARY_EXEC_ENABLE_VPID | SECONDARY_EXEC_ENABLE_EPT | SECONDARY_EXEC_UNRESTRICTED_GUEST | SECONDARY_EXEC_PAUSE_LOOP_EXITING | SECONDARY_EXEC_DESC | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_ENABLE_INVPCID | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_XSAVES | SECONDARY_EXEC_RDSEED_EXITING | SECONDARY_EXEC_RDRAND_EXITING | SECONDARY_EXEC_ENABLE_PML | SECONDARY_EXEC_TSC_SCALING | SECONDARY_EXEC_ENABLE_VMFUNC | SECONDARY_EXEC_ENCLS_EXITING; if (adjust_vmx_controls(min2, opt2, MSR_IA32_VMX_PROCBASED_CTLS2, &_cpu_based_2nd_exec_control) < 0) return -EIO; } #ifndef CONFIG_X86_64 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; #endif if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_2nd_exec_control &= ~( SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, &vmx_capability.ept, &vmx_capability.vpid); if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { /* CR3 accesses and invlpg don't need to cause VM Exits when EPT enabled */ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_INVLPG_EXITING); } else if (vmx_capability.ept) { vmx_capability.ept = 0; pr_warn_once("EPT CAP should not exist if not support " "1-setting enable EPT VM-execution control\n"); } if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && vmx_capability.vpid) { vmx_capability.vpid = 0; pr_warn_once("VPID CAP should not exist if not support " "1-setting enable VPID VM-execution control\n"); } min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; #ifdef CONFIG_X86_64 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; #endif opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | VM_EXIT_CLEAR_BNDCFGS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, &_vmexit_control) < 0) return -EIO; min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, &_pin_based_exec_control) < 0) return -EIO; if (cpu_has_broken_vmx_preemption_timer()) _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; min = VM_ENTRY_LOAD_DEBUG_CONTROLS; opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, &_vmentry_control) < 0) return -EIO; rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) return -EIO; #ifdef CONFIG_X86_64 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ if (vmx_msr_high & (1u<<16)) return -EIO; #endif /* Require Write-Back (WB) memory type for VMCS accesses. */ if (((vmx_msr_high >> 18) & 15) != 6) return -EIO; vmcs_conf->size = vmx_msr_high & 0x1fff; vmcs_conf->order = get_order(vmcs_conf->size); vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; vmcs_conf->revision_id = vmx_msr_low; vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; vmcs_conf->vmexit_ctrl = _vmexit_control; vmcs_conf->vmentry_ctrl = _vmentry_control; if (static_branch_unlikely(&enable_evmcs)) evmcs_sanitize_exec_ctrls(vmcs_conf); cpu_has_load_ia32_efer = allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, VM_ENTRY_LOAD_IA32_EFER) && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_LOAD_IA32_EFER); cpu_has_load_perf_global_ctrl = allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); /* * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL * but due to errata below it can't be used. Workaround is to use * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. * * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] * * AAK155 (model 26) * AAP115 (model 30) * AAT100 (model 37) * BC86,AAY89,BD102 (model 44) * BA97 (model 46) * */ if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { switch (boot_cpu_data.x86_model) { case 26: case 30: case 37: case 44: case 46: cpu_has_load_perf_global_ctrl = false; printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " "does not work properly. Using workaround\n"); break; default: break; } } if (boot_cpu_has(X86_FEATURE_XSAVES)) rdmsrl(MSR_IA32_XSS, host_xss); return 0; } static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmcs_config.size); /* KVM supports Enlightened VMCS v1 only */ if (static_branch_unlikely(&enable_evmcs)) vmcs->hdr.revision_id = KVM_EVMCS_VERSION; else vmcs->hdr.revision_id = vmcs_config.revision_id; if (shadow) vmcs->hdr.shadow_vmcs = 1; return vmcs; } static void free_vmcs(struct vmcs *vmcs) { free_pages((unsigned long)vmcs, vmcs_config.order); } /* * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded */ static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { if (!loaded_vmcs->vmcs) return; loaded_vmcs_clear(loaded_vmcs); free_vmcs(loaded_vmcs->vmcs); loaded_vmcs->vmcs = NULL; if (loaded_vmcs->msr_bitmap) free_page((unsigned long)loaded_vmcs->msr_bitmap); WARN_ON(loaded_vmcs->shadow_vmcs != NULL); } static struct vmcs *alloc_vmcs(bool shadow) { return alloc_vmcs_cpu(shadow, raw_smp_processor_id()); } static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { loaded_vmcs->vmcs = alloc_vmcs(false); if (!loaded_vmcs->vmcs) return -ENOMEM; loaded_vmcs->shadow_vmcs = NULL; loaded_vmcs_init(loaded_vmcs); if (cpu_has_vmx_msr_bitmap()) { loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); if (!loaded_vmcs->msr_bitmap) goto out_vmcs; memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { struct hv_enlightened_vmcs *evmcs = (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; evmcs->hv_enlightenments_control.msr_bitmap = 1; } } memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); return 0; out_vmcs: free_loaded_vmcs(loaded_vmcs); return -ENOMEM; } static void free_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { free_vmcs(per_cpu(vmxarea, cpu)); per_cpu(vmxarea, cpu) = NULL; } } enum vmcs_field_width { VMCS_FIELD_WIDTH_U16 = 0, VMCS_FIELD_WIDTH_U64 = 1, VMCS_FIELD_WIDTH_U32 = 2, VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3 }; static inline int vmcs_field_width(unsigned long field) { if (0x1 & field) /* the *_HIGH fields are all 32 bit */ return VMCS_FIELD_WIDTH_U32; return (field >> 13) & 0x3 ; } static inline int vmcs_field_readonly(unsigned long field) { return (((field >> 10) & 0x3) == 1); } static void init_vmcs_shadow_fields(void) { int i, j; for (i = j = 0; i < max_shadow_read_only_fields; i++) { u16 field = shadow_read_only_fields[i]; if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && (i + 1 == max_shadow_read_only_fields || shadow_read_only_fields[i + 1] != field + 1)) pr_err("Missing field from shadow_read_only_field %x\n", field + 1); clear_bit(field, vmx_vmread_bitmap); #ifdef CONFIG_X86_64 if (field & 1) continue; #endif if (j < i) shadow_read_only_fields[j] = field; j++; } max_shadow_read_only_fields = j; for (i = j = 0; i < max_shadow_read_write_fields; i++) { u16 field = shadow_read_write_fields[i]; if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && (i + 1 == max_shadow_read_write_fields || shadow_read_write_fields[i + 1] != field + 1)) pr_err("Missing field from shadow_read_write_field %x\n", field + 1); /* * PML and the preemption timer can be emulated, but the * processor cannot vmwrite to fields that don't exist * on bare metal. */ switch (field) { case GUEST_PML_INDEX: if (!cpu_has_vmx_pml()) continue; break; case VMX_PREEMPTION_TIMER_VALUE: if (!cpu_has_vmx_preemption_timer()) continue; break; case GUEST_INTR_STATUS: if (!cpu_has_vmx_apicv()) continue; break; default: break; } clear_bit(field, vmx_vmwrite_bitmap); clear_bit(field, vmx_vmread_bitmap); #ifdef CONFIG_X86_64 if (field & 1) continue; #endif if (j < i) shadow_read_write_fields[j] = field; j++; } max_shadow_read_write_fields = j; } static __init int alloc_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(false, cpu); if (!vmcs) { free_kvm_area(); return -ENOMEM; } /* * When eVMCS is enabled, alloc_vmcs_cpu() sets * vmcs->revision_id to KVM_EVMCS_VERSION instead of * revision_id reported by MSR_IA32_VMX_BASIC. * * However, even though not explictly documented by * TLFS, VMXArea passed as VMXON argument should * still be marked with revision_id reported by * physical CPU. */ if (static_branch_unlikely(&enable_evmcs)) vmcs->hdr.revision_id = vmcs_config.revision_id; per_cpu(vmxarea, cpu) = vmcs; } return 0; } static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save) { if (!emulate_invalid_guest_state) { /* * CS and SS RPL should be equal during guest entry according * to VMX spec, but in reality it is not always so. Since vcpu * is in the middle of the transition from real mode to * protected mode it is safe to assume that RPL 0 is a good * default value. */ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) save->selector &= ~SEGMENT_RPL_MASK; save->dpl = save->selector & SEGMENT_RPL_MASK; save->s = 1; } vmx_set_segment(vcpu, save, seg); } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Update real mode segment cache. It may be not up-to-date if sement * register was written while vcpu was in a guest mode. */ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 0; vmx_segment_cache_clear(vmx); vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); flags = vmcs_readl(GUEST_RFLAGS); flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); update_exception_bitmap(vcpu); fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); } static void fix_rmode_seg(int seg, struct kvm_segment *save) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; struct kvm_segment var = *save; var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; if (!emulate_invalid_guest_state) { var.selector = var.base >> 4; var.base = var.base & 0xffff0; var.limit = 0xffff; var.g = 0; var.db = 0; var.present = 1; var.s = 1; var.l = 0; var.unusable = 0; var.type = 0x3; var.avl = 0; if (save->base & 0xf) printk_once(KERN_WARNING "kvm: segment base is not " "paragraph aligned when entering " "protected mode (seg=%d)", seg); } vmcs_write16(sf->selector, var.selector); vmcs_writel(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 1; /* * Very old userspace does not call KVM_SET_TSS_ADDR before entering * vcpu. Warn the user that an update is overdue. */ if (!kvm_vmx->tss_addr) printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " "called before entering vcpu\n"); vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vmx->rmode.save_rflags = flags; flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); update_exception_bitmap(vcpu); fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); kvm_mmu_reset_context(vcpu); } static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); if (!msr) return; vcpu->arch.efer = efer; if (efer & EFER_LMA) { vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer; } else { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer & ~EFER_LME; } setup_msrs(vmx); } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; vmx_segment_cache_clear(to_vmx(vcpu)); guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { pr_debug_ratelimited("%s: tss fixup for long mode. \n", __func__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~VMX_AR_TYPE_MASK) | VMX_AR_TYPE_BUSY_64_TSS); } vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); } static void exit_lmode(struct kvm_vcpu *vcpu) { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); } #endif static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, bool invalidate_gpa) { if (enable_ept && (invalidate_gpa || !enable_vpid)) { if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) return; ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa)); } else { vpid_sync_context(vpid); } } static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) { __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); } static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) { int vpid = to_vmx(vcpu)->vpid; if (!vpid_sync_vcpu_addr(vpid, addr)) vpid_sync_context(vpid); /* * If VPIDs are not supported or enabled, then the above is a no-op. * But we don't really need a TLB flush in that case anyway, because * each VM entry/exit includes an implicit flush when VPID is 0. */ } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) { ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; vcpu->arch.cr0 &= ~cr0_guest_owned_bits; vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; } static void vmx_decache_cr3(struct kvm_vcpu *vcpu) { if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); } static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; vcpu->arch.cr4 &= ~cr4_guest_owned_bits; vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; } static void ept_load_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty)) return; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); } } static void ept_save_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); } __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); } static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) { u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_UNRESTRICTED_GUEST && nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); return fixed_bits_valid(val, fixed0, fixed1); } static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) { u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; return fixed_bits_valid(val, fixed0, fixed1); } static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) { u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0; u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1; return fixed_bits_valid(val, fixed0, fixed1); } /* No difference in the restrictions on guest and host CR4 in VMX operation. */ #define nested_guest_cr4_valid nested_cr4_valid #define nested_host_cr4_valid nested_cr4_valid static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, unsigned long cr0, struct kvm_vcpu *vcpu) { if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) vmx_decache_cr3(vcpu); if (!(cr0 & X86_CR0_PG)) { /* From paging/starting to nonpaging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | (CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } else if (!is_paging(vcpu)) { /* From nonpaging to paging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } if (!(cr0 & X86_CR0_WP)) *hw_cr0 &= ~X86_CR0_WP; } static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr0; hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK); if (enable_unrestricted_guest) hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; else { hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) enter_pmode(vcpu); if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) enter_rmode(vcpu); } #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) enter_lmode(vcpu); if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) exit_lmode(vcpu); } #endif if (enable_ept && !enable_unrestricted_guest) ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; /* depends on vcpu->arch.cr0 to be set to a new value */ vmx->emulation_required = emulation_required(vcpu); } static int get_ept_level(struct kvm_vcpu *vcpu) { if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) return 5; return 4; } static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) { u64 eptp = VMX_EPTP_MT_WB; eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; if (enable_ept_ad_bits && (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) eptp |= VMX_EPTP_AD_ENABLE_BIT; eptp |= (root_hpa & PAGE_MASK); return eptp; } static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { struct kvm *kvm = vcpu->kvm; unsigned long guest_cr3; u64 eptp; guest_cr3 = cr3; if (enable_ept) { eptp = construct_eptp(vcpu, cr3); vmcs_write64(EPT_POINTER, eptp); if (kvm_x86_ops->tlb_remote_flush) { spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); to_vmx(vcpu)->ept_pointer = eptp; to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_CHECK; spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); } if (enable_unrestricted_guest || is_paging(vcpu) || is_guest_mode(vcpu)) guest_cr3 = kvm_read_cr3(vcpu); else guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; ept_load_pdptrs(vcpu); } vmcs_writel(GUEST_CR3, guest_cr3); } static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { /* * Pass through host's Machine Check Enable value to hw_cr4, which * is in force while we are in guest mode. Do not let guests control * this bit, even if host CR4.MCE == 0. */ unsigned long hw_cr4; hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); if (enable_unrestricted_guest) hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; else if (to_vmx(vcpu)->rmode.vm86_active) hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; else hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { if (cr4 & X86_CR4_UMIP) { vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_DESC); hw_cr4 &= ~X86_CR4_UMIP; } else if (!is_guest_mode(vcpu) || !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_DESC); } if (cr4 & X86_CR4_VMXE) { /* * To use VMXON (and later other VMX instructions), a guest * must first be able to turn on cr4.VMXE (see handle_vmon()). * So basically the check on whether to allow nested VMX * is here. We operate under the default treatment of SMM, * so VMX cannot be enabled under SMM. */ if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) return 1; } if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) return 1; vcpu->arch.cr4 = cr4; if (!enable_unrestricted_guest) { if (enable_ept) { if (!is_paging(vcpu)) { hw_cr4 &= ~X86_CR4_PAE; hw_cr4 |= X86_CR4_PSE; } else if (!(cr4 & X86_CR4_PAE)) { hw_cr4 &= ~X86_CR4_PAE; } } /* * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in * hardware. To emulate this behavior, SMEP/SMAP/PKU needs * to be manually disabled when guest switches to non-paging * mode. * * If !enable_unrestricted_guest, the CPU is always running * with CR0.PG=1 and CR4 needs to be modified. * If enable_unrestricted_guest, the CPU automatically * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. */ if (!is_paging(vcpu)) hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); } vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, hw_cr4); return 0; } static void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 ar; if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { *var = vmx->rmode.segs[seg]; if (seg == VCPU_SREG_TR || var->selector == vmx_read_guest_seg_selector(vmx, seg)) return; var->base = vmx_read_guest_seg_base(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); return; } var->base = vmx_read_guest_seg_base(vmx, seg); var->limit = vmx_read_guest_seg_limit(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); ar = vmx_read_guest_seg_ar(vmx, seg); var->unusable = (ar >> 16) & 1; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; /* * Some userspaces do not preserve unusable property. Since usable * segment has to be present according to VMX spec we can use present * property to amend userspace bug by making unusable segment always * nonpresent. vmx_segment_access_rights() already marks nonpresent * segment as unusable. */ var->present = !var->unusable; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; } static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment s; if (to_vmx(vcpu)->rmode.vm86_active) { vmx_get_segment(vcpu, &s, seg); return s.base; } return vmx_read_guest_seg_base(to_vmx(vcpu), seg); } static int vmx_get_cpl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (unlikely(vmx->rmode.vm86_active)) return 0; else { int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); return VMX_AR_DPL(ar); } } static u32 vmx_segment_access_rights(struct kvm_segment *var) { u32 ar; if (var->unusable || !var->present) ar = 1 << 16; else { ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; } return ar; } static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmx_segment_cache_clear(vmx); if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { vmx->rmode.segs[seg] = *var; if (seg == VCPU_SREG_TR) vmcs_write16(sf->selector, var->selector); else if (var->s) fix_rmode_seg(seg, &vmx->rmode.segs[seg]); goto out; } vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); /* * Fix the "Accessed" bit in AR field of segment registers for older * qemu binaries. * IA32 arch specifies that at the time of processor reset the * "Accessed" bit in the AR field of segment registers is 1. And qemu * is setting it to 0 in the userland code. This causes invalid guest * state vmexit when "unrestricted guest" mode is turned on. * Fix for this setup issue in cpu_reset is being pushed in the qemu * tree. Newer qemu binaries with that qemu fix would not need this * kvm hack. */ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) var->type |= 0x1; /* Accessed */ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); out: vmx->emulation_required = emulation_required(vcpu); } static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_IDTR_LIMIT); dt->address = vmcs_readl(GUEST_IDTR_BASE); } static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->size); vmcs_writel(GUEST_IDTR_BASE, dt->address); } static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_GDTR_LIMIT); dt->address = vmcs_readl(GUEST_GDTR_BASE); } static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->size); vmcs_writel(GUEST_GDTR_BASE, dt->address); } static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; u32 ar; vmx_get_segment(vcpu, &var, seg); var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; ar = vmx_segment_access_rights(&var); if (var.base != (var.selector << 4)) return false; if (var.limit != 0xffff) return false; if (ar != 0xf3) return false; return true; } static bool code_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment cs; unsigned int cs_rpl; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); cs_rpl = cs.selector & SEGMENT_RPL_MASK; if (cs.unusable) return false; if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) return false; if (!cs.s) return false; if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { if (cs.dpl > cs_rpl) return false; } else { if (cs.dpl != cs_rpl) return false; } if (!cs.present) return false; /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ return true; } static bool stack_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ss; unsigned int ss_rpl; vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ss_rpl = ss.selector & SEGMENT_RPL_MASK; if (ss.unusable) return true; if (ss.type != 3 && ss.type != 7) return false; if (!ss.s) return false; if (ss.dpl != ss_rpl) /* DPL != RPL */ return false; if (!ss.present) return false; return true; } static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; unsigned int rpl; vmx_get_segment(vcpu, &var, seg); rpl = var.selector & SEGMENT_RPL_MASK; if (var.unusable) return true; if (!var.s) return false; if (!var.present) return false; if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { if (var.dpl < rpl) /* DPL < RPL */ return false; } /* TODO: Add other members to kvm_segment_field to allow checking for other access * rights flags */ return true; } static bool tr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment tr; vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); if (tr.unusable) return false; if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ return false; if (!tr.present) return false; return true; } static bool ldtr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ldtr; vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); if (ldtr.unusable) return true; if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (ldtr.type != 2) return false; if (!ldtr.present) return false; return true; } static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ss; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); return ((cs.selector & SEGMENT_RPL_MASK) == (ss.selector & SEGMENT_RPL_MASK)); } /* * Check if guest state is valid. Returns true if valid, false if * not. * We assume that registers are always usable */ static bool guest_state_valid(struct kvm_vcpu *vcpu) { if (enable_unrestricted_guest) return true; /* real mode guest state checks */ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) return false; } else { /* protected mode guest state checks */ if (!cs_ss_rpl_check(vcpu)) return false; if (!code_segment_valid(vcpu)) return false; if (!stack_segment_valid(vcpu)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_GS)) return false; if (!tr_valid(vcpu)) return false; if (!ldtr_valid(vcpu)) return false; } /* TODO: * - Add checks on RIP * - Add checks on RFLAGS */ return true; } static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) { return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); } static int init_rmode_tss(struct kvm *kvm) { gfn_t fn; u16 data = 0; int idx, r; idx = srcu_read_lock(&kvm->srcu); fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; r = kvm_write_guest_page(kvm, fn++, &data, TSS_IOPB_BASE_OFFSET, sizeof(u16)); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = ~0; r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, sizeof(u8)); out: srcu_read_unlock(&kvm->srcu, idx); return r; } static int init_rmode_identity_map(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); int i, idx, r = 0; kvm_pfn_t identity_map_pfn; u32 tmp; /* Protect kvm_vmx->ept_identity_pagetable_done. */ mutex_lock(&kvm->slots_lock); if (likely(kvm_vmx->ept_identity_pagetable_done)) goto out2; if (!kvm_vmx->ept_identity_map_addr) kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, kvm_vmx->ept_identity_map_addr, PAGE_SIZE); if (r < 0) goto out2; idx = srcu_read_lock(&kvm->srcu); r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); if (r < 0) goto out; /* Set up identity-mapping pagetable for EPT in real mode */ for (i = 0; i < PT32_ENT_PER_PAGE; i++) { tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); r = kvm_write_guest_page(kvm, identity_map_pfn, &tmp, i * sizeof(tmp), sizeof(tmp)); if (r < 0) goto out; } kvm_vmx->ept_identity_pagetable_done = true; out: srcu_read_unlock(&kvm->srcu, idx); out2: mutex_unlock(&kvm->slots_lock); return r; } static void seg_setup(int seg) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; unsigned int ar; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); ar = 0x93; if (seg == VCPU_SREG_CS) ar |= 0x08; /* code segment */ vmcs_write32(sf->ar_bytes, ar); } static int alloc_apic_access_page(struct kvm *kvm) { struct page *page; int r = 0; mutex_lock(&kvm->slots_lock); if (kvm->arch.apic_access_page_done) goto out; r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); if (r) goto out; page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); if (is_error_page(page)) { r = -EFAULT; goto out; } /* * Do not pin the page in memory, so that memory hot-unplug * is able to migrate it. */ put_page(page); kvm->arch.apic_access_page_done = true; out: mutex_unlock(&kvm->slots_lock); return r; } static int allocate_vpid(void) { int vpid; if (!enable_vpid) return 0; spin_lock(&vmx_vpid_lock); vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); if (vpid < VMX_NR_VPIDS) __set_bit(vpid, vmx_vpid_bitmap); else vpid = 0; spin_unlock(&vmx_vpid_lock); return vpid; } static void free_vpid(int vpid) { if (!enable_vpid || vpid == 0) return; spin_lock(&vmx_vpid_lock); __clear_bit(vpid, vmx_vpid_bitmap); spin_unlock(&vmx_vpid_lock); } static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; if (static_branch_unlikely(&enable_evmcs)) evmcs_touch_msr_bitmap(); /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __clear_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __clear_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __clear_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __clear_bit(msr, msr_bitmap + 0xc00 / f); } } static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; if (static_branch_unlikely(&enable_evmcs)) evmcs_touch_msr_bitmap(); /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __set_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __set_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __set_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __set_bit(msr, msr_bitmap + 0xc00 / f); } } static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type, bool value) { if (value) vmx_enable_intercept_for_msr(msr_bitmap, msr, type); else vmx_disable_intercept_for_msr(msr_bitmap, msr, type); } /* * If a msr is allowed by L0, we should check whether it is allowed by L1. * The corresponding bit will be cleared unless both of L0 and L1 allow it. */ static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, unsigned long *msr_bitmap_nested, u32 msr, int type) { int f = sizeof(unsigned long); /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R && !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) /* read-low */ __clear_bit(msr, msr_bitmap_nested + 0x000 / f); if (type & MSR_TYPE_W && !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) /* write-low */ __clear_bit(msr, msr_bitmap_nested + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R && !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) /* read-high */ __clear_bit(msr, msr_bitmap_nested + 0x400 / f); if (type & MSR_TYPE_W && !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) /* write-high */ __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); } } static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) { u8 mode = 0; if (cpu_has_secondary_exec_ctrls() && (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { mode |= MSR_BITMAP_MODE_X2APIC; if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) mode |= MSR_BITMAP_MODE_X2APIC_APICV; } return mode; } #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, u8 mode) { int msr; for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { unsigned word = msr / BITS_PER_LONG; msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; msr_bitmap[word + (0x800 / sizeof(long))] = ~0; } if (mode & MSR_BITMAP_MODE_X2APIC) { /* * TPR reads and writes can be virtualized even if virtual interrupt * delivery is not in use. */ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); } } } static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; u8 mode = vmx_msr_bitmap_mode(vcpu); u8 changed = mode ^ vmx->msr_bitmap_mode; if (!changed) return; if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); vmx->msr_bitmap_mode = mode; } static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) { return enable_apicv; } static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); gfn_t gfn; /* * Don't need to mark the APIC access page dirty; it is never * written to by the CPU during APIC virtualization. */ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; kvm_vcpu_mark_page_dirty(vcpu, gfn); } if (nested_cpu_has_posted_intr(vmcs12)) { gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; kvm_vcpu_mark_page_dirty(vcpu, gfn); } } static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; void *vapic_page; u16 status; if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) return; vmx->nested.pi_pending = false; if (!pi_test_and_clear_on(vmx->nested.pi_desc)) return; max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); if (max_irr != 256) { vapic_page = kmap(vmx->nested.virtual_apic_page); __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page, &max_irr); kunmap(vmx->nested.virtual_apic_page); status = vmcs_read16(GUEST_INTR_STATUS); if ((u8)max_irr > ((u8)status & 0xff)) { status &= ~0xff; status |= (u8)max_irr; vmcs_write16(GUEST_INTR_STATUS, status); } } nested_mark_vmcs12_pages_dirty(vcpu); } static u8 vmx_get_rvi(void) { return vmcs_read16(GUEST_INTR_STATUS) & 0xff; } static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); void *vapic_page; u32 vppr; int rvi; if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || !nested_cpu_has_vid(get_vmcs12(vcpu)) || WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) return false; rvi = vmx_get_rvi(); vapic_page = kmap(vmx->nested.virtual_apic_page); vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); kunmap(vmx->nested.virtual_apic_page); return ((rvi & 0xf0) > (vppr & 0xf0)); } static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, bool nested) { #ifdef CONFIG_SMP int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; if (vcpu->mode == IN_GUEST_MODE) { /* * The vector of interrupt to be delivered to vcpu had * been set in PIR before this function. * * Following cases will be reached in this block, and * we always send a notification event in all cases as * explained below. * * Case 1: vcpu keeps in non-root mode. Sending a * notification event posts the interrupt to vcpu. * * Case 2: vcpu exits to root mode and is still * runnable. PIR will be synced to vIRR before the * next vcpu entry. Sending a notification event in * this case has no effect, as vcpu is not in root * mode. * * Case 3: vcpu exits to root mode and is blocked. * vcpu_block() has already synced PIR to vIRR and * never blocks vcpu if vIRR is not cleared. Therefore, * a blocked vcpu here does not wait for any requested * interrupts in PIR, and sending a notification event * which has no effect is safe here. */ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); return true; } #endif return false; } static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu) && vector == vmx->nested.posted_intr_nv) { /* * If a posted intr is not recognized by hardware, * we will accomplish it in the next vmentry. */ vmx->nested.pi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); /* the PIR and ON have been set by L1. */ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) kvm_vcpu_kick(vcpu); return 0; } return -1; } /* * Send interrupt to vcpu via posted interrupt way. * 1. If target vcpu is running(non-root mode), send posted interrupt * notification to vcpu and hardware will sync PIR to vIRR atomically. * 2. If target vcpu isn't running(root mode), kick it to pick up the * interrupt from PIR in next vmentry. */ static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = vmx_deliver_nested_posted_interrupt(vcpu, vector); if (!r) return; if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return; /* If a previous notification has sent the IPI, nothing to do. */ if (pi_test_and_set_on(&vmx->pi_desc)) return; if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) kvm_vcpu_kick(vcpu); } /* * Set up the vmcs's constant host-state fields, i.e., host-state fields that * will not change in the lifetime of the guest. * Note that host-state that does change is set elsewhere. E.g., host-state * that is set differently for each CPU is set in vmx_vcpu_load(), not here. */ static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) { u32 low32, high32; unsigned long tmpl; struct desc_ptr dt; unsigned long cr0, cr3, cr4; cr0 = read_cr0(); WARN_ON(cr0 & X86_CR0_TS); vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ /* * Save the most likely value for this task's CR3 in the VMCS. * We can't use __get_current_cr3_fast() because we're not atomic. */ cr3 = __read_cr3(); vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ vmx->loaded_vmcs->host_state.cr3 = cr3; /* Save the most likely value for this task's CR4 in the VMCS. */ cr4 = cr4_read_shadow(); vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ vmx->loaded_vmcs->host_state.cr4 = cr4; vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ #ifdef CONFIG_X86_64 /* * Load null selectors, so we can avoid reloading them in * vmx_prepare_switch_to_host(), in case userspace uses * the null selectors too (the expected case). */ vmcs_write16(HOST_DS_SELECTOR, 0); vmcs_write16(HOST_ES_SELECTOR, 0); #else vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #endif vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ store_idt(&dt); vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ vmx->host_idt_base = dt.address; vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); vmcs_write32(HOST_IA32_SYSENTER_CS, low32); rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { rdmsr(MSR_IA32_CR_PAT, low32, high32); vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); } } static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) { vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; if (enable_ept) vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; if (is_guest_mode(&vmx->vcpu)) vmx->vcpu.arch.cr4_guest_owned_bits &= ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); } static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) { u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; if (!enable_vnmi) pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; /* Enable the preemption timer dynamically */ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; return pin_based_exec_ctrl; } static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); if (cpu_has_secondary_exec_ctrls()) { if (kvm_vcpu_apicv_active(vcpu)) vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); else vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); } if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(vcpu); } static u32 vmx_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_exec_ctrl; if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) exec_control &= ~CPU_BASED_MOV_DR_EXITING; if (!cpu_need_tpr_shadow(&vmx->vcpu)) { exec_control &= ~CPU_BASED_TPR_SHADOW; #ifdef CONFIG_X86_64 exec_control |= CPU_BASED_CR8_STORE_EXITING | CPU_BASED_CR8_LOAD_EXITING; #endif } if (!enable_ept) exec_control |= CPU_BASED_CR3_STORE_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_INVLPG_EXITING; if (kvm_mwait_in_guest(vmx->vcpu.kvm)) exec_control &= ~(CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING); if (kvm_hlt_in_guest(vmx->vcpu.kvm)) exec_control &= ~CPU_BASED_HLT_EXITING; return exec_control; } static bool vmx_rdrand_supported(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_RDRAND_EXITING; } static bool vmx_rdseed_supported(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_RDSEED_EXITING; } static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; if (!cpu_need_virtualize_apic_accesses(vcpu)) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; if (vmx->vpid == 0) exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; if (!enable_ept) { exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; enable_unrestricted_guest = 0; } if (!enable_unrestricted_guest) exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (kvm_pause_in_guest(vmx->vcpu.kvm)) exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; if (!kvm_vcpu_apicv_active(vcpu)) exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, * in vmx_set_cr4. */ exec_control &= ~SECONDARY_EXEC_DESC; /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD (handle_vmptrld). We can NOT enable shadow_vmcs here because we don't have yet a current VMCS12 */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; if (!enable_pml) exec_control &= ~SECONDARY_EXEC_ENABLE_PML; if (vmx_xsaves_supported()) { /* Exposing XSAVES only when XSAVE is exposed */ bool xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); if (!xsaves_enabled) exec_control &= ~SECONDARY_EXEC_XSAVES; if (nested) { if (xsaves_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_XSAVES; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_XSAVES; } } if (vmx_rdtscp_supported()) { bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); if (!rdtscp_enabled) exec_control &= ~SECONDARY_EXEC_RDTSCP; if (nested) { if (rdtscp_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDTSCP; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDTSCP; } } if (vmx_invpcid_supported()) { /* Exposing INVPCID only when PCID is exposed */ bool invpcid_enabled = guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && guest_cpuid_has(vcpu, X86_FEATURE_PCID); if (!invpcid_enabled) { exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); } if (nested) { if (invpcid_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_ENABLE_INVPCID; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_ENABLE_INVPCID; } } if (vmx_rdrand_supported()) { bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); if (rdrand_enabled) exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; if (nested) { if (rdrand_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDRAND_EXITING; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDRAND_EXITING; } } if (vmx_rdseed_supported()) { bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); if (rdseed_enabled) exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; if (nested) { if (rdseed_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDSEED_EXITING; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDSEED_EXITING; } } vmx->secondary_exec_control = exec_control; } static void ept_set_mmio_spte_mask(void) { /* * EPT Misconfigurations can be generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). */ kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, VMX_EPT_MISCONFIG_WX_VALUE); } #define VMX_XSS_EXIT_BITMAP 0 /* * Sets up the vmcs for emulated real mode. */ static void vmx_vcpu_setup(struct vcpu_vmx *vmx) { int i; if (enable_shadow_vmcs) { /* * At vCPU creation, "VMWRITE to any supported field * in the VMCS" is supported, so use the more * permissive vmx_vmread_bitmap to specify both read * and write permissions for the shadow VMCS. */ vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); } if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ /* Control */ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); vmx->hv_deadline_tsc = -1; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); if (cpu_has_secondary_exec_ctrls()) { vmx_compute_secondary_exec_control(vmx); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, vmx->secondary_exec_control); } if (kvm_vcpu_apicv_active(&vmx->vcpu)) { vmcs_write64(EOI_EXIT_BITMAP0, 0); vmcs_write64(EOI_EXIT_BITMAP1, 0); vmcs_write64(EOI_EXIT_BITMAP2, 0); vmcs_write64(EOI_EXIT_BITMAP3, 0); vmcs_write16(GUEST_INTR_STATUS, 0); vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); } if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { vmcs_write32(PLE_GAP, ple_gap); vmx->ple_window = ple_window; vmx->ple_window_dirty = true; } vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ vmx_set_constant_host_state(vmx); vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ if (cpu_has_vmx_vmfunc()) vmcs_write64(VM_FUNCTION_CONTROL, 0); vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { u32 index = vmx_msr_index[i]; u32 data_low, data_high; int j = vmx->nmsrs; if (rdmsr_safe(index, &data_low, &data_high) < 0) continue; if (wrmsr_safe(index, data_low, data_high) < 0) continue; vmx->guest_msrs[j].index = i; vmx->guest_msrs[j].data = 0; vmx->guest_msrs[j].mask = -1ull; ++vmx->nmsrs; } vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); /* 22.2.1, 20.8.1 */ vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); set_cr4_guest_host_mask(vmx); if (vmx_xsaves_supported()) vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); if (enable_pml) { ASSERT(vmx->pml_pg); vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } if (cpu_has_vmx_encls_vmexit()) vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); } static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct msr_data apic_base_msr; u64 cr0; vmx->rmode.vm86_active = 0; vmx->spec_ctrl = 0; vcpu->arch.microcode_version = 0x100000000ULL; vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); kvm_set_cr8(vcpu, 0); if (!init_event) { apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(vcpu)) apic_base_msr.data |= MSR_IA32_APICBASE_BSP; apic_base_msr.host_initiated = true; kvm_set_apic_base(vcpu, &apic_base_msr); } vmx_segment_cache_clear(vmx); seg_setup(VCPU_SREG_CS); vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); if (!init_event) { vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); } kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); kvm_rip_write(vcpu, 0xfff0); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); if (kvm_mpx_supported()) vmcs_write64(GUEST_BNDCFGS, 0); setup_msrs(vmx); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ if (cpu_has_vmx_tpr_shadow() && !init_event) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); if (cpu_need_tpr_shadow(vcpu)) vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, __pa(vcpu->arch.apic->regs)); vmcs_write32(TPR_THRESHOLD, 0); } kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); if (vmx->vpid != 0) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; vmx->vcpu.arch.cr0 = cr0; vmx_set_cr0(vcpu, cr0); /* enter rmode */ vmx_set_cr4(vcpu, 0); vmx_set_efer(vcpu, 0); update_exception_bitmap(vcpu); vpid_sync_context(vmx->vpid); if (init_event) vmx_clear_hlt(vcpu); } /* * In nested virtualization, check if L1 asked to exit on external interrupts. * For most existing hypervisors, this will always return true. */ static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) { return get_vmcs12(vcpu)->pin_based_vm_exec_control & PIN_BASED_EXT_INTR_MASK; } /* * In nested virtualization, check if L1 has set * VM_EXIT_ACK_INTR_ON_EXIT */ static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) { return get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_ACK_INTR_ON_EXIT; } static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) { return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); } static void enable_irq_window(struct kvm_vcpu *vcpu) { vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_INTR_PENDING); } static void enable_nmi_window(struct kvm_vcpu *vcpu) { if (!enable_vnmi || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { enable_irq_window(vcpu); return; } vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_NMI_PENDING); } static void vmx_inject_irq(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); uint32_t intr; int irq = vcpu->arch.interrupt.nr; trace_kvm_inj_virq(irq); ++vcpu->stat.irq_injections; if (vmx->rmode.vm86_active) { int inc_eip = 0; if (vcpu->arch.interrupt.soft) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } intr = irq | INTR_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { intr |= INTR_TYPE_SOFT_INTR; vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); } else intr |= INTR_TYPE_EXT_INTR; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); vmx_clear_hlt(vcpu); } static void vmx_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { /* * Tracking the NMI-blocked state in software is built upon * finding the next open IRQ window. This, in turn, depends on * well-behaving guests: They have to keep IRQs disabled at * least as long as the NMI handler runs. Otherwise we may * cause NMI nesting, maybe breaking the guest. But as this is * highly unlikely, we can live with the residual risk. */ vmx->loaded_vmcs->soft_vnmi_blocked = 1; vmx->loaded_vmcs->vnmi_blocked_time = 0; } ++vcpu->stat.nmi_injections; vmx->loaded_vmcs->nmi_known_unmasked = false; if (vmx->rmode.vm86_active) { if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); vmx_clear_hlt(vcpu); } static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool masked; if (!enable_vnmi) return vmx->loaded_vmcs->soft_vnmi_blocked; if (vmx->loaded_vmcs->nmi_known_unmasked) return false; masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; vmx->loaded_vmcs->nmi_known_unmasked = !masked; return masked; } static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { vmx->loaded_vmcs->soft_vnmi_blocked = masked; vmx->loaded_vmcs->vnmi_blocked_time = 0; } } else { vmx->loaded_vmcs->nmi_known_unmasked = !masked; if (masked) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); } } static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) { if (to_vmx(vcpu)->nested.nested_run_pending) return 0; if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) return 0; return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | GUEST_INTR_STATE_NMI)); } static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) { return (!to_vmx(vcpu)->nested.nested_run_pending && vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); } static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) { int ret; if (enable_unrestricted_guest) return 0; ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, PAGE_SIZE * 3); if (ret) return ret; to_kvm_vmx(kvm)->tss_addr = addr; return init_rmode_tss(kvm); } static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; return 0; } static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) { switch (vec) { case BP_VECTOR: /* * Update instruction length as we may reinject the exception * from user space while in guest debugging mode. */ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; /* fall through */ case DB_VECTOR: if (vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) return false; /* fall through */ case DE_VECTOR: case OF_VECTOR: case BR_VECTOR: case UD_VECTOR: case DF_VECTOR: case SS_VECTOR: case GP_VECTOR: case MF_VECTOR: return true; break; } return false; } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { /* * Instruction with address size override prefix opcode 0x67 * Cause the #SS fault with 0 error code in VM86 mode. */ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_vcpu_halt(vcpu); } return 1; } return 0; } /* * Forward all other exceptions that are valid in real mode. * FIXME: Breaks guest debugging in real mode, needs to be fixed with * the required debugging infrastructure rework. */ kvm_queue_exception(vcpu, vec); return 1; } /* * Trigger machine check on the host. We assume all the MSRs are already set up * by the CPU and that we still run on the same CPU as the MCE occurred on. * We pass a fake environment to the machine check handler because we want * the guest to be always treated like user space, no matter what context * it used internally. */ static void kvm_machine_check(void) { #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) struct pt_regs regs = { .cs = 3, /* Fake ring 3 no matter what the guest ran on */ .flags = X86_EFLAGS_IF, }; do_machine_check(®s, 0); #endif } static int handle_machine_check(struct kvm_vcpu *vcpu) { /* already handled by vcpu_run */ return 1; } static int handle_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 intr_info, ex_no, error_code; unsigned long cr2, rip, dr6; u32 vect_info; enum emulation_result er; vect_info = vmx->idt_vectoring_info; intr_info = vmx->exit_intr_info; if (is_machine_check(intr_info)) return handle_machine_check(vcpu); if (is_nmi(intr_info)) return 1; /* already handled by vmx_vcpu_run() */ if (is_invalid_opcode(intr_info)) return handle_ud(vcpu); error_code = 0; if (intr_info & INTR_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { WARN_ON_ONCE(!enable_vmware_backdoor); er = kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); if (er == EMULATE_USER_EXIT) return 0; else if (er != EMULATE_DONE) kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } /* * The #PF with PFEC.RSVD = 1 indicates the guest is accessing * MMIO, it is better to report an internal error. * See the comments in vmx_handle_exit. */ if ((vect_info & VECTORING_INFO_VALID_MASK) && !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; vcpu->run->internal.ndata = 3; vcpu->run->internal.data[0] = vect_info; vcpu->run->internal.data[1] = intr_info; vcpu->run->internal.data[2] = error_code; return 0; } if (is_page_fault(intr_info)) { cr2 = vmcs_readl(EXIT_QUALIFICATION); /* EPT won't cause page fault directly */ WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); } ex_no = intr_info & INTR_INFO_VECTOR_MASK; if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) return handle_rmode_exception(vcpu, ex_no, error_code); switch (ex_no) { case AC_VECTOR: kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); return 1; case DB_VECTOR: dr6 = vmcs_readl(EXIT_QUALIFICATION); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= dr6 | DR6_RTM; if (is_icebp(intr_info)) skip_emulated_instruction(vcpu); kvm_queue_exception(vcpu, DB_VECTOR); return 1; } kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); /* fall through */ case BP_VECTOR: /* * Update instruction length as we may reinject #BP from * user space while in guest debugging mode. Reading it for * #DB as well causes no harm, it is not used in that case. */ vmx->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_run->exit_reason = KVM_EXIT_DEBUG; rip = kvm_rip_read(vcpu); kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; kvm_run->debug.arch.exception = ex_no; break; default: kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = ex_no; kvm_run->ex.error_code = error_code; break; } return 0; } static int handle_external_interrupt(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int handle_triple_fault(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; vcpu->mmio_needed = 0; return 0; } static int handle_io(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int size, in, string; unsigned port; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); string = (exit_qualification & 16) != 0; ++vcpu->stat.io_exits; if (string) return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; in = (exit_qualification & 8) != 0; return kvm_fast_pio(vcpu, size, port, in); } static void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xc1; } /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* * We get here when L2 changed cr0 in a way that did not change * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), * but did change L0 shadowed bits. So we first calculate the * effective cr0 value that L1 would like to write into the * hardware. It consists of the L2-owned bits from the new * value combined with the L1-owned bits from L1's guest_cr0. */ val = (val & ~vmcs12->cr0_guest_host_mask) | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); if (!nested_guest_cr0_valid(vcpu, val)) return 1; if (kvm_set_cr0(vcpu, val)) return 1; vmcs_writel(CR0_READ_SHADOW, orig_val); return 0; } else { if (to_vmx(vcpu)->nested.vmxon && !nested_host_cr0_valid(vcpu, val)) return 1; return kvm_set_cr0(vcpu, val); } } static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* analogously to handle_set_cr0 */ val = (val & ~vmcs12->cr4_guest_host_mask) | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); if (kvm_set_cr4(vcpu, val)) return 1; vmcs_writel(CR4_READ_SHADOW, orig_val); return 0; } else return kvm_set_cr4(vcpu, val); } static int handle_desc(struct kvm_vcpu *vcpu) { WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; int cr; int reg; int err; int ret; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ val = kvm_register_readl(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: err = handle_set_cr0(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 3: WARN_ON_ONCE(enable_unrestricted_guest); err = kvm_set_cr3(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 4: err = handle_set_cr4(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 8: { u8 cr8_prev = kvm_get_cr8(vcpu); u8 cr8 = (u8)val; err = kvm_set_cr8(vcpu, cr8); ret = kvm_complete_insn_gp(vcpu, err); if (lapic_in_kernel(vcpu)) return ret; if (cr8_prev <= cr8) return ret; /* * TODO: we might be squashing a * KVM_GUESTDBG_SINGLESTEP-triggered * KVM_EXIT_DEBUG here. */ vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } } break; case 2: /* clts */ WARN_ONCE(1, "Guest should always own CR0.TS"); vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); return kvm_skip_emulated_instruction(vcpu); case 1: /*mov from cr*/ switch (cr) { case 3: WARN_ON_ONCE(enable_unrestricted_guest); val = kvm_read_cr3(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); case 8: val = kvm_get_cr8(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); } break; case 3: /* lmsw */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); kvm_lmsw(vcpu, val); return kvm_skip_emulated_instruction(vcpu); default: break; } vcpu->run->exit_reason = 0; vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int dr, dr7, reg; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); dr = exit_qualification & DEBUG_REG_ACCESS_NUM; /* First, if DR does not exist, trigger UD */ if (!kvm_require_dr(vcpu, dr)) return 1; /* Do not handle if the CPL > 0, will trigger GP on re-entry */ if (!kvm_require_cpl(vcpu, 0)) return 1; dr7 = vmcs_readl(GUEST_DR7); if (dr7 & DR7_GD) { /* * As the vm-exit takes precedence over the debug trap, we * need to emulate the latter, either for the host or the * guest debugging itself. */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; vcpu->run->debug.arch.dr7 = dr7; vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); vcpu->run->debug.arch.exception = DB_VECTOR; vcpu->run->exit_reason = KVM_EXIT_DEBUG; return 0; } else { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= DR6_BD | DR6_RTM; kvm_queue_exception(vcpu, DB_VECTOR); return 1; } } if (vcpu->guest_debug == 0) { vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } reg = DEBUG_REG_ACCESS_REG(exit_qualification); if (exit_qualification & TYPE_MOV_FROM_DR) { unsigned long val; if (kvm_get_dr(vcpu, dr, &val)) return 1; kvm_register_write(vcpu, reg, val); } else if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) return 1; return kvm_skip_emulated_instruction(vcpu); } static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) { return vcpu->arch.dr6; } static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) { } static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); get_debugreg(vcpu->arch.dr6, 6); vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); } static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) { vmcs_writel(GUEST_DR7, val); } static int handle_cpuid(struct kvm_vcpu *vcpu) { return kvm_emulate_cpuid(vcpu); } static int handle_rdmsr(struct kvm_vcpu *vcpu) { u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; struct msr_data msr_info; msr_info.index = ecx; msr_info.host_initiated = false; if (vmx_get_msr(vcpu, &msr_info)) { trace_kvm_msr_read_ex(ecx); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_read(ecx, msr_info.data); /* FIXME: handling of bits 32:63 of rax, rdx */ vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; return kvm_skip_emulated_instruction(vcpu); } static int handle_wrmsr(struct kvm_vcpu *vcpu) { struct msr_data msr; u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); msr.data = data; msr.index = ecx; msr.host_initiated = false; if (kvm_set_msr(vcpu, &msr) != 0) { trace_kvm_msr_write_ex(ecx, data); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_write(ecx, data); return kvm_skip_emulated_instruction(vcpu); } static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { kvm_apic_update_ppr(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_INTR_PENDING); kvm_make_request(KVM_REQ_EVENT, vcpu); ++vcpu->stat.irq_window_exits; return 1; } static int handle_halt(struct kvm_vcpu *vcpu) { return kvm_emulate_halt(vcpu); } static int handle_vmcall(struct kvm_vcpu *vcpu) { return kvm_emulate_hypercall(vcpu); } static int handle_invd(struct kvm_vcpu *vcpu) { return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_invlpg(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); kvm_mmu_invlpg(vcpu, exit_qualification); return kvm_skip_emulated_instruction(vcpu); } static int handle_rdpmc(struct kvm_vcpu *vcpu) { int err; err = kvm_rdpmc(vcpu); return kvm_complete_insn_gp(vcpu, err); } static int handle_wbinvd(struct kvm_vcpu *vcpu) { return kvm_emulate_wbinvd(vcpu); } static int handle_xsetbv(struct kvm_vcpu *vcpu) { u64 new_bv = kvm_read_edx_eax(vcpu); u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); if (kvm_set_xcr(vcpu, index, new_bv) == 0) return kvm_skip_emulated_instruction(vcpu); return 1; } static int handle_xsaves(struct kvm_vcpu *vcpu) { kvm_skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_xrstors(struct kvm_vcpu *vcpu) { kvm_skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_apic_access(struct kvm_vcpu *vcpu) { if (likely(fasteoi)) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int access_type, offset; access_type = exit_qualification & APIC_ACCESS_TYPE; offset = exit_qualification & APIC_ACCESS_OFFSET; /* * Sane guest uses MOV to write EOI, with written value * not cared. So make a short-circuit here by avoiding * heavy instruction emulation. */ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && (offset == APIC_EOI)) { kvm_lapic_set_eoi(vcpu); return kvm_skip_emulated_instruction(vcpu); } } return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int vector = exit_qualification & 0xff; /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ kvm_apic_set_eoi_accelerated(vcpu, vector); return 1; } static int handle_apic_write(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 offset = exit_qualification & 0xfff; /* APIC-write VM exit is trap-like and thus no need to adjust IP */ kvm_apic_write_nodecode(vcpu, offset); return 1; } static int handle_task_switch(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification; bool has_error_code = false; u32 error_code = 0; u16 tss_selector; int reason, type, idt_v, idt_index; idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); reason = (u32)exit_qualification >> 30; if (reason == TASK_SWITCH_GATE && idt_v) { switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = false; vmx_set_nmi_mask(vcpu, true); break; case INTR_TYPE_EXT_INTR: case INTR_TYPE_SOFT_INTR: kvm_clear_interrupt_queue(vcpu); break; case INTR_TYPE_HARD_EXCEPTION: if (vmx->idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { has_error_code = true; error_code = vmcs_read32(IDT_VECTORING_ERROR_CODE); } /* fall through */ case INTR_TYPE_SOFT_EXCEPTION: kvm_clear_exception_queue(vcpu); break; default: break; } } tss_selector = exit_qualification; if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && type != INTR_TYPE_EXT_INTR && type != INTR_TYPE_NMI_INTR)) skip_emulated_instruction(vcpu); if (kvm_task_switch(vcpu, tss_selector, type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, has_error_code, error_code) == EMULATE_FAIL) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } /* * TODO: What about debug traps on tss switch? * Are we supposed to inject them and update dr6? */ return 1; } static int handle_ept_violation(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; gpa_t gpa; u64 error_code; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); /* * EPT violation happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. * There are errata that may cause this bit to not be set: * AAK134, BY25. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(gpa, exit_qualification); /* Is it a read fault? */ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) ? PFERR_USER_MASK : 0; /* Is it a write fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) ? PFERR_WRITE_MASK : 0; /* Is it a fetch fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) ? PFERR_FETCH_MASK : 0; /* ept page table entry is present? */ error_code |= (exit_qualification & (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | EPT_VIOLATION_EXECUTABLE)) ? PFERR_PRESENT_MASK : 0; error_code |= (exit_qualification & 0x100) != 0 ? PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; vcpu->arch.exit_qualification = exit_qualification; return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); } static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { gpa_t gpa; /* * A nested guest cannot optimize MMIO vmexits, because we have an * nGPA here instead of the required GPA. */ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); if (!is_guest_mode(vcpu) && !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { trace_kvm_fast_mmio(gpa); /* * Doing kvm_skip_emulated_instruction() depends on undefined * behavior: Intel's manual doesn't mandate * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG * occurs and while on real hardware it was observed to be set, * other hypervisors (namely Hyper-V) don't set it, we end up * advancing IP with some random value. Disable fast mmio when * running nested and keep it for real hardware in hope that * VM_EXIT_INSTRUCTION_LEN will always be set correctly. */ if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) return kvm_skip_emulated_instruction(vcpu); else return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == EMULATE_DONE; } return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); } static int handle_nmi_window(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(!enable_vnmi); vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_NMI_PENDING); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); enum emulation_result err = EMULATE_DONE; int ret = 1; u32 cpu_exec_ctrl; bool intr_window_requested; unsigned count = 130; /* * We should never reach the point where we are emulating L2 * due to invalid guest state as that means we incorrectly * allowed a nested VMEntry with an invalid vmcs12. */ WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; while (vmx->emulation_required && count-- != 0) { if (intr_window_requested && vmx_interrupt_allowed(vcpu)) return handle_interrupt_window(&vmx->vcpu); if (kvm_test_request(KVM_REQ_EVENT, vcpu)) return 1; err = kvm_emulate_instruction(vcpu, 0); if (err == EMULATE_USER_EXIT) { ++vcpu->stat.mmio_exits; ret = 0; goto out; } if (err != EMULATE_DONE) goto emulation_error; if (vmx->emulation_required && !vmx->rmode.vm86_active && vcpu->arch.exception.pending) goto emulation_error; if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; ret = kvm_vcpu_halt(vcpu); goto out; } if (signal_pending(current)) goto out; if (need_resched()) schedule(); } out: return ret; emulation_error: vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __grow_ple_window(old, ple_window, ple_window_grow, ple_window_max); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __shrink_ple_window(old, ple_window, ple_window_shrink, ple_window); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); } /* * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. */ static void wakeup_handler(void) { struct kvm_vcpu *vcpu; int cpu = smp_processor_id(); spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), blocked_vcpu_list) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (pi_test_on(pi_desc) == 1) kvm_vcpu_kick(vcpu); } spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); } static void vmx_enable_tdp(void) { kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 0ull, VMX_EPT_EXECUTABLE_MASK, cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, VMX_EPT_RWX_MASK, 0ull); ept_set_mmio_spte_mask(); kvm_enable_tdp(); } static __init int hardware_setup(void) { unsigned long host_bndcfgs; int r = -ENOMEM, i; rdmsrl_safe(MSR_EFER, &host_efer); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) kvm_define_shared_msr(i, vmx_msr_index[i]); for (i = 0; i < VMX_BITMAP_NR; i++) { vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_bitmap[i]) goto out; } memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); if (setup_vmcs_config(&vmcs_config) < 0) { r = -EIO; goto out; } if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_MPX)) { rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); } if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) enable_vpid = 0; if (!cpu_has_vmx_ept() || !cpu_has_vmx_ept_4levels() || !cpu_has_vmx_ept_mt_wb() || !cpu_has_vmx_invept_global()) enable_ept = 0; if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) enable_ept_ad_bits = 0; if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) enable_unrestricted_guest = 0; if (!cpu_has_vmx_flexpriority()) flexpriority_enabled = 0; if (!cpu_has_virtual_nmis()) enable_vnmi = 0; /* * set_apic_access_page_addr() is used to reload apic access * page upon invalidation. No need to do anything if not * using the APIC_ACCESS_ADDR VMCS field. */ if (!flexpriority_enabled) kvm_x86_ops->set_apic_access_page_addr = NULL; if (!cpu_has_vmx_tpr_shadow()) kvm_x86_ops->update_cr8_intercept = NULL; if (enable_ept && !cpu_has_vmx_ept_2m_page()) kvm_disable_largepages(); #if IS_ENABLED(CONFIG_HYPERV) if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH && enable_ept) kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb; #endif if (!cpu_has_vmx_ple()) { ple_gap = 0; ple_window = 0; ple_window_grow = 0; ple_window_max = 0; ple_window_shrink = 0; } if (!cpu_has_vmx_apicv()) { enable_apicv = 0; kvm_x86_ops->sync_pir_to_irr = NULL; } if (cpu_has_vmx_tsc_scaling()) { kvm_has_tsc_control = true; kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; kvm_tsc_scaling_ratio_frac_bits = 48; } set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ if (enable_ept) vmx_enable_tdp(); else kvm_disable_tdp(); if (!nested) { kvm_x86_ops->get_nested_state = NULL; kvm_x86_ops->set_nested_state = NULL; } /* * Only enable PML when hardware supports PML feature, and both EPT * and EPT A/D bit features are enabled -- PML depends on them to work. */ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) enable_pml = 0; if (!enable_pml) { kvm_x86_ops->slot_enable_log_dirty = NULL; kvm_x86_ops->slot_disable_log_dirty = NULL; kvm_x86_ops->flush_log_dirty = NULL; kvm_x86_ops->enable_log_dirty_pt_masked = NULL; } if (!cpu_has_vmx_preemption_timer()) kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { u64 vmx_msr; rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); cpu_preemption_timer_multi = vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; } else { kvm_x86_ops->set_hv_timer = NULL; kvm_x86_ops->cancel_hv_timer = NULL; } if (!cpu_has_vmx_shadow_vmcs()) enable_shadow_vmcs = 0; if (enable_shadow_vmcs) init_vmcs_shadow_fields(); kvm_set_posted_intr_wakeup_handler(wakeup_handler); nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv); kvm_mce_cap_supported |= MCG_LMCE_P; r = alloc_kvm_area(); if (r) goto out; return 0; out: for (i = 0; i < VMX_BITMAP_NR; i++) free_page((unsigned long)vmx_bitmap[i]); return r; } static __exit void hardware_unsetup(void) { int i; for (i = 0; i < VMX_BITMAP_NR; i++) free_page((unsigned long)vmx_bitmap[i]); free_kvm_area(); } /* * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE * exiting, so only get here on cpu with PAUSE-Loop-Exiting. */ static int handle_pause(struct kvm_vcpu *vcpu) { if (!kvm_pause_in_guest(vcpu->kvm)) grow_ple_window(vcpu); /* * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" * VM-execution control is ignored if CPL > 0. OTOH, KVM * never set PAUSE_EXITING and just set PLE if supported, * so the vcpu must be CPL=0 if it gets a PAUSE exit. */ kvm_vcpu_on_spin(vcpu, true); return kvm_skip_emulated_instruction(vcpu); } static int handle_nop(struct kvm_vcpu *vcpu) { return kvm_skip_emulated_instruction(vcpu); } static int handle_mwait(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); return handle_nop(vcpu); } static int handle_invalid_op(struct kvm_vcpu *vcpu) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } static int handle_monitor_trap(struct kvm_vcpu *vcpu) { return 1; } static int handle_monitor(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); return handle_nop(vcpu); } /* * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), * set the success or error code of an emulated VMX instruction, as specified * by Vol 2B, VMX Instruction Reference, "Conventions". */ static void nested_vmx_succeed(struct kvm_vcpu *vcpu) { vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); } static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) { vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)) | X86_EFLAGS_CF); } static void nested_vmx_failValid(struct kvm_vcpu *vcpu, u32 vm_instruction_error) { if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { /* * failValid writes the error number to the current VMCS, which * can't be done there isn't a current VMCS. */ nested_vmx_failInvalid(vcpu); return; } vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_SF | X86_EFLAGS_OF)) | X86_EFLAGS_ZF); get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; /* * We don't need to force a shadow sync because * VM_INSTRUCTION_ERROR is not shadowed */ } static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) { /* TODO: not to reset guest simply here. */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); } static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) { struct vcpu_vmx *vmx = container_of(timer, struct vcpu_vmx, nested.preemption_timer); vmx->nested.preemption_timer_expired = true; kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); kvm_vcpu_kick(&vmx->vcpu); return HRTIMER_NORESTART; } /* * Decode the memory-address operand of a vmx instruction, as recorded on an * exit caused by such an instruction (run by a guest hypervisor). * On success, returns 0. When the operand is invalid, returns 1 and throws * #UD or #GP. */ static int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, u32 vmx_instruction_info, bool wr, gva_t *ret) { gva_t off; bool exn; struct kvm_segment s; /* * According to Vol. 3B, "Information for VM Exits Due to Instruction * Execution", on an exit, vmx_instruction_info holds most of the * addressing components of the operand. Only the displacement part * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). * For how an actual address is calculated from all these components, * refer to Vol. 1, "Operand Addressing". */ int scaling = vmx_instruction_info & 3; int addr_size = (vmx_instruction_info >> 7) & 7; bool is_reg = vmx_instruction_info & (1u << 10); int seg_reg = (vmx_instruction_info >> 15) & 7; int index_reg = (vmx_instruction_info >> 18) & 0xf; bool index_is_valid = !(vmx_instruction_info & (1u << 22)); int base_reg = (vmx_instruction_info >> 23) & 0xf; bool base_is_valid = !(vmx_instruction_info & (1u << 27)); if (is_reg) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* Addr = segment_base + offset */ /* offset = base + [index * scale] + displacement */ off = exit_qualification; /* holds the displacement */ if (addr_size == 1) off = (gva_t)sign_extend64(off, 31); else if (addr_size == 0) off = (gva_t)sign_extend64(off, 15); if (base_is_valid) off += kvm_register_read(vcpu, base_reg); if (index_is_valid) off += kvm_register_read(vcpu, index_reg)< s.limit); } if (exn) { kvm_queue_exception_e(vcpu, seg_reg == VCPU_SREG_SS ? SS_VECTOR : GP_VECTOR, 0); return 1; } return 0; } static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) { gva_t gva; struct x86_exception e; if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } return 0; } /* * Allocate a shadow VMCS and associate it with the currently loaded * VMCS, unless such a shadow VMCS already exists. The newly allocated * VMCS is also VMCLEARed, so that it is ready for use. */ static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; /* * We should allocate a shadow vmcs for vmcs01 only when L1 * executes VMXON and free it when L1 executes VMXOFF. * As it is invalid to execute VMXON twice, we shouldn't reach * here when vmcs01 already have an allocated shadow vmcs. */ WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); if (!loaded_vmcs->shadow_vmcs) { loaded_vmcs->shadow_vmcs = alloc_vmcs(true); if (loaded_vmcs->shadow_vmcs) vmcs_clear(loaded_vmcs->shadow_vmcs); } return loaded_vmcs->shadow_vmcs; } static int enter_vmx_operation(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = alloc_loaded_vmcs(&vmx->nested.vmcs02); if (r < 0) goto out_vmcs02; vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL); if (!vmx->nested.cached_vmcs12) goto out_cached_vmcs12; vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL); if (!vmx->nested.cached_shadow_vmcs12) goto out_cached_shadow_vmcs12; if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) goto out_shadow_vmcs; hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; vmx->nested.vpid02 = allocate_vpid(); vmx->nested.vmxon = true; return 0; out_shadow_vmcs: kfree(vmx->nested.cached_shadow_vmcs12); out_cached_shadow_vmcs12: kfree(vmx->nested.cached_vmcs12); out_cached_vmcs12: free_loaded_vmcs(&vmx->nested.vmcs02); out_vmcs02: return -ENOMEM; } /* * Emulate the VMXON instruction. * Currently, we just remember that VMX is active, and do not save or even * inspect the argument to VMXON (the so-called "VMXON pointer") because we * do not currently need to store anything in that guest-allocated memory * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their * argument is different from the VMXON pointer (which the spec says they do). */ static int handle_vmon(struct kvm_vcpu *vcpu) { int ret; gpa_t vmptr; struct page *page; struct vcpu_vmx *vmx = to_vmx(vcpu); const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; /* * The Intel VMX Instruction Reference lists a bunch of bits that are * prerequisite to running VMXON, most notably cr4.VMXE must be set to * 1 (see vmx_set_cr4() for when we allow the guest to set this). * Otherwise, we should fail with #UD. But most faulting conditions * have already been checked by hardware, prior to the VM-exit for * VMXON. We do test guest cr4.VMXE because processor CR4 always has * that bit set to 1 in non-root mode. */ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* CPL=0 must be checked manually. */ if (vmx_get_cpl(vcpu)) { kvm_inject_gp(vcpu, 0); return 1; } if (vmx->nested.vmxon) { nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); return kvm_skip_emulated_instruction(vcpu); } if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) != VMXON_NEEDED_FEATURES) { kvm_inject_gp(vcpu, 0); return 1; } if (nested_vmx_get_vmptr(vcpu, &vmptr)) return 1; /* * SDM 3: 24.11.5 * The first 4 bytes of VMXON region contain the supported * VMCS revision identifier * * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; * which replaces physical address width with 32 */ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } page = kvm_vcpu_gpa_to_page(vcpu, vmptr); if (is_error_page(page)) { nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } if (*(u32 *)kmap(page) != VMCS12_REVISION) { kunmap(page); kvm_release_page_clean(page); nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } kunmap(page); kvm_release_page_clean(page); vmx->nested.vmxon_ptr = vmptr; ret = enter_vmx_operation(vcpu); if (ret) return ret; nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } /* * Intel's VMX Instruction Reference specifies a common set of prerequisites * for running VMX instructions (except VMXON, whose prerequisites are * slightly different). It also specifies what exception to inject otherwise. * Note that many of these exceptions have priority over VM exits, so they * don't have to be checked again here. */ static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) { if (!to_vmx(vcpu)->nested.vmxon) { kvm_queue_exception(vcpu, UD_VECTOR); return 0; } if (vmx_get_cpl(vcpu)) { kvm_inject_gp(vcpu, 0); return 0; } return 1; } static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) { vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); vmcs_write64(VMCS_LINK_POINTER, -1ull); vmx->nested.sync_shadow_vmcs = false; } static inline void nested_release_vmcs12(struct vcpu_vmx *vmx) { if (vmx->nested.current_vmptr == -1ull) return; if (enable_shadow_vmcs) { /* copy to memory all shadowed fields in case they were modified */ copy_shadow_to_vmcs12(vmx); vmx_disable_shadow_vmcs(vmx); } vmx->nested.posted_intr_nv = -1; /* Flush VMCS12 to guest memory */ kvm_vcpu_write_guest_page(&vmx->vcpu, vmx->nested.current_vmptr >> PAGE_SHIFT, vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); vmx->nested.current_vmptr = -1ull; } /* * Free whatever needs to be freed from vmx->nested when L1 goes down, or * just stops using VMX. */ static void free_nested(struct vcpu_vmx *vmx) { if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) return; kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, &vmx->vcpu); hrtimer_cancel(&vmx->nested.preemption_timer); vmx->nested.vmxon = false; vmx->nested.smm.vmxon = false; free_vpid(vmx->nested.vpid02); vmx->nested.posted_intr_nv = -1; vmx->nested.current_vmptr = -1ull; if (enable_shadow_vmcs) { vmx_disable_shadow_vmcs(vmx); vmcs_clear(vmx->vmcs01.shadow_vmcs); free_vmcs(vmx->vmcs01.shadow_vmcs); vmx->vmcs01.shadow_vmcs = NULL; } kfree(vmx->nested.cached_vmcs12); kfree(vmx->nested.cached_shadow_vmcs12); /* Unpin physical memory we referred to in the vmcs02 */ if (vmx->nested.apic_access_page) { kvm_release_page_dirty(vmx->nested.apic_access_page); vmx->nested.apic_access_page = NULL; } if (vmx->nested.virtual_apic_page) { kvm_release_page_dirty(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = NULL; } if (vmx->nested.pi_desc_page) { kunmap(vmx->nested.pi_desc_page); kvm_release_page_dirty(vmx->nested.pi_desc_page); vmx->nested.pi_desc_page = NULL; vmx->nested.pi_desc = NULL; } free_loaded_vmcs(&vmx->nested.vmcs02); } /* Emulate the VMXOFF instruction */ static int handle_vmoff(struct kvm_vcpu *vcpu) { if (!nested_vmx_check_permission(vcpu)) return 1; free_nested(to_vmx(vcpu)); nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } /* Emulate the VMCLEAR instruction */ static int handle_vmclear(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 zero = 0; gpa_t vmptr; if (!nested_vmx_check_permission(vcpu)) return 1; if (nested_vmx_get_vmptr(vcpu, &vmptr)) return 1; if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); return kvm_skip_emulated_instruction(vcpu); } if (vmptr == vmx->nested.vmxon_ptr) { nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); return kvm_skip_emulated_instruction(vcpu); } if (vmptr == vmx->nested.current_vmptr) nested_release_vmcs12(vmx); kvm_vcpu_write_guest(vcpu, vmptr + offsetof(struct vmcs12, launch_state), &zero, sizeof(zero)); nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); /* Emulate the VMLAUNCH instruction */ static int handle_vmlaunch(struct kvm_vcpu *vcpu) { return nested_vmx_run(vcpu, true); } /* Emulate the VMRESUME instruction */ static int handle_vmresume(struct kvm_vcpu *vcpu) { return nested_vmx_run(vcpu, false); } /* * Read a vmcs12 field. Since these can have varying lengths and we return * one type, we chose the biggest type (u64) and zero-extend the return value * to that size. Note that the caller, handle_vmread, might need to use only * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of * 64-bit fields are to be returned). */ static inline int vmcs12_read_any(struct vmcs12 *vmcs12, unsigned long field, u64 *ret) { short offset = vmcs_field_to_offset(field); char *p; if (offset < 0) return offset; p = (char *)vmcs12 + offset; switch (vmcs_field_width(field)) { case VMCS_FIELD_WIDTH_NATURAL_WIDTH: *ret = *((natural_width *)p); return 0; case VMCS_FIELD_WIDTH_U16: *ret = *((u16 *)p); return 0; case VMCS_FIELD_WIDTH_U32: *ret = *((u32 *)p); return 0; case VMCS_FIELD_WIDTH_U64: *ret = *((u64 *)p); return 0; default: WARN_ON(1); return -ENOENT; } } static inline int vmcs12_write_any(struct vmcs12 *vmcs12, unsigned long field, u64 field_value){ short offset = vmcs_field_to_offset(field); char *p = (char *)vmcs12 + offset; if (offset < 0) return offset; switch (vmcs_field_width(field)) { case VMCS_FIELD_WIDTH_U16: *(u16 *)p = field_value; return 0; case VMCS_FIELD_WIDTH_U32: *(u32 *)p = field_value; return 0; case VMCS_FIELD_WIDTH_U64: *(u64 *)p = field_value; return 0; case VMCS_FIELD_WIDTH_NATURAL_WIDTH: *(natural_width *)p = field_value; return 0; default: WARN_ON(1); return -ENOENT; } } /* * Copy the writable VMCS shadow fields back to the VMCS12, in case * they have been modified by the L1 guest. Note that the "read-only" * VM-exit information fields are actually writable if the vCPU is * configured to support "VMWRITE to any supported field in the VMCS." */ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) { const u16 *fields[] = { shadow_read_write_fields, shadow_read_only_fields }; const int max_fields[] = { max_shadow_read_write_fields, max_shadow_read_only_fields }; int i, q; unsigned long field; u64 field_value; struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; if (WARN_ON(!shadow_vmcs)) return; preempt_disable(); vmcs_load(shadow_vmcs); for (q = 0; q < ARRAY_SIZE(fields); q++) { for (i = 0; i < max_fields[q]; i++) { field = fields[q][i]; field_value = __vmcs_readl(field); vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); } /* * Skip the VM-exit information fields if they are read-only. */ if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) break; } vmcs_clear(shadow_vmcs); vmcs_load(vmx->loaded_vmcs->vmcs); preempt_enable(); } static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) { const u16 *fields[] = { shadow_read_write_fields, shadow_read_only_fields }; const int max_fields[] = { max_shadow_read_write_fields, max_shadow_read_only_fields }; int i, q; unsigned long field; u64 field_value = 0; struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; if (WARN_ON(!shadow_vmcs)) return; vmcs_load(shadow_vmcs); for (q = 0; q < ARRAY_SIZE(fields); q++) { for (i = 0; i < max_fields[q]; i++) { field = fields[q][i]; vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); __vmcs_writel(field, field_value); } } vmcs_clear(shadow_vmcs); vmcs_load(vmx->loaded_vmcs->vmcs); } /* * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was * used before) all generate the same failure when it is missing. */ static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (vmx->nested.current_vmptr == -1ull) { nested_vmx_failInvalid(vcpu); return 0; } return 1; } static int handle_vmread(struct kvm_vcpu *vcpu) { unsigned long field; u64 field_value; unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); gva_t gva = 0; struct vmcs12 *vmcs12; struct x86_exception e; if (!nested_vmx_check_permission(vcpu)) return 1; if (!nested_vmx_check_vmcs12(vcpu)) return kvm_skip_emulated_instruction(vcpu); if (!is_guest_mode(vcpu)) vmcs12 = get_vmcs12(vcpu); else { /* * When vmcs->vmcs_link_pointer is -1ull, any VMREAD * to shadowed-field sets the ALU flags for VMfailInvalid. */ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) { nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } vmcs12 = get_shadow_vmcs12(vcpu); } /* Decode instruction info and find the field to read */ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); /* Read the field, zero-extended to a u64 field_value */ if (vmcs12_read_any(vmcs12, field, &field_value) < 0) { nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); return kvm_skip_emulated_instruction(vcpu); } /* * Now copy part of this value to register or memory, as requested. * Note that the number of bits actually copied is 32 or 64 depending * on the guest's mode (32 or 64 bit), not on the given field's length. */ if (vmx_instruction_info & (1u << 10)) { kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), field_value); } else { if (get_vmx_mem_address(vcpu, exit_qualification, vmx_instruction_info, true, &gva)) return 1; /* _system ok, nested_vmx_check_permission has verified cpl=0 */ if (kvm_write_guest_virt_system(vcpu, gva, &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL)) kvm_inject_page_fault(vcpu, &e); } nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } static int handle_vmwrite(struct kvm_vcpu *vcpu) { unsigned long field; gva_t gva; struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); /* The value to write might be 32 or 64 bits, depending on L1's long * mode, and eventually we need to write that into a field of several * possible lengths. The code below first zero-extends the value to 64 * bit (field_value), and then copies only the appropriate number of * bits into the vmcs12 field. */ u64 field_value = 0; struct x86_exception e; struct vmcs12 *vmcs12; if (!nested_vmx_check_permission(vcpu)) return 1; if (!nested_vmx_check_vmcs12(vcpu)) return kvm_skip_emulated_instruction(vcpu); if (vmx_instruction_info & (1u << 10)) field_value = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 3) & 0xf)); else { if (get_vmx_mem_address(vcpu, exit_qualification, vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } } field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); /* * If the vCPU supports "VMWRITE to any supported field in the * VMCS," then the "read-only" fields are actually read/write. */ if (vmcs_field_readonly(field) && !nested_cpu_has_vmwrite_any_field(vcpu)) { nested_vmx_failValid(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); return kvm_skip_emulated_instruction(vcpu); } if (!is_guest_mode(vcpu)) vmcs12 = get_vmcs12(vcpu); else { /* * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE * to shadowed-field sets the ALU flags for VMfailInvalid. */ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) { nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } vmcs12 = get_shadow_vmcs12(vcpu); } if (vmcs12_write_any(vmcs12, field, field_value) < 0) { nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); return kvm_skip_emulated_instruction(vcpu); } /* * Do not track vmcs12 dirty-state if in guest-mode * as we actually dirty shadow vmcs12 instead of vmcs12. */ if (!is_guest_mode(vcpu)) { switch (field) { #define SHADOW_FIELD_RW(x) case x: #include "vmx_shadow_fields.h" /* * The fields that can be updated by L1 without a vmexit are * always updated in the vmcs02, the others go down the slow * path of prepare_vmcs02. */ break; default: vmx->nested.dirty_vmcs12 = true; break; } } nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) { vmx->nested.current_vmptr = vmptr; if (enable_shadow_vmcs) { vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); vmcs_write64(VMCS_LINK_POINTER, __pa(vmx->vmcs01.shadow_vmcs)); vmx->nested.sync_shadow_vmcs = true; } vmx->nested.dirty_vmcs12 = true; } /* Emulate the VMPTRLD instruction */ static int handle_vmptrld(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t vmptr; if (!nested_vmx_check_permission(vcpu)) return 1; if (nested_vmx_get_vmptr(vcpu, &vmptr)) return 1; if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); return kvm_skip_emulated_instruction(vcpu); } if (vmptr == vmx->nested.vmxon_ptr) { nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER); return kvm_skip_emulated_instruction(vcpu); } if (vmx->nested.current_vmptr != vmptr) { struct vmcs12 *new_vmcs12; struct page *page; page = kvm_vcpu_gpa_to_page(vcpu, vmptr); if (is_error_page(page)) { nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } new_vmcs12 = kmap(page); if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || (new_vmcs12->hdr.shadow_vmcs && !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { kunmap(page); kvm_release_page_clean(page); nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); return kvm_skip_emulated_instruction(vcpu); } nested_release_vmcs12(vmx); /* * Load VMCS12 from guest memory since it is not already * cached. */ memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); kunmap(page); kvm_release_page_clean(page); set_current_vmptr(vmx, vmptr); } nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } /* Emulate the VMPTRST instruction */ static int handle_vmptrst(struct kvm_vcpu *vcpu) { unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; struct x86_exception e; gva_t gva; if (!nested_vmx_check_permission(vcpu)) return 1; if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) return 1; /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, sizeof(gpa_t), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } /* Emulate the INVEPT instruction */ static int handle_invept(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmx_instruction_info, types; unsigned long type; gva_t gva; struct x86_exception e; struct { u64 eptp, gpa; } operand; if (!(vmx->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) || !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } if (!nested_vmx_check_permission(vcpu)) return 1; vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; if (type >= 32 || !(types & (1 << type))) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); return kvm_skip_emulated_instruction(vcpu); } /* According to the Intel VMX instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } switch (type) { case VMX_EPT_EXTENT_GLOBAL: /* * TODO: track mappings and invalidate * single context requests appropriately */ case VMX_EPT_EXTENT_CONTEXT: kvm_mmu_sync_roots(vcpu); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); nested_vmx_succeed(vcpu); break; default: BUG_ON(1); break; } return kvm_skip_emulated_instruction(vcpu); } static int handle_invvpid(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmx_instruction_info; unsigned long type, types; gva_t gva; struct x86_exception e; struct { u64 vpid; u64 gla; } operand; if (!(vmx->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_ENABLE_VPID) || !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } if (!nested_vmx_check_permission(vcpu)) return 1; vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); types = (vmx->nested.msrs.vpid_caps & VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; if (type >= 32 || !(types & (1 << type))) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); return kvm_skip_emulated_instruction(vcpu); } /* according to the intel vmx instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } if (operand.vpid >> 16) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); return kvm_skip_emulated_instruction(vcpu); } switch (type) { case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: if (!operand.vpid || is_noncanonical_address(operand.gla, vcpu)) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); return kvm_skip_emulated_instruction(vcpu); } if (cpu_has_vmx_invvpid_individual_addr() && vmx->nested.vpid02) { __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vmx->nested.vpid02, operand.gla); } else __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true); break; case VMX_VPID_EXTENT_SINGLE_CONTEXT: case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: if (!operand.vpid) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); return kvm_skip_emulated_instruction(vcpu); } __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true); break; case VMX_VPID_EXTENT_ALL_CONTEXT: __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true); break; default: WARN_ON_ONCE(1); return kvm_skip_emulated_instruction(vcpu); } nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); } static int handle_invpcid(struct kvm_vcpu *vcpu) { u32 vmx_instruction_info; unsigned long type; bool pcid_enabled; gva_t gva; struct x86_exception e; unsigned i; unsigned long roots_to_free = 0; struct { u64 pcid; u64 gla; } operand; if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); if (type > 3) { kvm_inject_gp(vcpu, 0); return 1; } /* According to the Intel instruction reference, the memory operand * is read even if it isn't needed (e.g., for type==all) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } if (operand.pcid >> 12 != 0) { kvm_inject_gp(vcpu, 0); return 1; } pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); switch (type) { case INVPCID_TYPE_INDIV_ADDR: if ((!pcid_enabled && (operand.pcid != 0)) || is_noncanonical_address(operand.gla, vcpu)) { kvm_inject_gp(vcpu, 0); return 1; } kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); return kvm_skip_emulated_instruction(vcpu); case INVPCID_TYPE_SINGLE_CTXT: if (!pcid_enabled && (operand.pcid != 0)) { kvm_inject_gp(vcpu, 0); return 1; } if (kvm_get_active_pcid(vcpu) == operand.pcid) { kvm_mmu_sync_roots(vcpu); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3) == operand.pcid) roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); kvm_mmu_free_roots(vcpu, roots_to_free); /* * If neither the current cr3 nor any of the prev_roots use the * given PCID, then nothing needs to be done here because a * resync will happen anyway before switching to any other CR3. */ return kvm_skip_emulated_instruction(vcpu); case INVPCID_TYPE_ALL_NON_GLOBAL: /* * Currently, KVM doesn't mark global entries in the shadow * page tables, so a non-global flush just degenerates to a * global flush. If needed, we could optimize this later by * keeping track of global entries in shadow page tables. */ /* fall-through */ case INVPCID_TYPE_ALL_INCL_GLOBAL: kvm_mmu_unload(vcpu); return kvm_skip_emulated_instruction(vcpu); default: BUG(); /* We have already checked above that type <= 3 */ } } static int handle_pml_full(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; trace_kvm_pml_full(vcpu->vcpu_id); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); /* * PML buffer FULL happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); /* * PML buffer already flushed at beginning of VMEXIT. Nothing to do * here.., and there's no userspace involvement needed for PML. */ return 1; } static int handle_preemption_timer(struct kvm_vcpu *vcpu) { if (!to_vmx(vcpu)->req_immediate_exit) kvm_lapic_expired_hv_timer(vcpu); return 1; } static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) { struct vcpu_vmx *vmx = to_vmx(vcpu); int maxphyaddr = cpuid_maxphyaddr(vcpu); /* Check for memory type validity */ switch (address & VMX_EPTP_MT_MASK) { case VMX_EPTP_MT_UC: if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) return false; break; case VMX_EPTP_MT_WB: if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) return false; break; default: return false; } /* only 4 levels page-walk length are valid */ if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) return false; /* Reserved bits should not be set */ if (address >> maxphyaddr || ((address >> 7) & 0x1f)) return false; /* AD, if set, should be supported */ if (address & VMX_EPTP_AD_ENABLE_BIT) { if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) return false; } return true; } static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; u64 address; bool accessed_dirty; struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!nested_cpu_has_eptp_switching(vmcs12) || !nested_cpu_has_ept(vmcs12)) return 1; if (index >= VMFUNC_EPTP_ENTRIES) return 1; if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, &address, index * 8, 8)) return 1; accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); /* * If the (L2) guest does a vmfunc to the currently * active ept pointer, we don't have to do anything else */ if (vmcs12->ept_pointer != address) { if (!valid_ept_address(vcpu, address)) return 1; kvm_mmu_unload(vcpu); mmu->ept_ad = accessed_dirty; mmu->base_role.ad_disabled = !accessed_dirty; vmcs12->ept_pointer = address; /* * TODO: Check what's the correct approach in case * mmu reload fails. Currently, we just let the next * reload potentially fail */ kvm_mmu_reload(vcpu); } return 0; } static int handle_vmfunc(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12; u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; /* * VMFUNC is only supported for nested guests, but we always enable the * secondary control for simplicity; for non-nested mode, fake that we * didn't by injecting #UD. */ if (!is_guest_mode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmcs12 = get_vmcs12(vcpu); if ((vmcs12->vm_function_control & (1 << function)) == 0) goto fail; switch (function) { case 0: if (nested_vmx_eptp_switching(vcpu, vmcs12)) goto fail; break; default: goto fail; } return kvm_skip_emulated_instruction(vcpu); fail: nested_vmx_vmexit(vcpu, vmx->exit_reason, vmcs_read32(VM_EXIT_INTR_INFO), vmcs_readl(EXIT_QUALIFICATION)); return 1; } static int handle_encls(struct kvm_vcpu *vcpu) { /* * SGX virtualization is not yet supported. There is no software * enable bit for SGX, so we have to trap ENCLS and inject a #UD * to prevent the guest from executing ENCLS. */ kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = handle_cpuid, [EXIT_REASON_MSR_READ] = handle_rdmsr, [EXIT_REASON_MSR_WRITE] = handle_wrmsr, [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, [EXIT_REASON_HLT] = handle_halt, [EXIT_REASON_INVD] = handle_invd, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_RDPMC] = handle_rdpmc, [EXIT_REASON_VMCALL] = handle_vmcall, [EXIT_REASON_VMCLEAR] = handle_vmclear, [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, [EXIT_REASON_VMPTRLD] = handle_vmptrld, [EXIT_REASON_VMPTRST] = handle_vmptrst, [EXIT_REASON_VMREAD] = handle_vmread, [EXIT_REASON_VMRESUME] = handle_vmresume, [EXIT_REASON_VMWRITE] = handle_vmwrite, [EXIT_REASON_VMOFF] = handle_vmoff, [EXIT_REASON_VMON] = handle_vmon, [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, [EXIT_REASON_APIC_ACCESS] = handle_apic_access, [EXIT_REASON_APIC_WRITE] = handle_apic_write, [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, [EXIT_REASON_WBINVD] = handle_wbinvd, [EXIT_REASON_XSETBV] = handle_xsetbv, [EXIT_REASON_TASK_SWITCH] = handle_task_switch, [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, [EXIT_REASON_GDTR_IDTR] = handle_desc, [EXIT_REASON_LDTR_TR] = handle_desc, [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, [EXIT_REASON_INVEPT] = handle_invept, [EXIT_REASON_INVVPID] = handle_invvpid, [EXIT_REASON_RDRAND] = handle_invalid_op, [EXIT_REASON_RDSEED] = handle_invalid_op, [EXIT_REASON_XSAVES] = handle_xsaves, [EXIT_REASON_XRSTORS] = handle_xrstors, [EXIT_REASON_PML_FULL] = handle_pml_full, [EXIT_REASON_INVPCID] = handle_invpcid, [EXIT_REASON_VMFUNC] = handle_vmfunc, [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, [EXIT_REASON_ENCLS] = handle_encls, }; static const int kvm_vmx_max_exit_handlers = ARRAY_SIZE(kvm_vmx_exit_handlers); static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { unsigned long exit_qualification; gpa_t bitmap, last_bitmap; unsigned int port; int size; u8 b; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; last_bitmap = (gpa_t)-1; b = -1; while (size > 0) { if (port < 0x8000) bitmap = vmcs12->io_bitmap_a; else if (port < 0x10000) bitmap = vmcs12->io_bitmap_b; else return true; bitmap += (port & 0x7fff) / 8; if (last_bitmap != bitmap) if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) return true; if (b & (1 << (port & 7))) return true; port++; size--; last_bitmap = bitmap; } return false; } /* * Return 1 if we should exit from L2 to L1 to handle an MSR access access, * rather than handle it ourselves in L0. I.e., check whether L1 expressed * disinterest in the current event (read or write a specific MSR) by using an * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. */ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 exit_reason) { u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; gpa_t bitmap; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return true; /* * The MSR_BITMAP page is divided into four 1024-byte bitmaps, * for the four combinations of read/write and low/high MSR numbers. * First we need to figure out which of the four to use: */ bitmap = vmcs12->msr_bitmap; if (exit_reason == EXIT_REASON_MSR_WRITE) bitmap += 2048; if (msr_index >= 0xc0000000) { msr_index -= 0xc0000000; bitmap += 1024; } /* Then read the msr_index'th bit from this bitmap: */ if (msr_index < 1024*8) { unsigned char b; if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) return true; return 1 & (b >> (msr_index & 7)); } else return true; /* let L1 handle the wrong parameter */ } /* * Return 1 if we should exit from L2 to L1 to handle a CR access exit, * rather than handle it ourselves in L0. I.e., check if L1 wanted to * intercept (via guest_host_mask etc.) the current event. */ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int cr = exit_qualification & 15; int reg; unsigned long val; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ reg = (exit_qualification >> 8) & 15; val = kvm_register_readl(vcpu, reg); switch (cr) { case 0: if (vmcs12->cr0_guest_host_mask & (val ^ vmcs12->cr0_read_shadow)) return true; break; case 3: if ((vmcs12->cr3_target_count >= 1 && vmcs12->cr3_target_value0 == val) || (vmcs12->cr3_target_count >= 2 && vmcs12->cr3_target_value1 == val) || (vmcs12->cr3_target_count >= 3 && vmcs12->cr3_target_value2 == val) || (vmcs12->cr3_target_count >= 4 && vmcs12->cr3_target_value3 == val)) return false; if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) return true; break; case 4: if (vmcs12->cr4_guest_host_mask & (vmcs12->cr4_read_shadow ^ val)) return true; break; case 8: if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) return true; break; } break; case 2: /* clts */ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && (vmcs12->cr0_read_shadow & X86_CR0_TS)) return true; break; case 1: /* mov from cr */ switch (cr) { case 3: if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_CR3_STORE_EXITING) return true; break; case 8: if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_CR8_STORE_EXITING) return true; break; } break; case 3: /* lmsw */ /* * lmsw can change bits 1..3 of cr0, and only set bit 0 of * cr0. Other attempted changes are ignored, with no exit. */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; if (vmcs12->cr0_guest_host_mask & 0xe & (val ^ vmcs12->cr0_read_shadow)) return true; if ((vmcs12->cr0_guest_host_mask & 0x1) && !(vmcs12->cr0_read_shadow & 0x1) && (val & 0x1)) return true; break; } return false; } static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, gpa_t bitmap) { u32 vmx_instruction_info; unsigned long field; u8 b; if (!nested_cpu_has_shadow_vmcs(vmcs12)) return true; /* Decode instruction info and find the field to access */ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); /* Out-of-range fields always cause a VM exit from L2 to L1 */ if (field >> 15) return true; if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) return true; return 1 & (b >> (field & 7)); } /* * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we * should handle it ourselves in L0 (and then continue L2). Only call this * when in is_guest_mode (L2). */ static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) { u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (vmx->nested.nested_run_pending) return false; if (unlikely(vmx->fail)) { pr_info_ratelimited("%s failed vm entry %x\n", __func__, vmcs_read32(VM_INSTRUCTION_ERROR)); return true; } /* * The host physical addresses of some pages of guest memory * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC * Page). The CPU may write to these pages via their host * physical address while L2 is running, bypassing any * address-translation-based dirty tracking (e.g. EPT write * protection). * * Mark them dirty on every exit from L2 to prevent them from * getting out of sync with dirty tracking. */ nested_mark_vmcs12_pages_dirty(vcpu); trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, vmcs_readl(EXIT_QUALIFICATION), vmx->idt_vectoring_info, intr_info, vmcs_read32(VM_EXIT_INTR_ERROR_CODE), KVM_ISA_VMX); switch (exit_reason) { case EXIT_REASON_EXCEPTION_NMI: if (is_nmi(intr_info)) return false; else if (is_page_fault(intr_info)) return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; else if (is_no_device(intr_info) && !(vmcs12->guest_cr0 & X86_CR0_TS)) return false; else if (is_debug(intr_info) && vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) return false; else if (is_breakpoint(intr_info) && vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; return vmcs12->exception_bitmap & (1u << (intr_info & INTR_INFO_VECTOR_MASK)); case EXIT_REASON_EXTERNAL_INTERRUPT: return false; case EXIT_REASON_TRIPLE_FAULT: return true; case EXIT_REASON_PENDING_INTERRUPT: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); case EXIT_REASON_NMI_WINDOW: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); case EXIT_REASON_TASK_SWITCH: return true; case EXIT_REASON_CPUID: return true; case EXIT_REASON_HLT: return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); case EXIT_REASON_INVD: return true; case EXIT_REASON_INVLPG: return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); case EXIT_REASON_RDPMC: return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); case EXIT_REASON_RDRAND: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); case EXIT_REASON_RDSEED: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); case EXIT_REASON_VMREAD: return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, vmcs12->vmread_bitmap); case EXIT_REASON_VMWRITE: return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, vmcs12->vmwrite_bitmap); case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: /* * VMX instructions trap unconditionally. This allows L1 to * emulate them for its L2 guest, i.e., allows 3-level nesting! */ return true; case EXIT_REASON_CR_ACCESS: return nested_vmx_exit_handled_cr(vcpu, vmcs12); case EXIT_REASON_DR_ACCESS: return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); case EXIT_REASON_IO_INSTRUCTION: return nested_vmx_exit_handled_io(vcpu, vmcs12); case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); case EXIT_REASON_MSR_READ: case EXIT_REASON_MSR_WRITE: return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); case EXIT_REASON_INVALID_STATE: return true; case EXIT_REASON_MWAIT_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); case EXIT_REASON_MONITOR_TRAP_FLAG: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); case EXIT_REASON_MONITOR_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); case EXIT_REASON_PAUSE_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || nested_cpu_has2(vmcs12, SECONDARY_EXEC_PAUSE_LOOP_EXITING); case EXIT_REASON_MCE_DURING_VMENTRY: return false; case EXIT_REASON_TPR_BELOW_THRESHOLD: return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); case EXIT_REASON_APIC_ACCESS: case EXIT_REASON_APIC_WRITE: case EXIT_REASON_EOI_INDUCED: /* * The controls for "virtualize APIC accesses," "APIC- * register virtualization," and "virtual-interrupt * delivery" only come from vmcs12. */ return true; case EXIT_REASON_EPT_VIOLATION: /* * L0 always deals with the EPT violation. If nested EPT is * used, and the nested mmu code discovers that the address is * missing in the guest EPT table (EPT12), the EPT violation * will be injected with nested_ept_inject_page_fault() */ return false; case EXIT_REASON_EPT_MISCONFIG: /* * L2 never uses directly L1's EPT, but rather L0's own EPT * table (shadow on EPT) or a merged EPT table that L0 built * (EPT on EPT). So any problems with the structure of the * table is L0's fault. */ return false; case EXIT_REASON_INVPCID: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); case EXIT_REASON_WBINVD: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); case EXIT_REASON_XSETBV: return true; case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: /* * This should never happen, since it is not possible to * set XSS to a non-zero value---neither in L1 nor in L2. * If if it were, XSS would have to be checked against * the XSS exit bitmap in vmcs12. */ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); case EXIT_REASON_PREEMPTION_TIMER: return false; case EXIT_REASON_PML_FULL: /* We emulate PML support to L1. */ return false; case EXIT_REASON_VMFUNC: /* VM functions are emulated through L2->L0 vmexits. */ return false; case EXIT_REASON_ENCLS: /* SGX is never exposed to L1 */ return false; default: return true; } } static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason) { u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); /* * At this point, the exit interruption info in exit_intr_info * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT * we need to query the in-kernel LAPIC. */ WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); } nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, vmcs_readl(EXIT_QUALIFICATION)); return 1; } static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) { *info1 = vmcs_readl(EXIT_QUALIFICATION); *info2 = vmcs_read32(VM_EXIT_INTR_INFO); } static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) { if (vmx->pml_pg) { __free_page(vmx->pml_pg); vmx->pml_pg = NULL; } } static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *pml_buf; u16 pml_idx; pml_idx = vmcs_read16(GUEST_PML_INDEX); /* Do nothing if PML buffer is empty */ if (pml_idx == (PML_ENTITY_NUM - 1)) return; /* PML index always points to next available PML buffer entity */ if (pml_idx >= PML_ENTITY_NUM) pml_idx = 0; else pml_idx++; pml_buf = page_address(vmx->pml_pg); for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { u64 gpa; gpa = pml_buf[pml_idx]; WARN_ON(gpa & (PAGE_SIZE - 1)); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } /* reset PML index */ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } /* * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. * Called before reporting dirty_bitmap to userspace. */ static void kvm_flush_pml_buffers(struct kvm *kvm) { int i; struct kvm_vcpu *vcpu; /* * We only need to kick vcpu out of guest mode here, as PML buffer * is flushed at beginning of all VMEXITs, and it's obvious that only * vcpus running in guest are possible to have unflushed GPAs in PML * buffer. */ kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_kick(vcpu); } static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", name, vmcs_read16(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); } static void vmx_dump_dtsel(char *name, uint32_t limit) { pr_err("%s limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(limit), vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); } static void dump_vmcs(void) { u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); u32 secondary_exec_control = 0; unsigned long cr4 = vmcs_readl(GUEST_CR4); u64 efer = vmcs_read64(GUEST_IA32_EFER); int i, n; if (cpu_has_secondary_exec_ctrls()) secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); pr_err("*** Guest State ***\n"); pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), vmcs_readl(CR0_GUEST_HOST_MASK)); pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) { pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); } pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(GUEST_SYSENTER_ESP), vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", efer, vmcs_read64(GUEST_IA32_PAT)); pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", vmcs_read64(GUEST_IA32_DEBUGCTL), vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); if (cpu_has_load_perf_global_ctrl && vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); pr_err("Interruptibility = %08x ActivityState = %08x\n", vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), vmcs_read32(GUEST_ACTIVITY_STATE)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) pr_err("InterruptStatus = %04x\n", vmcs_read16(GUEST_INTR_STATUS)); pr_err("*** Host State ***\n"); pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), vmcs_read16(HOST_TR_SELECTOR)); pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), vmcs_readl(HOST_TR_BASE)); pr_err("GDTBase=%016lx IDTBase=%016lx\n", vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), vmcs_readl(HOST_CR4)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(HOST_IA32_SYSENTER_ESP), vmcs_read32(HOST_IA32_SYSENTER_CS), vmcs_readl(HOST_IA32_SYSENTER_EIP)); if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_EFER), vmcs_read64(HOST_IA32_PAT)); if (cpu_has_load_perf_global_ctrl && vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); pr_err("*** Control State ***\n"); pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", vmcs_read32(EXCEPTION_BITMAP), vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_EXIT_INTR_INFO), vmcs_read32(VM_EXIT_INTR_ERROR_CODE), vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); pr_err(" reason=%08x qualification=%016lx\n", vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); pr_err("IDTVectoring: info=%08x errcode=%08x\n", vmcs_read32(IDT_VECTORING_INFO_FIELD), vmcs_read32(IDT_VECTORING_ERROR_CODE)); pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) pr_err("TSC Multiplier = 0x%016llx\n", vmcs_read64(TSC_MULTIPLIER)); if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); n = vmcs_read32(CR3_TARGET_COUNT); for (i = 0; i + 1 < n; i += 4) pr_err("CR3 target%u=%016lx target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); if (i < n) pr_err("CR3 target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) pr_err("PLE Gap=%08x Window=%08x\n", vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) pr_err("Virtual processor ID = 0x%04x\n", vmcs_read16(VIRTUAL_PROCESSOR_ID)); } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int vmx_handle_exit(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exit_reason = vmx->exit_reason; u32 vectoring_info = vmx->idt_vectoring_info; trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before * querying dirty_bitmap, we only need to kick all vcpus out of guest * mode as if vcpus is in root mode, the PML buffer must has been * flushed already. */ if (enable_pml) vmx_flush_pml_buffer(vcpu); /* If guest state is invalid, start emulating */ if (vmx->emulation_required) return handle_invalid_guest_state(vcpu); if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) return nested_vmx_reflect_vmexit(vcpu, exit_reason); if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { dump_vmcs(); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason; return 0; } if (unlikely(vmx->fail)) { vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = vmcs_read32(VM_INSTRUCTION_ERROR); return 0; } /* * Note: * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by * delivery event since it indicates guest is accessing MMIO. * The vm-exit can be triggered again after return to guest that * will cause infinite loop. */ if ((vectoring_info & VECTORING_INFO_VALID_MASK) && (exit_reason != EXIT_REASON_EXCEPTION_NMI && exit_reason != EXIT_REASON_EPT_VIOLATION && exit_reason != EXIT_REASON_PML_FULL && exit_reason != EXIT_REASON_TASK_SWITCH)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; vcpu->run->internal.ndata = 3; vcpu->run->internal.data[0] = vectoring_info; vcpu->run->internal.data[1] = exit_reason; vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { vcpu->run->internal.ndata++; vcpu->run->internal.data[3] = vmcs_read64(GUEST_PHYSICAL_ADDRESS); } return 0; } if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) { if (vmx_interrupt_allowed(vcpu)) { vmx->loaded_vmcs->soft_vnmi_blocked = 0; } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && vcpu->arch.nmi_pending) { /* * This CPU don't support us in finding the end of an * NMI-blocked window if the guest runs with IRQs * disabled. So we pull the trigger after 1 s of * futile waiting, but inform the user about this. */ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " "state on VCPU %d after 1 s timeout\n", __func__, vcpu->vcpu_id); vmx->loaded_vmcs->soft_vnmi_blocked = 0; } } if (exit_reason < kvm_vmx_max_exit_handlers && kvm_vmx_exit_handlers[exit_reason]) return kvm_vmx_exit_handlers[exit_reason](vcpu); else { vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } } /* * Software based L1D cache flush which is used when microcode providing * the cache control MSR is not loaded. * * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to * flush it is required to read in 64 KiB because the replacement algorithm * is not exactly LRU. This could be sized at runtime via topology * information but as all relevant affected CPUs have 32KiB L1D cache size * there is no point in doing so. */ static void vmx_l1d_flush(struct kvm_vcpu *vcpu) { int size = PAGE_SIZE << L1D_CACHE_ORDER; /* * This code is only executed when the the flush mode is 'cond' or * 'always' */ if (static_branch_likely(&vmx_l1d_flush_cond)) { bool flush_l1d; /* * Clear the per-vcpu flush bit, it gets set again * either from vcpu_run() or from one of the unsafe * VMEXIT handlers. */ flush_l1d = vcpu->arch.l1tf_flush_l1d; vcpu->arch.l1tf_flush_l1d = false; /* * Clear the per-cpu flush bit, it gets set again from * the interrupt handlers. */ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); kvm_clear_cpu_l1tf_flush_l1d(); if (!flush_l1d) return; } vcpu->stat.l1d_flush++; if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); return; } asm volatile( /* First ensure the pages are in the TLB */ "xorl %%eax, %%eax\n" ".Lpopulate_tlb:\n\t" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $4096, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lpopulate_tlb\n\t" "xorl %%eax, %%eax\n\t" "cpuid\n\t" /* Now fill the cache */ "xorl %%eax, %%eax\n" ".Lfill_cache:\n" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $64, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lfill_cache\n\t" "lfence\n" :: [flush_pages] "r" (vmx_l1d_flush_pages), [size] "r" (size) : "eax", "ebx", "ecx", "edx"); } static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (is_guest_mode(vcpu) && nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return; if (irr == -1 || tpr < irr) { vmcs_write32(TPR_THRESHOLD, 0); return; } vmcs_write32(TPR_THRESHOLD, irr); } static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) { u32 sec_exec_control; if (!lapic_in_kernel(vcpu)) return; if (!flexpriority_enabled && !cpu_has_vmx_virtualize_x2apic_mode()) return; /* Postpone execution until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; return; } sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); switch (kvm_get_apic_mode(vcpu)) { case LAPIC_MODE_INVALID: WARN_ONCE(true, "Invalid local APIC state"); case LAPIC_MODE_DISABLED: break; case LAPIC_MODE_XAPIC: if (flexpriority_enabled) { sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; vmx_flush_tlb(vcpu, true); } break; case LAPIC_MODE_X2APIC: if (cpu_has_vmx_virtualize_x2apic_mode()) sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; break; } vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); vmx_update_msr_bitmap(vcpu); } static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) { if (!is_guest_mode(vcpu)) { vmcs_write64(APIC_ACCESS_ADDR, hpa); vmx_flush_tlb(vcpu, true); } } static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) { u16 status; u8 old; if (max_isr == -1) max_isr = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = status >> 8; if (max_isr != old) { status &= 0xff; status |= max_isr << 8; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_set_rvi(int vector) { u16 status; u8 old; if (vector == -1) vector = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = (u8)status & 0xff; if ((u8)vector != old) { status &= ~0xff; status |= (u8)vector; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) { /* * When running L2, updating RVI is only relevant when * vmcs12 virtual-interrupt-delivery enabled. * However, it can be enabled only when L1 also * intercepts external-interrupts and in that case * we should not update vmcs02 RVI but instead intercept * interrupt. Therefore, do nothing when running L2. */ if (!is_guest_mode(vcpu)) vmx_set_rvi(max_irr); } static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; bool max_irr_updated; WARN_ON(!vcpu->arch.apicv_active); if (pi_test_on(&vmx->pi_desc)) { pi_clear_on(&vmx->pi_desc); /* * IOMMU can write to PIR.ON, so the barrier matters even on UP. * But on x86 this is just a compiler barrier anyway. */ smp_mb__after_atomic(); max_irr_updated = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); /* * If we are running L2 and L1 has a new pending interrupt * which can be injected, we should re-evaluate * what should be done with this new L1 interrupt. * If L1 intercepts external-interrupts, we should * exit from L2 to L1. Otherwise, interrupt should be * delivered directly to L2. */ if (is_guest_mode(vcpu) && max_irr_updated) { if (nested_exit_on_intr(vcpu)) kvm_vcpu_exiting_guest_mode(vcpu); else kvm_make_request(KVM_REQ_EVENT, vcpu); } } else { max_irr = kvm_lapic_find_highest_irr(vcpu); } vmx_hwapic_irr_update(vcpu, max_irr); return max_irr; } static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) { u8 rvi = vmx_get_rvi(); u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); return ((rvi & 0xf0) > (vppr & 0xf0)); } static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) { return pi_test_on(vcpu_to_pi_desc(vcpu)); } static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) return; vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); pi_clear_on(&vmx->pi_desc); memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); } static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) { if (vmx->exit_reason != EXIT_REASON_EXCEPTION_NMI) return; vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); /* if exit due to PF check for async PF */ if (is_page_fault(vmx->exit_intr_info)) vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); /* Handle machine checks before interrupts are enabled */ if (is_machine_check(vmx->exit_intr_info)) kvm_machine_check(); /* We need to handle NMIs before interrupts are enabled */ if (is_nmi(vmx->exit_intr_info)) { kvm_before_interrupt(&vmx->vcpu); asm("int $2"); kvm_after_interrupt(&vmx->vcpu); } } static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) { u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { unsigned int vector; unsigned long entry; gate_desc *desc; struct vcpu_vmx *vmx = to_vmx(vcpu); #ifdef CONFIG_X86_64 unsigned long tmp; #endif vector = exit_intr_info & INTR_INFO_VECTOR_MASK; desc = (gate_desc *)vmx->host_idt_base + vector; entry = gate_offset(desc); asm volatile( #ifdef CONFIG_X86_64 "mov %%" _ASM_SP ", %[sp]\n\t" "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" "push $%c[ss]\n\t" "push %[sp]\n\t" #endif "pushf\n\t" __ASM_SIZE(push) " $%c[cs]\n\t" CALL_NOSPEC : #ifdef CONFIG_X86_64 [sp]"=&r"(tmp), #endif ASM_CALL_CONSTRAINT : THUNK_TARGET(entry), [ss]"i"(__KERNEL_DS), [cs]"i"(__KERNEL_CS) ); } } STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); static bool vmx_has_emulated_msr(int index) { switch (index) { case MSR_IA32_SMBASE: /* * We cannot do SMM unless we can run the guest in big * real mode. */ return enable_unrestricted_guest || emulate_invalid_guest_state; case MSR_AMD64_VIRT_SPEC_CTRL: /* This is AMD only. */ return false; default: return true; } } static bool vmx_mpx_supported(void) { return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); } static bool vmx_xsaves_supported(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_XSAVES; } static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) { u32 exit_intr_info; bool unblock_nmi; u8 vector; bool idtv_info_valid; idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; if (enable_vnmi) { if (vmx->loaded_vmcs->nmi_known_unmasked) return; /* * Can't use vmx->exit_intr_info since we're not sure what * the exit reason is. */ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; vector = exit_intr_info & INTR_INFO_VECTOR_MASK; /* * SDM 3: 27.7.1.2 (September 2008) * Re-set bit "block by NMI" before VM entry if vmexit caused by * a guest IRET fault. * SDM 3: 23.2.2 (September 2008) * Bit 12 is undefined in any of the following cases: * If the VM exit sets the valid bit in the IDT-vectoring * information field. * If the VM exit is due to a double fault. */ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && vector != DF_VECTOR && !idtv_info_valid) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmx->loaded_vmcs->nmi_known_unmasked = !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI); } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->vnmi_blocked_time += ktime_to_ns(ktime_sub(ktime_get(), vmx->loaded_vmcs->entry_time)); } static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, u32 idt_vectoring_info, int instr_len_field, int error_code_field) { u8 vector; int type; bool idtv_info_valid; idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!idtv_info_valid) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = true; /* * SDM 3: 27.7.1.2 (September 2008) * Clear bit "block by NMI" before VM entry if a NMI * delivery faulted. */ vmx_set_nmi_mask(vcpu, false); break; case INTR_TYPE_SOFT_EXCEPTION: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_HARD_EXCEPTION: if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { u32 err = vmcs_read32(error_code_field); kvm_requeue_exception_e(vcpu, vector, err); } else kvm_requeue_exception(vcpu, vector); break; case INTR_TYPE_SOFT_INTR: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_EXT_INTR: kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); break; default: break; } } static void vmx_complete_interrupts(struct vcpu_vmx *vmx) { __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_ERROR_CODE); } static void vmx_cancel_injection(struct kvm_vcpu *vcpu) { __vmx_complete_interrupts(vcpu, vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) { int i, nr_msrs; struct perf_guest_switch_msr *msrs; msrs = perf_guest_get_msrs(&nr_msrs); if (!msrs) return; for (i = 0; i < nr_msrs; i++) if (msrs[i].host == msrs[i].guest) clear_atomic_switch_msr(vmx, msrs[i].msr); else add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, msrs[i].host, false); } static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); if (!vmx->loaded_vmcs->hv_timer_armed) vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); vmx->loaded_vmcs->hv_timer_armed = true; } static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl; u32 delta_tsc; if (vmx->req_immediate_exit) { vmx_arm_hv_timer(vmx, 0); return; } if (vmx->hv_deadline_tsc != -1) { tscl = rdtsc(); if (vmx->hv_deadline_tsc > tscl) /* set_hv_timer ensures the delta fits in 32-bits */ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> cpu_preemption_timer_multi); else delta_tsc = 0; vmx_arm_hv_timer(vmx, delta_tsc); return; } if (vmx->loaded_vmcs->hv_timer_armed) vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); vmx->loaded_vmcs->hv_timer_armed = false; } static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long cr3, cr4, evmcs_rsp; /* Record the guest's net vcpu time for enforced NMI injections. */ if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->entry_time = ktime_get(); /* Don't enter VMX if guest state is invalid, let the exit handler start emulation until we arrive back to a valid state */ if (vmx->emulation_required) return; if (vmx->ple_window_dirty) { vmx->ple_window_dirty = false; vmcs_write32(PLE_WINDOW, vmx->ple_window); } if (vmx->nested.sync_shadow_vmcs) { copy_vmcs12_to_shadow(vmx); vmx->nested.sync_shadow_vmcs = false; } if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); cr3 = __get_current_cr3_fast(); if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { vmcs_writel(HOST_CR3, cr3); vmx->loaded_vmcs->host_state.cr3 = cr3; } cr4 = cr4_read_shadow(); if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { vmcs_writel(HOST_CR4, cr4); vmx->loaded_vmcs->host_state.cr4 = cr4; } /* When single-stepping over STI and MOV SS, we must clear the * corresponding interruptibility bits in the guest state. Otherwise * vmentry fails as it then expects bit 14 (BS) in pending debug * exceptions being set, but that's not correct for the guest debugging * case. */ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vmx_set_interrupt_shadow(vcpu, 0); kvm_load_guest_xcr0(vcpu); if (static_cpu_has(X86_FEATURE_PKU) && kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && vcpu->arch.pkru != vmx->host_pkru) __write_pkru(vcpu->arch.pkru); atomic_switch_perf_msrs(vmx); vmx_update_hv_timer(vcpu); /* * If this vCPU has touched SPEC_CTRL, restore the guest's value if * it's non-zero. Since vmentry is serialising on affected CPUs, there * is no need to worry about the conditional branch over the wrmsr * being speculatively taken. */ x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); vmx->__launched = vmx->loaded_vmcs->launched; evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? (unsigned long)¤t_evmcs->host_rsp : 0; /* L1D Flush includes CPU buffer clear to mitigate MDS */ if (static_branch_unlikely(&vmx_l1d_should_flush)) vmx_l1d_flush(vcpu); else if (static_branch_unlikely(&mds_user_clear)) mds_clear_cpu_buffers(); asm( /* Store host registers */ "push %%" _ASM_DX "; push %%" _ASM_BP ";" "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ "push %%" _ASM_CX " \n\t" "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" "je 1f \n\t" "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" /* Avoid VMWRITE when Enlightened VMCS is in use */ "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" "jz 2f \n\t" "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" "jmp 1f \n\t" "2: \n\t" __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" "1: \n\t" /* Reload cr2 if changed */ "mov %c[cr2](%0), %%" _ASM_AX " \n\t" "mov %%cr2, %%" _ASM_DX " \n\t" "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" "je 3f \n\t" "mov %%" _ASM_AX", %%cr2 \n\t" "3: \n\t" /* Check if vmlaunch of vmresume is needed */ "cmpb $0, %c[launched](%0) \n\t" /* Load guest registers. Don't clobber flags. */ "mov %c[rax](%0), %%" _ASM_AX " \n\t" "mov %c[rbx](%0), %%" _ASM_BX " \n\t" "mov %c[rdx](%0), %%" _ASM_DX " \n\t" "mov %c[rsi](%0), %%" _ASM_SI " \n\t" "mov %c[rdi](%0), %%" _ASM_DI " \n\t" "mov %c[rbp](%0), %%" _ASM_BP " \n\t" #ifdef CONFIG_X86_64 "mov %c[r8](%0), %%r8 \n\t" "mov %c[r9](%0), %%r9 \n\t" "mov %c[r10](%0), %%r10 \n\t" "mov %c[r11](%0), %%r11 \n\t" "mov %c[r12](%0), %%r12 \n\t" "mov %c[r13](%0), %%r13 \n\t" "mov %c[r14](%0), %%r14 \n\t" "mov %c[r15](%0), %%r15 \n\t" #endif "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ /* Enter guest mode */ "jne 1f \n\t" __ex(ASM_VMX_VMLAUNCH) "\n\t" "jmp 2f \n\t" "1: " __ex(ASM_VMX_VMRESUME) "\n\t" "2: " /* Save guest registers, load host registers, keep flags */ "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" "pop %0 \n\t" "setbe %c[fail](%0)\n\t" "mov %%" _ASM_AX ", %c[rax](%0) \n\t" "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" __ASM_SIZE(pop) " %c[rcx](%0) \n\t" "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" #ifdef CONFIG_X86_64 "mov %%r8, %c[r8](%0) \n\t" "mov %%r9, %c[r9](%0) \n\t" "mov %%r10, %c[r10](%0) \n\t" "mov %%r11, %c[r11](%0) \n\t" "mov %%r12, %c[r12](%0) \n\t" "mov %%r13, %c[r13](%0) \n\t" "mov %%r14, %c[r14](%0) \n\t" "mov %%r15, %c[r15](%0) \n\t" "xor %%r8d, %%r8d \n\t" "xor %%r9d, %%r9d \n\t" "xor %%r10d, %%r10d \n\t" "xor %%r11d, %%r11d \n\t" "xor %%r12d, %%r12d \n\t" "xor %%r13d, %%r13d \n\t" "xor %%r14d, %%r14d \n\t" "xor %%r15d, %%r15d \n\t" #endif "mov %%cr2, %%" _ASM_AX " \n\t" "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" "xor %%eax, %%eax \n\t" "xor %%ebx, %%ebx \n\t" "xor %%esi, %%esi \n\t" "xor %%edi, %%edi \n\t" "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" ".pushsection .rodata \n\t" ".global vmx_return \n\t" "vmx_return: " _ASM_PTR " 2b \n\t" ".popsection" : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), [launched]"i"(offsetof(struct vcpu_vmx, __launched)), [fail]"i"(offsetof(struct vcpu_vmx, fail)), [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), #ifdef CONFIG_X86_64 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), #endif [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), [wordsize]"i"(sizeof(ulong)) : "cc", "memory" #ifdef CONFIG_X86_64 , "rax", "rbx", "rdi" , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" #else , "eax", "ebx", "edi" #endif ); /* * We do not use IBRS in the kernel. If this vCPU has used the * SPEC_CTRL MSR it may have left it on; save the value and * turn it off. This is much more efficient than blindly adding * it to the atomic save/restore list. Especially as the former * (Saving guest MSRs on vmexit) doesn't even exist in KVM. * * For non-nested case: * If the L01 MSR bitmap does not intercept the MSR, then we need to * save it. * * For nested case: * If the L02 MSR bitmap does not intercept the MSR, then we need to * save it. */ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); /* Eliminate branch target predictions from guest mode */ vmexit_fill_RSB(); /* All fields are clean at this point */ if (static_branch_unlikely(&enable_evmcs)) current_evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ if (vmx->host_debugctlmsr) update_debugctlmsr(vmx->host_debugctlmsr); #ifndef CONFIG_X86_64 /* * The sysexit path does not restore ds/es, so we must set them to * a reasonable value ourselves. * * We can't defer this to vmx_prepare_switch_to_host() since that * function may be executed in interrupt context, which saves and * restore segments around it, nullifying its effect. */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) | (1 << VCPU_EXREG_RFLAGS) | (1 << VCPU_EXREG_PDPTR) | (1 << VCPU_EXREG_SEGMENTS) | (1 << VCPU_EXREG_CR3)); vcpu->arch.regs_dirty = 0; /* * eager fpu is enabled if PKEY is supported and CR4 is switched * back on host, so it is safe to read guest PKRU from current * XSAVE. */ if (static_cpu_has(X86_FEATURE_PKU) && kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { vcpu->arch.pkru = __read_pkru(); if (vcpu->arch.pkru != vmx->host_pkru) __write_pkru(vmx->host_pkru); } kvm_put_guest_xcr0(vcpu); vmx->nested.nested_run_pending = 0; vmx->idt_vectoring_info = 0; vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) kvm_machine_check(); if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) return; vmx->loaded_vmcs->launched = 1; vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); vmx_complete_atomic_exit(vmx); vmx_recover_nmi_blocking(vmx); vmx_complete_interrupts(vmx); } STACK_FRAME_NON_STANDARD(vmx_vcpu_run); static struct kvm *vmx_vm_alloc(void) { struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); return &kvm_vmx->kvm; } static void vmx_vm_free(struct kvm *kvm) { vfree(to_kvm_vmx(kvm)); } static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) { struct vcpu_vmx *vmx = to_vmx(vcpu); int cpu; if (vmx->loaded_vmcs == vmcs) return; cpu = get_cpu(); vmx_vcpu_put(vcpu); vmx->loaded_vmcs = vmcs; vmx_vcpu_load(vcpu, cpu); put_cpu(); } /* * Ensure that the current vmcs of the logical processor is the * vmcs01 of the vcpu before calling free_nested(). */ static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vcpu_load(vcpu); vmx_switch_vmcs(vcpu, &vmx->vmcs01); free_nested(vmx); vcpu_put(vcpu); } static void vmx_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (enable_pml) vmx_destroy_pml_buffer(vmx); free_vpid(vmx->vpid); leave_guest_mode(vcpu); vmx_free_vcpu_nested(vcpu); free_loaded_vmcs(vmx->loaded_vmcs); kfree(vmx->guest_msrs); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vmx); } static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) { int err; struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); unsigned long *msr_bitmap; int cpu; if (!vmx) return ERR_PTR(-ENOMEM); vmx->vpid = allocate_vpid(); err = kvm_vcpu_init(&vmx->vcpu, kvm, id); if (err) goto free_vcpu; err = -ENOMEM; /* * If PML is turned on, failure on enabling PML just results in failure * of creating the vcpu, therefore we can simplify PML logic (by * avoiding dealing with cases, such as enabling PML partially on vcpus * for the guest, etc. */ if (enable_pml) { vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!vmx->pml_pg) goto uninit_vcpu; } vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) > PAGE_SIZE); if (!vmx->guest_msrs) goto free_pml; err = alloc_loaded_vmcs(&vmx->vmcs01); if (err < 0) goto free_msrs; msr_bitmap = vmx->vmcs01.msr_bitmap; vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); vmx->msr_bitmap_mode = 0; vmx->loaded_vmcs = &vmx->vmcs01; cpu = get_cpu(); vmx_vcpu_load(&vmx->vcpu, cpu); vmx->vcpu.cpu = cpu; vmx_vcpu_setup(vmx); vmx_vcpu_put(&vmx->vcpu); put_cpu(); if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { err = alloc_apic_access_page(kvm); if (err) goto free_vmcs; } if (enable_ept && !enable_unrestricted_guest) { err = init_rmode_identity_map(kvm); if (err) goto free_vmcs; } if (nested) nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, kvm_vcpu_apicv_active(&vmx->vcpu)); vmx->nested.posted_intr_nv = -1; vmx->nested.current_vmptr = -1ull; vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; /* * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR * or POSTED_INTR_WAKEUP_VECTOR. */ vmx->pi_desc.nv = POSTED_INTR_VECTOR; vmx->pi_desc.sn = 1; return &vmx->vcpu; free_vmcs: free_loaded_vmcs(vmx->loaded_vmcs); free_msrs: kfree(vmx->guest_msrs); free_pml: vmx_destroy_pml_buffer(vmx); uninit_vcpu: kvm_vcpu_uninit(&vmx->vcpu); free_vcpu: free_vpid(vmx->vpid); kmem_cache_free(kvm_vcpu_cache, vmx); return ERR_PTR(err); } #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" static int vmx_vm_init(struct kvm *kvm) { spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); if (!ple_gap) kvm->arch.pause_in_guest = true; if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: case L1TF_MITIGATION_FLUSH_NOWARN: /* 'I explicitly don't care' is set */ break; case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: case L1TF_MITIGATION_FULL: /* * Warn upon starting the first VM in a potentially * insecure environment. */ if (sched_smt_active()) pr_warn_once(L1TF_MSG_SMT); if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) pr_warn_once(L1TF_MSG_L1D); break; case L1TF_MITIGATION_FULL_FORCE: /* Flush is enforced */ break; } } return 0; } static void __init vmx_check_processor_compat(void *rtn) { struct vmcs_config vmcs_conf; *(int *)rtn = 0; if (setup_vmcs_config(&vmcs_conf) < 0) *(int *)rtn = -EIO; nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv); if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", smp_processor_id()); *(int *)rtn = -EIO; } } static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { u8 cache; u64 ipat = 0; /* For VT-d and EPT combination * 1. MMIO: always map as UC * 2. EPT with VT-d: * a. VT-d without snooping control feature: can't guarantee the * result, try to trust guest. * b. VT-d with snooping control feature: snooping control feature of * VT-d engine can guarantee the cache correctness. Just set it * to WB to keep consistent with host. So the same as item 3. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep * consistent with host MTRR */ if (is_mmio) { cache = MTRR_TYPE_UNCACHABLE; goto exit; } if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { ipat = VMX_EPT_IPAT_BIT; cache = MTRR_TYPE_WRBACK; goto exit; } if (kvm_read_cr0(vcpu) & X86_CR0_CD) { ipat = VMX_EPT_IPAT_BIT; if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cache = MTRR_TYPE_WRBACK; else cache = MTRR_TYPE_UNCACHABLE; goto exit; } cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); exit: return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; } static int vmx_get_lpage_level(void) { if (enable_ept && !cpu_has_vmx_ept_1g_page()) return PT_DIRECTORY_LEVEL; else /* For shadow and EPT supported 1GB page */ return PT_PDPE_LEVEL; } static void vmcs_set_secondary_exec_control(u32 new_ctl) { /* * These bits in the secondary execution controls field * are dynamic, the others are mostly based on the hypervisor * architecture and the guest's CPUID. Do not touch the * dynamic bits. */ u32 mask = SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_DESC; u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, (new_ctl & ~mask) | (cur_ctl & mask)); } /* * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits * (indicating "allowed-1") if they are supported in the guest's CPUID. */ static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *entry; vmx->nested.msrs.cr0_fixed1 = 0xffffffff; vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ if (entry && (entry->_reg & (_cpuid_mask))) \ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ } while (0) entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); #undef cr4_fixed1_update } static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (kvm_mpx_supported()) { bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); if (mpx_enabled) { vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; } else { vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; } } } static void vmx_cpuid_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (cpu_has_secondary_exec_ctrls()) { vmx_compute_secondary_exec_control(vmx); vmcs_set_secondary_exec_control(vmx->secondary_exec_control); } if (nested_vmx_allowed(vcpu)) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (nested_vmx_allowed(vcpu)) { nested_vmx_cr_fixed1_bits_update(vcpu); nested_vmx_entry_exit_ctls_update(vcpu); } } static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) { if (func == 1 && nested) entry->ecx |= bit(X86_FEATURE_VMX); } static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exit_reason; unsigned long exit_qualification = vcpu->arch.exit_qualification; if (vmx->nested.pml_full) { exit_reason = EXIT_REASON_PML_FULL; vmx->nested.pml_full = false; exit_qualification &= INTR_INFO_UNBLOCK_NMI; } else if (fault->error_code & PFERR_RSVD_MASK) exit_reason = EXIT_REASON_EPT_MISCONFIG; else exit_reason = EXIT_REASON_EPT_VIOLATION; nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); vmcs12->guest_physical_address = fault->address; } static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) { return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; } /* Callbacks for nested_ept_init_mmu_context: */ static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) { /* return the page table to be shadowed - in our case, EPT12 */ return get_vmcs12(vcpu)->ept_pointer; } static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) { WARN_ON(mmu_is_nested(vcpu)); if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu))) return 1; kvm_init_shadow_ept_mmu(vcpu, to_vmx(vcpu)->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT, nested_ept_ad_enabled(vcpu), nested_ept_get_cr3(vcpu)); vcpu->arch.mmu.set_cr3 = vmx_set_cr3; vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3; vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault; vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; return 0; } static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) { vcpu->arch.walk_mmu = &vcpu->arch.mmu; } static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, u16 error_code) { bool inequality, bit; bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; inequality = (error_code & vmcs12->page_fault_error_code_mask) != vmcs12->page_fault_error_code_match; return inequality ^ bit; } static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); WARN_ON(!is_guest_mode(vcpu)); if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && !to_vmx(vcpu)->nested.nested_run_pending) { vmcs12->vm_exit_intr_error_code = fault->error_code; nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, fault->address); } else { kvm_inject_page_fault(vcpu, fault); } } static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12); static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); struct page *page; u64 hpa; if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { /* * Translate L1 physical address to host physical * address for vmcs02. Keep the page pinned, so this * physical address remains valid. We keep a reference * to it so we can release it later. */ if (vmx->nested.apic_access_page) { /* shouldn't happen */ kvm_release_page_dirty(vmx->nested.apic_access_page); vmx->nested.apic_access_page = NULL; } page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); /* * If translation failed, no matter: This feature asks * to exit when accessing the given address, and if it * can never be accessed, this feature won't do * anything anyway. */ if (!is_error_page(page)) { vmx->nested.apic_access_page = page; hpa = page_to_phys(vmx->nested.apic_access_page); vmcs_write64(APIC_ACCESS_ADDR, hpa); } else { vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); } } if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ kvm_release_page_dirty(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = NULL; } page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); /* * If translation failed, VM entry will fail because * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. * Failing the vm entry is _not_ what the processor * does but it's basically the only possibility we * have. We could still enter the guest if CR8 load * exits are enabled, CR8 store exits are enabled, and * virtualize APIC access is disabled; in this case * the processor would never use the TPR shadow and we * could simply clear the bit from the execution * control. But such a configuration is useless, so * let's keep the code simple. */ if (!is_error_page(page)) { vmx->nested.virtual_apic_page = page; hpa = page_to_phys(vmx->nested.virtual_apic_page); vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); } } if (nested_cpu_has_posted_intr(vmcs12)) { if (vmx->nested.pi_desc_page) { /* shouldn't happen */ kunmap(vmx->nested.pi_desc_page); kvm_release_page_dirty(vmx->nested.pi_desc_page); vmx->nested.pi_desc_page = NULL; vmx->nested.pi_desc = NULL; vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); } page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); if (is_error_page(page)) return; vmx->nested.pi_desc_page = page; vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); vmx->nested.pi_desc = (struct pi_desc *)((void *)vmx->nested.pi_desc + (unsigned long)(vmcs12->posted_intr_desc_addr & (PAGE_SIZE - 1))); vmcs_write64(POSTED_INTR_DESC_ADDR, page_to_phys(vmx->nested.pi_desc_page) + (unsigned long)(vmcs12->posted_intr_desc_addr & (PAGE_SIZE - 1))); } if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_USE_MSR_BITMAPS); else vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_USE_MSR_BITMAPS); } static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) { u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * A timer value of zero is architecturally guaranteed to cause * a VMExit prior to executing any instructions in the guest. */ if (preemption_timeout == 0) { vmx_preemption_timer_fn(&vmx->nested.preemption_timer); return; } if (vcpu->arch.virtual_tsc_khz == 0) return; preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; preemption_timeout *= 1000000; do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); hrtimer_start(&vmx->nested.preemption_timer, ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); } static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) return 0; if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || !page_address_valid(vcpu, vmcs12->io_bitmap_b)) return -EINVAL; return 0; } static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return 0; if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) return -EINVAL; return 0; } static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return 0; if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) return -EINVAL; return 0; } static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) { int msr; for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { unsigned word = msr / BITS_PER_LONG; msr_bitmap[word] = ~0; msr_bitmap[word + (0x800 / sizeof(long))] = ~0; } } /* * Merge L0's and L1's MSR bitmap, return false to indicate that * we do not use the hardware. */ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { int msr; struct page *page; unsigned long *msr_bitmap_l1; unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; /* * pred_cmd & spec_ctrl are trying to verify two things: * * 1. L0 gave a permission to L1 to actually passthrough the MSR. This * ensures that we do not accidentally generate an L02 MSR bitmap * from the L12 MSR bitmap that is too permissive. * 2. That L1 or L2s have actually used the MSR. This avoids * unnecessarily merging of the bitmap if the MSR is unused. This * works properly because we only update the L01 MSR bitmap lazily. * So even if L0 should pass L1 these MSRs, the L01 bitmap is only * updated to reflect this when L1 (or its L2s) actually write to * the MSR. */ bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); /* Nothing to do if the MSR bitmap is not in use. */ if (!cpu_has_vmx_msr_bitmap() || !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return false; if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && !pred_cmd && !spec_ctrl) return false; page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); if (is_error_page(page)) return false; msr_bitmap_l1 = (unsigned long *)kmap(page); /* * To keep the control flow simple, pay eight 8-byte writes (sixteen * 4-byte writes on 32-bit systems) up front to enable intercepts for * the x2APIC MSR range and selectively disable them below. */ enable_x2apic_msr_intercepts(msr_bitmap_l0); if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { if (nested_cpu_has_apic_reg_virt(vmcs12)) { /* * L0 need not intercept reads for MSRs between 0x800 * and 0x8ff, it just lets the processor take the value * from the virtual-APIC page; take those 256 bits * directly from the L1 bitmap. */ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { unsigned word = msr / BITS_PER_LONG; msr_bitmap_l0[word] = msr_bitmap_l1[word]; } } nested_vmx_disable_intercept_for_msr( msr_bitmap_l1, msr_bitmap_l0, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_R | MSR_TYPE_W); if (nested_cpu_has_vid(vmcs12)) { nested_vmx_disable_intercept_for_msr( msr_bitmap_l1, msr_bitmap_l0, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); nested_vmx_disable_intercept_for_msr( msr_bitmap_l1, msr_bitmap_l0, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); } } if (spec_ctrl) nested_vmx_disable_intercept_for_msr( msr_bitmap_l1, msr_bitmap_l0, MSR_IA32_SPEC_CTRL, MSR_TYPE_R | MSR_TYPE_W); if (pred_cmd) nested_vmx_disable_intercept_for_msr( msr_bitmap_l1, msr_bitmap_l0, MSR_IA32_PRED_CMD, MSR_TYPE_W); kunmap(page); kvm_release_page_clean(page); return true; } static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vmcs12 *shadow; struct page *page; if (!nested_cpu_has_shadow_vmcs(vmcs12) || vmcs12->vmcs_link_pointer == -1ull) return; shadow = get_shadow_vmcs12(vcpu); page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); memcpy(shadow, kmap(page), VMCS12_SIZE); kunmap(page); kvm_release_page_clean(page); } static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!nested_cpu_has_shadow_vmcs(vmcs12) || vmcs12->vmcs_link_pointer == -1ull) return; kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, get_shadow_vmcs12(vcpu), VMCS12_SIZE); } static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && !page_address_valid(vcpu, vmcs12->apic_access_addr)) return -EINVAL; else return 0; } static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && !nested_cpu_has_apic_reg_virt(vmcs12) && !nested_cpu_has_vid(vmcs12) && !nested_cpu_has_posted_intr(vmcs12)) return 0; /* * If virtualize x2apic mode is enabled, * virtualize apic access must be disabled. */ if (nested_cpu_has_virt_x2apic_mode(vmcs12) && nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) return -EINVAL; /* * If virtual interrupt delivery is enabled, * we must exit on external interrupts. */ if (nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)) return -EINVAL; /* * bits 15:8 should be zero in posted_intr_nv, * the descriptor address has been already checked * in nested_get_vmcs12_pages. * * bits 5:0 of posted_intr_desc_addr should be zero. */ if (nested_cpu_has_posted_intr(vmcs12) && (!nested_cpu_has_vid(vmcs12) || !nested_exit_intr_ack_set(vcpu) || (vmcs12->posted_intr_nv & 0xff00) || (vmcs12->posted_intr_desc_addr & 0x3f) || (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) return -EINVAL; /* tpr shadow is needed by all apicv features. */ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return -EINVAL; return 0; } static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, unsigned long count_field, unsigned long addr_field) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); int maxphyaddr; u64 count, addr; if (vmcs12_read_any(vmcs12, count_field, &count) || vmcs12_read_any(vmcs12, addr_field, &addr)) { WARN_ON(1); return -EINVAL; } if (count == 0) return 0; maxphyaddr = cpuid_maxphyaddr(vcpu); if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { pr_debug_ratelimited( "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", addr_field, maxphyaddr, count, addr); return -EINVAL; } return 0; } static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (vmcs12->vm_exit_msr_load_count == 0 && vmcs12->vm_exit_msr_store_count == 0 && vmcs12->vm_entry_msr_load_count == 0) return 0; /* Fast path */ if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, VM_EXIT_MSR_LOAD_ADDR) || nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, VM_EXIT_MSR_STORE_ADDR) || nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, VM_ENTRY_MSR_LOAD_ADDR)) return -EINVAL; return 0; } static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { u64 address = vmcs12->pml_address; int maxphyaddr = cpuid_maxphyaddr(vcpu); if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) { if (!nested_cpu_has_ept(vmcs12) || !IS_ALIGNED(address, 4096) || address >> maxphyaddr) return -EINVAL; } return 0; } static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has_shadow_vmcs(vmcs12)) return 0; if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) return -EINVAL; return 0; } static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { /* x2APIC MSR accesses are not allowed */ if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) return -EINVAL; if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ e->index == MSR_IA32_UCODE_REV) return -EINVAL; if (e->reserved != 0) return -EINVAL; return 0; } static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { if (e->index == MSR_FS_BASE || e->index == MSR_GS_BASE || e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; } static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; } /* * Load guest's/host's msr at nested entry/exit. * return 0 for success, entry index for failure. */ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { u32 i; struct vmx_msr_entry e; struct msr_data msr; msr.host_initiated = false; for (i = 0; i < count; i++) { if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), &e, sizeof(e))) { pr_debug_ratelimited( "%s cannot read MSR entry (%u, 0x%08llx)\n", __func__, i, gpa + i * sizeof(e)); goto fail; } if (nested_vmx_load_msr_check(vcpu, &e)) { pr_debug_ratelimited( "%s check failed (%u, 0x%x, 0x%x)\n", __func__, i, e.index, e.reserved); goto fail; } msr.index = e.index; msr.data = e.value; if (kvm_set_msr(vcpu, &msr)) { pr_debug_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", __func__, i, e.index, e.value); goto fail; } } return 0; fail: return i + 1; } static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { u32 i; struct vmx_msr_entry e; for (i = 0; i < count; i++) { struct msr_data msr_info; if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), &e, 2 * sizeof(u32))) { pr_debug_ratelimited( "%s cannot read MSR entry (%u, 0x%08llx)\n", __func__, i, gpa + i * sizeof(e)); return -EINVAL; } if (nested_vmx_store_msr_check(vcpu, &e)) { pr_debug_ratelimited( "%s check failed (%u, 0x%x, 0x%x)\n", __func__, i, e.index, e.reserved); return -EINVAL; } msr_info.host_initiated = false; msr_info.index = e.index; if (kvm_get_msr(vcpu, &msr_info)) { pr_debug_ratelimited( "%s cannot read MSR (%u, 0x%x)\n", __func__, i, e.index); return -EINVAL; } if (kvm_vcpu_write_guest(vcpu, gpa + i * sizeof(e) + offsetof(struct vmx_msr_entry, value), &msr_info.data, sizeof(msr_info.data))) { pr_debug_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", __func__, i, e.index, msr_info.data); return -EINVAL; } } return 0; } static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) { unsigned long invalid_mask; invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); return (val & invalid_mask) == 0; } /* * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are * emulating VM entry into a guest with EPT enabled. * Returns 0 on success, 1 on failure. Invalid state exit qualification code * is assigned to entry_failure_code on failure. */ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, u32 *entry_failure_code) { if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { if (!nested_cr3_valid(vcpu, cr3)) { *entry_failure_code = ENTRY_FAIL_DEFAULT; return 1; } /* * If PAE paging and EPT are both on, CR3 is not used by the CPU and * must not be dereferenced. */ if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && !nested_ept) { if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { *entry_failure_code = ENTRY_FAIL_PDPTE; return 1; } } } if (!nested_ept) kvm_mmu_new_cr3(vcpu, cr3, false); vcpu->arch.cr3 = cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); kvm_init_mmu(vcpu, false); return 0; } static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, vmcs12->guest_pending_dbg_exceptions); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); if (nested_cpu_has_xsaves(vmcs12)) vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); vmcs_write64(VMCS_LINK_POINTER, -1ull); if (cpu_has_vmx_posted_intr()) vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); /* * Whether page-faults are trapped is determined by a combination of * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. * If enable_ept, L0 doesn't care about page faults and we should * set all of these to L1's desires. However, if !enable_ept, L0 does * care about (at least some) page faults, and because it is not easy * (if at all possible?) to merge L0 and L1's desires, we simply ask * to exit on each and every L2 page fault. This is done by setting * MASK=MATCH=0 and (see below) EB.PF=1. * Note that below we don't need special code to set EB.PF beyond the * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when * !enable_ept, EB.PF is 1, so the "or" will always be 1. */ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, enable_ept ? vmcs12->page_fault_error_code_mask : 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, enable_ept ? vmcs12->page_fault_error_code_match : 0); /* All VMFUNCs are currently emulated through L0 vmexits. */ if (cpu_has_vmx_vmfunc()) vmcs_write64(VM_FUNCTION_CONTROL, 0); if (cpu_has_vmx_apicv()) { vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); } /* * Set host-state according to L0's settings (vmcs12 is irrelevant here) * Some constant fields are set here by vmx_set_constant_host_state(). * Other fields are different per CPU, and will be set later when * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest() * is called. */ vmx_set_constant_host_state(vmx); /* * Set the MSR load/store lists to match L0's settings. */ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); set_cr4_guest_host_mask(vmx); if (kvm_mpx_supported()) { if (vmx->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); else vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); } if (enable_vpid) { if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); else vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); } /* * L1 may access the L2's PDPTR, so save them to construct vmcs12 */ if (enable_ept) { vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); } if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); } /* * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 * guest in a way that will both be appropriate to L1's requests, and our * needs. In addition to modifying the active vmcs (which is vmcs02), this * function also has additional necessary side-effects, like setting various * vcpu->arch fields. * Returns 0 on success, 1 on failure. Invalid state exit qualification code * is assigned to entry_failure_code on failure. */ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 *entry_failure_code) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exec_control, vmcs12_exec_ctrl; if (vmx->nested.dirty_vmcs12) { prepare_vmcs02_full(vcpu, vmcs12); vmx->nested.dirty_vmcs12 = false; } /* * First, the fields that are shadowed. This must be kept in sync * with vmx_shadow_fields.h. */ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); if (vmx->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); } else { kvm_set_dr(vcpu, 7, vcpu->arch.dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); } if (vmx->nested.nested_run_pending) { vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, vmcs12->vm_entry_intr_info_field); vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, vmcs12->vm_entry_exception_error_code); vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmcs12->vm_entry_instruction_len); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, vmcs12->guest_interruptibility_info); vmx->loaded_vmcs->nmi_known_unmasked = !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); } else { vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } vmx_set_rflags(vcpu, vmcs12->guest_rflags); exec_control = vmcs12->pin_based_vm_exec_control; /* Preemption timer setting is computed directly in vmx_vcpu_run. */ exec_control |= vmcs_config.pin_based_exec_ctrl; exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; vmx->loaded_vmcs->hv_timer_armed = false; /* Posted interrupts setting is only taken from vmcs12. */ if (nested_cpu_has_posted_intr(vmcs12)) { vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; vmx->nested.pi_pending = false; } else { exec_control &= ~PIN_BASED_POSTED_INTR; } vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); vmx->nested.preemption_timer_expired = false; if (nested_cpu_has_preemption_timer(vmcs12)) vmx_start_preemption_timer(vcpu); if (cpu_has_secondary_exec_ctrls()) { exec_control = vmx->secondary_exec_control; /* Take the following fields only from vmcs12 */ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_ENABLE_INVPCID | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_XSAVES | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_ENABLE_VMFUNC); if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & ~SECONDARY_EXEC_ENABLE_PML; exec_control |= vmcs12_exec_ctrl; } /* VMCS shadowing for L2 is emulated for now */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) vmcs_write16(GUEST_INTR_STATUS, vmcs12->guest_intr_status); /* * Write an illegal value to APIC_ACCESS_ADDR. Later, * nested_get_vmcs12_pages will either fix it up or * remove the VM execution control. */ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) vmcs_write64(APIC_ACCESS_ADDR, -1ull); if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); } /* * HOST_RSP is normally set correctly in vmx_vcpu_run() just before * entry, but only if the current (host) sp changed from the value * we wrote last (vmx->host_rsp). This cache is no longer relevant * if we switch vmcs, and rather than hold a separate cache per vmcs, * here we just force the write to happen on entry. */ vmx->host_rsp = 0; exec_control = vmx_exec_control(vmx); /* L0's desires */ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; exec_control &= ~CPU_BASED_TPR_SHADOW; exec_control |= vmcs12->cpu_based_vm_exec_control; /* * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if * nested_get_vmcs12_pages can't fix it up, the illegal value * will result in a VM entry failure. */ if (exec_control & CPU_BASED_TPR_SHADOW) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); } else { #ifdef CONFIG_X86_64 exec_control |= CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING; #endif } /* * A vmexit (to either L1 hypervisor or L0 userspace) is always needed * for I/O port accesses. */ exec_control &= ~CPU_BASED_USE_IO_BITMAPS; exec_control |= CPU_BASED_UNCOND_IO_EXITING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the * bitwise-or of what L1 wants to trap for L2, and what we want to * trap. Note that CR0.TS also needs updating - we do this later. */ update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); /* L2->L1 exit controls are emulated - the hardware exit is to L0 so * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER * bits are further modified by vmx_set_efer() below. */ vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are * emulated by vmx_set_efer(), below. */ vm_entry_controls_init(vmx, (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER & ~VM_ENTRY_IA32E_MODE) | (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); if (vmx->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); vcpu->arch.pat = vmcs12->guest_ia32_pat; } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); } vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); if (kvm_has_tsc_control) decache_tsc_multiplier(vmx); if (enable_vpid) { /* * There is no direct mapping between vpid02 and vpid12, the * vpid02 is per-vCPU for L0 and reused while the value of * vpid12 is changed w/ one invvpid during nested vmentry. * The vpid12 is allocated by L1 for L2, so it will not * influence global bitmap(for vpid01 and vpid02 allocation) * even if spawn a lot of nested vCPUs. */ if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) { if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { vmx->nested.last_vpid = vmcs12->virtual_processor_id; __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true); } } else { vmx_flush_tlb(vcpu, true); } } if (enable_pml) { /* * Conceptually we want to copy the PML address and index from * vmcs01 here, and then back to vmcs01 on nested vmexit. But, * since we always flush the log on each vmexit, this happens * to be equivalent to simply resetting the fields in vmcs02. */ ASSERT(vmx->pml_pg); vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } if (nested_cpu_has_ept(vmcs12)) { if (nested_ept_init_mmu_context(vcpu)) { *entry_failure_code = ENTRY_FAIL_DEFAULT; return 1; } } else if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { vmx_flush_tlb(vcpu, true); } /* * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those * bits which we consider mandatory enabled. * The CR0_READ_SHADOW is what L2 should have expected to read given * the specifications by L1; It's not enough to take * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we * have more bits than L1 expected. */ vmx_set_cr0(vcpu, vmcs12->guest_cr0); vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); vmx_set_cr4(vcpu, vmcs12->guest_cr4); vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); if (vmx->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) vcpu->arch.efer = vmcs12->guest_ia32_efer; else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) vcpu->arch.efer |= (EFER_LMA | EFER_LME); else vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ vmx_set_efer(vcpu, vcpu->arch.efer); /* * Guest state is invalid and unrestricted guest is disabled, * which means L1 attempted VMEntry to L2 with invalid state. * Fail the VMEntry. */ if (vmx->emulation_required) { *entry_failure_code = ENTRY_FAIL_DEFAULT; return 1; } /* Shadow page tables on either EPT or shadow page tables. */ if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), entry_failure_code)) return 1; if (!enable_ept) vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); return 0; } static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) { if (!nested_cpu_has_nmi_exiting(vmcs12) && nested_cpu_has_virtual_nmis(vmcs12)) return -EINVAL; if (!nested_cpu_has_virtual_nmis(vmcs12) && nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) return -EINVAL; return 0; } static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_apic_access_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_pml_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, vmx->nested.msrs.procbased_ctls_low, vmx->nested.msrs.procbased_ctls_high) || (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && !vmx_control_verify(vmcs12->secondary_vm_exec_control, vmx->nested.msrs.secondary_ctls_low, vmx->nested.msrs.secondary_ctls_high)) || !vmx_control_verify(vmcs12->pin_based_vm_exec_control, vmx->nested.msrs.pinbased_ctls_low, vmx->nested.msrs.pinbased_ctls_high) || !vmx_control_verify(vmcs12->vm_exit_controls, vmx->nested.msrs.exit_ctls_low, vmx->nested.msrs.exit_ctls_high) || !vmx_control_verify(vmcs12->vm_entry_controls, vmx->nested.msrs.entry_ctls_low, vmx->nested.msrs.entry_ctls_high)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_vmx_check_nmi_controls(vmcs12)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_cpu_has_vmfunc(vmcs12)) { if (vmcs12->vm_function_control & ~vmx->nested.msrs.vmfunc_controls) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (nested_cpu_has_eptp_switching(vmcs12)) { if (!nested_cpu_has_ept(vmcs12) || !page_address_valid(vcpu, vmcs12->eptp_list_address)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; } } if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || !nested_cr3_valid(vcpu, vmcs12->host_cr3)) return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; /* * From the Intel SDM, volume 3: * Fields relevant to VM-entry event injection must be set properly. * These fields are the VM-entry interruption-information field, the * VM-entry exception error code, and the VM-entry instruction length. */ if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { u32 intr_info = vmcs12->vm_entry_intr_info_field; u8 vector = intr_info & INTR_INFO_VECTOR_MASK; u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; bool should_have_error_code; bool urg = nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST); bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; /* VM-entry interruption-info field: interruption type */ if (intr_type == INTR_TYPE_RESERVED || (intr_type == INTR_TYPE_OTHER_EVENT && !nested_cpu_supports_monitor_trap_flag(vcpu))) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; /* VM-entry interruption-info field: vector */ if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; /* VM-entry interruption-info field: deliver error code */ should_have_error_code = intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && x86_exception_has_error_code(vector); if (has_error_code != should_have_error_code) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; /* VM-entry exception error code */ if (has_error_code && vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; /* VM-entry interruption-info field: reserved bits */ if (intr_info & INTR_INFO_RESVD_BITS_MASK) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; /* VM-entry instruction length */ switch (intr_type) { case INTR_TYPE_SOFT_EXCEPTION: case INTR_TYPE_SOFT_INTR: case INTR_TYPE_PRIV_SW_EXCEPTION: if ((vmcs12->vm_entry_instruction_len > 15) || (vmcs12->vm_entry_instruction_len == 0 && !nested_cpu_has_zero_length_injection(vcpu))) return VMXERR_ENTRY_INVALID_CONTROL_FIELD; } } return 0; } static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { int r; struct page *page; struct vmcs12 *shadow; if (vmcs12->vmcs_link_pointer == -1ull) return 0; if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) return -EINVAL; page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); if (is_error_page(page)) return -EINVAL; r = 0; shadow = kmap(page); if (shadow->hdr.revision_id != VMCS12_REVISION || shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) r = -EINVAL; kunmap(page); kvm_release_page_clean(page); return r; } static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 *exit_qual) { bool ia32e; *exit_qual = ENTRY_FAIL_DEFAULT; if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) return 1; if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; return 1; } /* * If the load IA32_EFER VM-entry control is 1, the following checks * are performed on the field for the IA32_EFER MSR: * - Bits reserved in the IA32_EFER MSR must be 0. * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of * the IA-32e mode guest VM-exit control. It must also be identical * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to * CR0.PG) is 1. */ if (to_vmx(vcpu)->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || ((vmcs12->guest_cr0 & X86_CR0_PG) && ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) return 1; } /* * If the load IA32_EFER VM-exit control is 1, bits reserved in the * IA32_EFER MSR must be 0 in the field for that register. In addition, * the values of the LMA and LME bits in the field must each be that of * the host address-space size VM-exit control. */ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { ia32e = (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) return 1; } if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) return 1; return 0; } /* * If exit_qual is NULL, this is being called from state restore (either RSM * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. */ static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); bool from_vmentry = !!exit_qual; u32 dummy_exit_qual; bool evaluate_pending_interrupts; int r = 0; evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); enter_guest_mode(vcpu); if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); if (kvm_mpx_supported() && !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); vmx_segment_cache_clear(vmx); if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) vcpu->arch.tsc_offset += vmcs12->tsc_offset; r = EXIT_REASON_INVALID_STATE; if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual)) goto fail; if (from_vmentry) { nested_get_vmcs12_pages(vcpu); r = EXIT_REASON_MSR_LOAD_FAIL; *exit_qual = nested_vmx_load_msr(vcpu, vmcs12->vm_entry_msr_load_addr, vmcs12->vm_entry_msr_load_count); if (*exit_qual) goto fail; } else { /* * The MMU is not initialized to point at the right entities yet and * "get pages" would need to read data from the guest (i.e. we will * need to perform gpa to hpa translation). Request a call * to nested_get_vmcs12_pages before the next VM-entry. The MSRs * have already been set at vmentry time and should not be reset. */ kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); } /* * If L1 had a pending IRQ/NMI until it executed * VMLAUNCH/VMRESUME which wasn't delivered because it was * disallowed (e.g. interrupts disabled), L0 needs to * evaluate if this pending event should cause an exit from L2 * to L1 or delivered directly to L2 (e.g. In case L1 don't * intercept EXTERNAL_INTERRUPT). * * Usually this would be handled by the processor noticing an * IRQ/NMI window request, or checking RVI during evaluation of * pending virtual interrupts. However, this setting was done * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 * to perform pending event evaluation by requesting a KVM_REQ_EVENT. */ if (unlikely(evaluate_pending_interrupts)) kvm_make_request(KVM_REQ_EVENT, vcpu); /* * Note no nested_vmx_succeed or nested_vmx_fail here. At this point * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet * returned as far as L1 is concerned. It will only return (and set * the success flag) when L2 exits (see nested_vmx_vmexit()). */ return 0; fail: if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) vcpu->arch.tsc_offset -= vmcs12->tsc_offset; leave_guest_mode(vcpu); vmx_switch_vmcs(vcpu, &vmx->vmcs01); return r; } /* * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 * for running an L2 nested guest. */ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) { struct vmcs12 *vmcs12; struct vcpu_vmx *vmx = to_vmx(vcpu); u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); u32 exit_qual; int ret; if (!nested_vmx_check_permission(vcpu)) return 1; if (!nested_vmx_check_vmcs12(vcpu)) goto out; vmcs12 = get_vmcs12(vcpu); /* * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact * that there *is* a valid VMCS pointer, RFLAGS.CF is set * rather than RFLAGS.ZF, and no error number is stored to the * VM-instruction error field. */ if (vmcs12->hdr.shadow_vmcs) { nested_vmx_failInvalid(vcpu); goto out; } if (enable_shadow_vmcs) copy_shadow_to_vmcs12(vmx); /* * The nested entry process starts with enforcing various prerequisites * on vmcs12 as required by the Intel SDM, and act appropriately when * they fail: As the SDM explains, some conditions should cause the * instruction to fail, while others will cause the instruction to seem * to succeed, but return an EXIT_REASON_INVALID_STATE. * To speed up the normal (success) code path, we should avoid checking * for misconfigurations which will anyway be caught by the processor * when using the merged vmcs02. */ if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); goto out; } if (vmcs12->launch_state == launch) { nested_vmx_failValid(vcpu, launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS : VMXERR_VMRESUME_NONLAUNCHED_VMCS); goto out; } ret = check_vmentry_prereqs(vcpu, vmcs12); if (ret) { nested_vmx_failValid(vcpu, ret); goto out; } /* * After this point, the trap flag no longer triggers a singlestep trap * on the vm entry instructions; don't call kvm_skip_emulated_instruction. * This is not 100% correct; for performance reasons, we delegate most * of the checks on host state to the processor. If those fail, * the singlestep trap is missed. */ skip_emulated_instruction(vcpu); ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual); if (ret) { nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_INVALID_STATE, exit_qual); return 1; } /* * We're finally done with prerequisite checking, and can start with * the nested entry. */ vmx->nested.nested_run_pending = 1; ret = enter_vmx_non_root_mode(vcpu, &exit_qual); if (ret) { nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual); vmx->nested.nested_run_pending = 0; return 1; } /* Hide L1D cache contents from the nested guest. */ vmx->vcpu.arch.l1tf_flush_l1d = true; /* * Must happen outside of enter_vmx_non_root_mode() as it will * also be used as part of restoring nVMX state for * snapshot restore (migration). * * In this flow, it is assumed that vmcs12 cache was * trasferred as part of captured nVMX state and should * therefore not be read from guest memory (which may not * exist on destination host yet). */ nested_cache_shadow_vmcs12(vcpu, vmcs12); /* * If we're entering a halted L2 vcpu and the L2 vcpu won't be * awakened by event injection or by an NMI-window VM-exit or * by an interrupt-window VM-exit, halt the vcpu. */ if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) && !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) && (vmcs12->guest_rflags & X86_EFLAGS_IF))) { vmx->nested.nested_run_pending = 0; return kvm_vcpu_halt(vcpu); } return 1; out: return kvm_skip_emulated_instruction(vcpu); } /* * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). * This function returns the new value we should put in vmcs12.guest_cr0. * It's not enough to just return the vmcs02 GUEST_CR0. Rather, * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 * didn't trap the bit, because if L1 did, so would L0). * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have * been modified by L2, and L1 knows it. So just leave the old value of * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 * isn't relevant, because if L0 traps this bit it can set it to anything. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have * changed these bits, and therefore they need to be updated, but L0 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. */ static inline unsigned long vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { return /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | vcpu->arch.cr0_guest_owned_bits)); } static inline unsigned long vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { return /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | vcpu->arch.cr4_guest_owned_bits)); } static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { u32 idt_vectoring; unsigned int nr; if (vcpu->arch.exception.injected) { nr = vcpu->arch.exception.nr; idt_vectoring = nr | VECTORING_INFO_VALID_MASK; if (kvm_exception_is_soft(nr)) { vmcs12->vm_exit_instruction_len = vcpu->arch.event_exit_inst_len; idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; } else idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; if (vcpu->arch.exception.has_error_code) { idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; vmcs12->idt_vectoring_error_code = vcpu->arch.exception.error_code; } vmcs12->idt_vectoring_info_field = idt_vectoring; } else if (vcpu->arch.nmi_injected) { vmcs12->idt_vectoring_info_field = INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; } else if (vcpu->arch.interrupt.injected) { nr = vcpu->arch.interrupt.nr; idt_vectoring = nr | VECTORING_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { idt_vectoring |= INTR_TYPE_SOFT_INTR; vmcs12->vm_entry_instruction_len = vcpu->arch.event_exit_inst_len; } else idt_vectoring |= INTR_TYPE_EXT_INTR; vmcs12->idt_vectoring_info_field = idt_vectoring; } } static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qual; bool block_nested_events = vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); if (vcpu->arch.exception.pending && nested_vmx_check_exception(vcpu, &exit_qual)) { if (block_nested_events) return -EBUSY; nested_vmx_inject_exception_vmexit(vcpu, exit_qual); return 0; } if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && vmx->nested.preemption_timer_expired) { if (block_nested_events) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); return 0; } if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { if (block_nested_events) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, NMI_VECTOR | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK, 0); /* * The NMI-triggered VM exit counts as injection: * clear this one and block further NMIs. */ vcpu->arch.nmi_pending = 0; vmx_set_nmi_mask(vcpu, true); return 0; } if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && nested_exit_on_intr(vcpu)) { if (block_nested_events) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); return 0; } vmx_complete_nested_posted_interrupt(vcpu); return 0; } static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->req_immediate_exit = true; } static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) { ktime_t remaining = hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); u64 value; if (ktime_to_ns(remaining) <= 0) return 0; value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; do_div(value, 1000000); return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; } /* * Update the guest state fields of vmcs12 to reflect changes that * occurred while L2 was running. (The "IA-32e mode guest" bit of the * VM-entry controls is also updated, since this is really a guest * state bit.) */ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); vmcs12->guest_interruptibility_info = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); vmcs12->guest_pending_dbg_exceptions = vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; else vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; if (nested_cpu_has_preemption_timer(vmcs12)) { if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) vmcs12->vmx_preemption_timer_value = vmx_get_preemption_timer_value(vcpu); hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); } /* * In some cases (usually, nested EPT), L2 is allowed to change its * own CR3 without exiting. If it has changed it, we must keep it. * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. * * Additionally, restore L2's PDPTR to vmcs12. */ if (enable_ept) { vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); } vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); if (nested_cpu_has_vid(vmcs12)) vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); vmcs12->vm_entry_controls = (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); } /* TODO: These cannot have changed unless we have MSR bitmaps and * the relevant bit asks not to trap the change */ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) vmcs12->guest_ia32_efer = vcpu->arch.efer; vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); if (kvm_mpx_supported()) vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); } /* * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), * and this function updates it to reflect the changes to the guest state while * L2 was running (and perhaps made some exits which were handled directly by L0 * without going back to L1), and to reflect the exit reason. * Note that we do not have to copy here all VMCS fields, just those that * could have changed by the L2 guest or the exit - i.e., the guest-state and * exit-information fields only. Other fields are modified by L1 with VMWRITE, * which already writes to vmcs12 directly. */ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification) { /* update guest state fields: */ sync_vmcs12(vcpu, vmcs12); /* update exit information fields: */ vmcs12->vm_exit_reason = exit_reason; vmcs12->exit_qualification = exit_qualification; vmcs12->vm_exit_intr_info = exit_intr_info; vmcs12->idt_vectoring_info_field = 0; vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { vmcs12->launch_state = 1; /* vm_entry_intr_info_field is cleared on exit. Emulate this * instead of reading the real value. */ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; /* * Transfer the event that L0 or L1 may wanted to inject into * L2 to IDT_VECTORING_INFO_FIELD. */ vmcs12_save_pending_event(vcpu, vmcs12); } /* * Drop what we picked up for L2 via vmx_complete_interrupts. It is * preserved above and would only end up incorrectly in L1. */ vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); } /* * A part of what we need to when the nested L2 guest exits and we want to * run its L1 parent, is to reset L1's guest state to the host state specified * in vmcs12. * This function is to be called not only on normal nested exit, but also on * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry * Failures During or After Loading Guest State"). * This function should be called when the active VMCS is L1's (vmcs01). */ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct kvm_segment seg; u32 entry_failure_code; if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) vcpu->arch.efer = vmcs12->host_ia32_efer; else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) vcpu->arch.efer |= (EFER_LMA | EFER_LME); else vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); vmx_set_efer(vcpu, vcpu->arch.efer); kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); /* * Note that calling vmx_set_cr0 is important, even if cr0 hasn't * actually changed, because vmx_set_cr0 refers to efer set above. * * CR0_GUEST_HOST_MASK is already set in the original vmcs01 * (KVM doesn't change it); */ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; vmx_set_cr0(vcpu, vmcs12->host_cr0); /* Same as above - no reason to call set_cr4_guest_host_mask(). */ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); vmx_set_cr4(vcpu, vmcs12->host_cr4); nested_ept_uninit_mmu_context(vcpu); /* * Only PDPTE load can fail as the value of cr3 was checked on entry and * couldn't have changed. */ if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); if (!enable_ept) vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; /* * If vmcs01 don't use VPID, CPU flushes TLB on every * VMEntry/VMExit. Thus, no need to flush TLB. * * If vmcs12 uses VPID, TLB entries populated by L2 are * tagged with vmx->nested.vpid02 while L1 entries are tagged * with vmx->vpid. Thus, no need to flush TLB. * * Therefore, flush TLB only in case vmcs01 uses VPID and * vmcs12 don't use VPID as in this case L1 & L2 TLB entries * are both tagged with vmx->vpid. */ if (enable_vpid && !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) { vmx_flush_tlb(vcpu, true); } vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) vmcs_write64(GUEST_BNDCFGS, 0); if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); vcpu->arch.pat = vmcs12->host_ia32_pat; } if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, vmcs12->host_ia32_perf_global_ctrl); /* Set L1 segment info according to Intel SDM 27.5.2 Loading Host Segment and Descriptor-Table Registers */ seg = (struct kvm_segment) { .base = 0, .limit = 0xFFFFFFFF, .selector = vmcs12->host_cs_selector, .type = 11, .present = 1, .s = 1, .g = 1 }; if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) seg.l = 1; else seg.db = 1; vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); seg = (struct kvm_segment) { .base = 0, .limit = 0xFFFFFFFF, .type = 3, .present = 1, .s = 1, .db = 1, .g = 1 }; seg.selector = vmcs12->host_ds_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); seg.selector = vmcs12->host_es_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); seg.selector = vmcs12->host_ss_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); seg.selector = vmcs12->host_fs_selector; seg.base = vmcs12->host_fs_base; vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); seg.selector = vmcs12->host_gs_selector; seg.base = vmcs12->host_gs_base; vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); seg = (struct kvm_segment) { .base = vmcs12->host_tr_base, .limit = 0x67, .selector = vmcs12->host_tr_selector, .type = 11, .present = 1 }; vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); kvm_set_dr(vcpu, 7, 0x400); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(vcpu); if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, vmcs12->vm_exit_msr_load_count)) nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); } static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) { struct shared_msr_entry *efer_msr; unsigned int i; if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) return vmcs_read64(GUEST_IA32_EFER); if (cpu_has_load_ia32_efer) return host_efer; for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) return vmx->msr_autoload.guest.val[i].value; } efer_msr = find_msr_entry(vmx, MSR_EFER); if (efer_msr) return efer_msr->data; return host_efer; } static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_msr_entry g, h; struct msr_data msr; gpa_t gpa; u32 i, j; vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { /* * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set * as vmcs01.GUEST_DR7 contains a userspace defined value * and vcpu->arch.dr7 is not squirreled away before the * nested VMENTER (not worth adding a variable in nested_vmx). */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) kvm_set_dr(vcpu, 7, DR7_FIXED_1); else WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); } /* * Note that calling vmx_set_{efer,cr0,cr4} is important as they * handle a variety of side effects to KVM's software model. */ vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); nested_ept_uninit_mmu_context(vcpu); vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); /* * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs * from vmcs01 (if necessary). The PDPTRs are not loaded on * VMFail, like everything else we just need to ensure our * software model is up-to-date. */ ept_save_pdptrs(vcpu); kvm_mmu_reset_context(vcpu); if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(vcpu); /* * This nasty bit of open coding is a compromise between blindly * loading L1's MSRs using the exit load lists (incorrect emulation * of VMFail), leaving the nested VM's MSRs in the software model * (incorrect behavior) and snapshotting the modified MSRs (too * expensive since the lists are unbound by hardware). For each * MSR that was (prematurely) loaded from the nested VMEntry load * list, reload it from the exit load list if it exists and differs * from the guest value. The intent is to stuff host state as * silently as possible, not to fully process the exit load list. */ msr.host_initiated = false; for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { pr_debug_ratelimited( "%s read MSR index failed (%u, 0x%08llx)\n", __func__, i, gpa); goto vmabort; } for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { pr_debug_ratelimited( "%s read MSR failed (%u, 0x%08llx)\n", __func__, j, gpa); goto vmabort; } if (h.index != g.index) continue; if (h.value == g.value) break; if (nested_vmx_load_msr_check(vcpu, &h)) { pr_debug_ratelimited( "%s check failed (%u, 0x%x, 0x%x)\n", __func__, j, h.index, h.reserved); goto vmabort; } msr.index = h.index; msr.data = h.value; if (kvm_set_msr(vcpu, &msr)) { pr_debug_ratelimited( "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", __func__, j, h.index, h.value); goto vmabort; } } } return; vmabort: nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); } /* * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 * and modify vmcs12 to make it see what it would expect to see there if * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) */ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); /* trying to cancel vmlaunch/vmresume is a bug */ WARN_ON_ONCE(vmx->nested.nested_run_pending); /* * The only expected VM-instruction error is "VM entry with * invalid control field(s)." Anything else indicates a * problem with L0. */ WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) != VMXERR_ENTRY_INVALID_CONTROL_FIELD)); leave_guest_mode(vcpu); if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) vcpu->arch.tsc_offset -= vmcs12->tsc_offset; if (likely(!vmx->fail)) { if (exit_reason == -1) sync_vmcs12(vcpu, vmcs12); else prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, exit_qualification); /* * Must happen outside of sync_vmcs12() as it will * also be used to capture vmcs12 cache as part of * capturing nVMX state for snapshot (migration). * * Otherwise, this flush will dirty guest memory at a * point it is already assumed by user-space to be * immutable. */ nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, vmcs12->vm_exit_msr_store_count)) nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); } vmx_switch_vmcs(vcpu, &vmx->vmcs01); vm_entry_controls_reset_shadow(vmx); vm_exit_controls_reset_shadow(vmx); vmx_segment_cache_clear(vmx); /* Update any VMCS fields that might have changed while L2 ran */ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); if (kvm_has_tsc_control) decache_tsc_multiplier(vmx); if (vmx->nested.change_vmcs01_virtual_apic_mode) { vmx->nested.change_vmcs01_virtual_apic_mode = false; vmx_set_virtual_apic_mode(vcpu); } else if (!nested_cpu_has_ept(vmcs12) && nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { vmx_flush_tlb(vcpu, true); } /* This is needed for same reason as it was needed in prepare_vmcs02 */ vmx->host_rsp = 0; /* Unpin physical memory we referred to in vmcs02 */ if (vmx->nested.apic_access_page) { kvm_release_page_dirty(vmx->nested.apic_access_page); vmx->nested.apic_access_page = NULL; } if (vmx->nested.virtual_apic_page) { kvm_release_page_dirty(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = NULL; } if (vmx->nested.pi_desc_page) { kunmap(vmx->nested.pi_desc_page); kvm_release_page_dirty(vmx->nested.pi_desc_page); vmx->nested.pi_desc_page = NULL; vmx->nested.pi_desc = NULL; } /* * We are now running in L2, mmu_notifier will force to reload the * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. */ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); if (enable_shadow_vmcs && exit_reason != -1) vmx->nested.sync_shadow_vmcs = true; /* in case we halted in L2 */ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; if (likely(!vmx->fail)) { /* * TODO: SDM says that with acknowledge interrupt on * exit, bit 31 of the VM-exit interrupt information * (valid interrupt) is always set to 1 on * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't * need kvm_cpu_has_interrupt(). See the commit * message for details. */ if (nested_exit_intr_ack_set(vcpu) && exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && kvm_cpu_has_interrupt(vcpu)) { int irq = kvm_cpu_get_interrupt(vcpu); WARN_ON(irq < 0); vmcs12->vm_exit_intr_info = irq | INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; } if (exit_reason != -1) trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, vmcs12->exit_qualification, vmcs12->idt_vectoring_info_field, vmcs12->vm_exit_intr_info, vmcs12->vm_exit_intr_error_code, KVM_ISA_VMX); load_vmcs12_host_state(vcpu, vmcs12); return; } /* * After an early L2 VM-entry failure, we're now back * in L1 which thinks it just finished a VMLAUNCH or * VMRESUME instruction, so we need to set the failure * flag and the VM-instruction error field of the VMCS * accordingly. */ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); /* * Restore L1's host state to KVM's software model. We're here * because a consistency check was caught by hardware, which * means some amount of guest state has been propagated to KVM's * model and needs to be unwound to the host's state. */ nested_vmx_restore_host_state(vcpu); /* * The emulated instruction was already skipped in * nested_vmx_run, but the updated RIP was never * written back to the vmcs01. */ skip_emulated_instruction(vcpu); vmx->fail = 0; } /* * Forcibly leave nested mode in order to be able to reset the VCPU later on. */ static void vmx_leave_nested(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) { to_vmx(vcpu)->nested.nested_run_pending = 0; nested_vmx_vmexit(vcpu, -1, 0, 0); } free_nested(to_vmx(vcpu)); } /* * L1's failure to enter L2 is a subset of a normal exit, as explained in * 23.7 "VM-entry failures during or after loading guest state" (this also * lists the acceptable exit-reason and exit-qualification parameters). * It should only be called before L2 actually succeeded to run, and when * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). */ static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 reason, unsigned long qualification) { load_vmcs12_host_state(vcpu, vmcs12); vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; vmcs12->exit_qualification = qualification; nested_vmx_succeed(vcpu); if (enable_shadow_vmcs) to_vmx(vcpu)->nested.sync_shadow_vmcs = true; } static int vmx_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; /* * RDPID causes #UD if disabled through secondary execution controls. * Because it is marked as EmulateOnUD, we need to intercept it here. */ if (info->intercept == x86_intercept_rdtscp && !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { ctxt->exception.vector = UD_VECTOR; ctxt->exception.error_code_valid = false; return X86EMUL_PROPAGATE_FAULT; } /* TODO: check more intercepts... */ return X86EMUL_CONTINUE; } #ifdef CONFIG_X86_64 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ static inline int u64_shl_div_u64(u64 a, unsigned int shift, u64 divisor, u64 *result) { u64 low = a << shift, high = a >> (64 - shift); /* To avoid the overflow on divq */ if (high >= divisor) return 1; /* Low hold the result, high hold rem which is discarded */ asm("divq %2\n\t" : "=a" (low), "=d" (high) : "rm" (divisor), "0" (low), "1" (high)); *result = low; return 0; } static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) { struct vcpu_vmx *vmx; u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; if (kvm_mwait_in_guest(vcpu->kvm)) return -EOPNOTSUPP; vmx = to_vmx(vcpu); tscl = rdtsc(); guest_tscl = kvm_read_l1_tsc(vcpu, tscl); delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); if (delta_tsc > lapic_timer_advance_cycles) delta_tsc -= lapic_timer_advance_cycles; else delta_tsc = 0; /* Convert to host delta tsc if tsc scaling is enabled */ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && u64_shl_div_u64(delta_tsc, kvm_tsc_scaling_ratio_frac_bits, vcpu->arch.tsc_scaling_ratio, &delta_tsc)) return -ERANGE; /* * If the delta tsc can't fit in the 32 bit after the multi shift, * we can't use the preemption timer. * It's possible that it fits on later vmentries, but checking * on every vmentry is costly so we just use an hrtimer. */ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) return -ERANGE; vmx->hv_deadline_tsc = tscl + delta_tsc; return delta_tsc == 0; } static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->hv_deadline_tsc = -1; } #endif static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (!kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); } static void vmx_slot_enable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_leaf_clear_dirty(kvm, slot); kvm_mmu_slot_largepage_remove_write_access(kvm, slot); } static void vmx_slot_disable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_set_dirty(kvm, slot); } static void vmx_flush_log_dirty(struct kvm *kvm) { kvm_flush_pml_buffers(kvm); } static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12; struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t gpa; struct page *page = NULL; u64 *pml_address; if (is_guest_mode(vcpu)) { WARN_ON_ONCE(vmx->nested.pml_full); /* * Check if PML is enabled for the nested guest. * Whether eptp bit 6 is set is already checked * as part of A/D emulation. */ vmcs12 = get_vmcs12(vcpu); if (!nested_cpu_has_pml(vmcs12)) return 0; if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { vmx->nested.pml_full = true; return 1; } gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); if (is_error_page(page)) return 0; pml_address = kmap(page); pml_address[vmcs12->guest_pml_index--] = gpa; kunmap(page); kvm_release_page_clean(page); } return 0; } static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t offset, unsigned long mask) { kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); } static void __pi_post_block(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; do { old.control = new.control = pi_desc->control; WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, "Wakeup handler not enabled while the VCPU is blocked\n"); dest = cpu_physical_id(vcpu->cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* set 'NV' to 'notification vector' */ new.nv = POSTED_INTR_VECTOR; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); list_del(&vcpu->blocked_vcpu_list); spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); vcpu->pre_pcpu = -1; } } /* * This routine does the following things for vCPU which is going * to be blocked if VT-d PI is enabled. * - Store the vCPU to the wakeup list, so when interrupts happen * we can find the right vCPU to wake up. * - Change the Posted-interrupt descriptor as below: * 'NDST' <-- vcpu->pre_pcpu * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR * - If 'ON' is set during this process, which means at least one * interrupt is posted for this vCPU, we cannot block it, in * this case, return 1, otherwise, return 0. * */ static int pi_pre_block(struct kvm_vcpu *vcpu) { unsigned int dest; struct pi_desc old, new; struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(vcpu)) return 0; WARN_ON(irqs_disabled()); local_irq_disable(); if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { vcpu->pre_pcpu = vcpu->cpu; spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); list_add_tail(&vcpu->blocked_vcpu_list, &per_cpu(blocked_vcpu_on_cpu, vcpu->pre_pcpu)); spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); } do { old.control = new.control = pi_desc->control; WARN((pi_desc->sn == 1), "Warning: SN field of posted-interrupts " "is set before blocking\n"); /* * Since vCPU can be preempted during this process, * vcpu->cpu could be different with pre_pcpu, we * need to set pre_pcpu as the destination of wakeup * notification event, then we can find the right vCPU * to wakeup in wakeup handler if interrupts happen * when the vCPU is in blocked state. */ dest = cpu_physical_id(vcpu->pre_pcpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* set 'NV' to 'wakeup vector' */ new.nv = POSTED_INTR_WAKEUP_VECTOR; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); /* We should not block the vCPU if an interrupt is posted for it. */ if (pi_test_on(pi_desc) == 1) __pi_post_block(vcpu); local_irq_enable(); return (vcpu->pre_pcpu == -1); } static int vmx_pre_block(struct kvm_vcpu *vcpu) { if (pi_pre_block(vcpu)) return 1; if (kvm_lapic_hv_timer_in_use(vcpu)) kvm_lapic_switch_to_sw_timer(vcpu); return 0; } static void pi_post_block(struct kvm_vcpu *vcpu) { if (vcpu->pre_pcpu == -1) return; WARN_ON(irqs_disabled()); local_irq_disable(); __pi_post_block(vcpu); local_irq_enable(); } static void vmx_post_block(struct kvm_vcpu *vcpu) { if (kvm_x86_ops->set_hv_timer) kvm_lapic_switch_to_hv_timer(vcpu); pi_post_block(vcpu); } /* * vmx_update_pi_irte - set IRTE for Posted-Interrupts * * @kvm: kvm * @host_irq: host irq of the interrupt * @guest_irq: gsi of the interrupt * @set: set or unset PI * returns 0 on success, < 0 on failure */ static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set) { struct kvm_kernel_irq_routing_entry *e; struct kvm_irq_routing_table *irq_rt; struct kvm_lapic_irq irq; struct kvm_vcpu *vcpu; struct vcpu_data vcpu_info; int idx, ret = 0; if (!kvm_arch_has_assigned_device(kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(kvm->vcpus[0])) return 0; idx = srcu_read_lock(&kvm->irq_srcu); irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); if (guest_irq >= irq_rt->nr_rt_entries || hlist_empty(&irq_rt->map[guest_irq])) { pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", guest_irq, irq_rt->nr_rt_entries); goto out; } hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { if (e->type != KVM_IRQ_ROUTING_MSI) continue; /* * VT-d PI cannot support posting multicast/broadcast * interrupts to a vCPU, we still use interrupt remapping * for these kind of interrupts. * * For lowest-priority interrupts, we only support * those with single CPU as the destination, e.g. user * configures the interrupts via /proc/irq or uses * irqbalance to make the interrupts single-CPU. * * We will support full lowest-priority interrupt later. */ kvm_set_msi_irq(kvm, e, &irq); if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { /* * Make sure the IRTE is in remapped mode if * we don't handle it in posted mode. */ ret = irq_set_vcpu_affinity(host_irq, NULL); if (ret < 0) { printk(KERN_INFO "failed to back to remapped mode, irq: %u\n", host_irq); goto out; } continue; } vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); vcpu_info.vector = irq.vector; trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, vcpu_info.vector, vcpu_info.pi_desc_addr, set); if (set) ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); else ret = irq_set_vcpu_affinity(host_irq, NULL); if (ret < 0) { printk(KERN_INFO "%s: failed to update PI IRTE\n", __func__); goto out; } } ret = 0; out: srcu_read_unlock(&kvm->irq_srcu, idx); return ret; } static void vmx_setup_mce(struct kvm_vcpu *vcpu) { if (vcpu->arch.mcg_cap & MCG_LMCE_P) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_LMCE; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_LMCE; } static int vmx_smi_allowed(struct kvm_vcpu *vcpu) { /* we need a nested vmexit to enter SMM, postpone if run is pending */ if (to_vmx(vcpu)->nested.nested_run_pending) return 0; return 1; } static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmx->nested.smm.guest_mode = is_guest_mode(vcpu); if (vmx->nested.smm.guest_mode) nested_vmx_vmexit(vcpu, -1, 0, 0); vmx->nested.smm.vmxon = vmx->nested.vmxon; vmx->nested.vmxon = false; vmx_clear_hlt(vcpu); return 0; } static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) { struct vcpu_vmx *vmx = to_vmx(vcpu); int ret; if (vmx->nested.smm.vmxon) { vmx->nested.vmxon = true; vmx->nested.smm.vmxon = false; } if (vmx->nested.smm.guest_mode) { vcpu->arch.hflags &= ~HF_SMM_MASK; ret = enter_vmx_non_root_mode(vcpu, NULL); vcpu->arch.hflags |= HF_SMM_MASK; if (ret) return ret; vmx->nested.smm.guest_mode = false; } return 0; } static int enable_smi_window(struct kvm_vcpu *vcpu) { return 0; } static int vmx_get_nested_state(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, u32 user_data_size) { struct vcpu_vmx *vmx; struct vmcs12 *vmcs12; struct kvm_nested_state kvm_state = { .flags = 0, .format = 0, .size = sizeof(kvm_state), .vmx.vmxon_pa = -1ull, .vmx.vmcs_pa = -1ull, }; if (!vcpu) return kvm_state.size + 2 * VMCS12_SIZE; vmx = to_vmx(vcpu); vmcs12 = get_vmcs12(vcpu); if (nested_vmx_allowed(vcpu) && (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; if (vmx->nested.current_vmptr != -1ull) { kvm_state.size += VMCS12_SIZE; if (is_guest_mode(vcpu) && nested_cpu_has_shadow_vmcs(vmcs12) && vmcs12->vmcs_link_pointer != -1ull) kvm_state.size += VMCS12_SIZE; } if (vmx->nested.smm.vmxon) kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; if (vmx->nested.smm.guest_mode) kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; if (is_guest_mode(vcpu)) { kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; if (vmx->nested.nested_run_pending) kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; } } if (user_data_size < kvm_state.size) goto out; if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) return -EFAULT; if (vmx->nested.current_vmptr == -1ull) goto out; /* * When running L2, the authoritative vmcs12 state is in the * vmcs02. When running L1, the authoritative vmcs12 state is * in the shadow vmcs linked to vmcs01, unless * sync_shadow_vmcs is set, in which case, the authoritative * vmcs12 state is in the vmcs12 already. */ if (is_guest_mode(vcpu)) sync_vmcs12(vcpu, vmcs12); else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs) copy_shadow_to_vmcs12(vmx); /* * Copy over the full allocated size of vmcs12 rather than just the size * of the struct. */ if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE)) return -EFAULT; if (nested_cpu_has_shadow_vmcs(vmcs12) && vmcs12->vmcs_link_pointer != -1ull) { if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, get_shadow_vmcs12(vcpu), VMCS12_SIZE)) return -EFAULT; } out: return kvm_state.size; } static int vmx_set_nested_state(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, struct kvm_nested_state *kvm_state) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12; u32 exit_qual; int ret; if (kvm_state->format != 0) return -EINVAL; if (!nested_vmx_allowed(vcpu)) return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; if (kvm_state->vmx.vmxon_pa == -1ull) { if (kvm_state->vmx.smm.flags) return -EINVAL; if (kvm_state->vmx.vmcs_pa != -1ull) return -EINVAL; vmx_leave_nested(vcpu); return 0; } if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) return -EINVAL; if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) return -EINVAL; if (kvm_state->vmx.smm.flags & ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) return -EINVAL; /* * SMM temporarily disables VMX, so we cannot be in guest mode, * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags * must be zero. */ if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) return -EINVAL; if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) return -EINVAL; vmx_leave_nested(vcpu); if (kvm_state->vmx.vmxon_pa == -1ull) return 0; vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; ret = enter_vmx_operation(vcpu); if (ret) return ret; /* Empty 'VMXON' state is permitted */ if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) return 0; if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) return -EINVAL; set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { vmx->nested.smm.vmxon = true; vmx->nested.vmxon = false; if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) vmx->nested.smm.guest_mode = true; } vmcs12 = get_vmcs12(vcpu); if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) return -EFAULT; if (vmcs12->hdr.revision_id != VMCS12_REVISION) return -EINVAL; if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) return 0; vmx->nested.nested_run_pending = !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); if (nested_cpu_has_shadow_vmcs(vmcs12) && vmcs12->vmcs_link_pointer != -1ull) { struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); if (kvm_state->size < sizeof(*kvm_state) + 2 * sizeof(*vmcs12)) return -EINVAL; if (copy_from_user(shadow_vmcs12, user_kvm_nested_state->data + VMCS12_SIZE, sizeof(*vmcs12))) return -EFAULT; if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || !shadow_vmcs12->hdr.shadow_vmcs) return -EINVAL; } if (check_vmentry_prereqs(vcpu, vmcs12) || check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) return -EINVAL; vmx->nested.dirty_vmcs12 = true; ret = enter_vmx_non_root_mode(vcpu, NULL); if (ret) return -EINVAL; return 0; } static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { .cpu_has_kvm_support = cpu_has_kvm_support, .disabled_by_bios = vmx_disabled_by_bios, .hardware_setup = hardware_setup, .hardware_unsetup = hardware_unsetup, .check_processor_compatibility = vmx_check_processor_compat, .hardware_enable = hardware_enable, .hardware_disable = hardware_disable, .cpu_has_accelerated_tpr = report_flexpriority, .has_emulated_msr = vmx_has_emulated_msr, .vm_init = vmx_vm_init, .vm_alloc = vmx_vm_alloc, .vm_free = vmx_vm_free, .vcpu_create = vmx_create_vcpu, .vcpu_free = vmx_free_vcpu, .vcpu_reset = vmx_vcpu_reset, .prepare_guest_switch = vmx_prepare_switch_to_guest, .vcpu_load = vmx_vcpu_load, .vcpu_put = vmx_vcpu_put, .update_bp_intercept = update_exception_bitmap, .get_msr_feature = vmx_get_msr_feature, .get_msr = vmx_get_msr, .set_msr = vmx_set_msr, .get_segment_base = vmx_get_segment_base, .get_segment = vmx_get_segment, .set_segment = vmx_set_segment, .get_cpl = vmx_get_cpl, .get_cs_db_l_bits = vmx_get_cs_db_l_bits, .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, .decache_cr3 = vmx_decache_cr3, .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, .set_cr0 = vmx_set_cr0, .set_cr3 = vmx_set_cr3, .set_cr4 = vmx_set_cr4, .set_efer = vmx_set_efer, .get_idt = vmx_get_idt, .set_idt = vmx_set_idt, .get_gdt = vmx_get_gdt, .set_gdt = vmx_set_gdt, .get_dr6 = vmx_get_dr6, .set_dr6 = vmx_set_dr6, .set_dr7 = vmx_set_dr7, .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, .cache_reg = vmx_cache_reg, .get_rflags = vmx_get_rflags, .set_rflags = vmx_set_rflags, .tlb_flush = vmx_flush_tlb, .tlb_flush_gva = vmx_flush_tlb_gva, .run = vmx_vcpu_run, .handle_exit = vmx_handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .set_interrupt_shadow = vmx_set_interrupt_shadow, .get_interrupt_shadow = vmx_get_interrupt_shadow, .patch_hypercall = vmx_patch_hypercall, .set_irq = vmx_inject_irq, .set_nmi = vmx_inject_nmi, .queue_exception = vmx_queue_exception, .cancel_injection = vmx_cancel_injection, .interrupt_allowed = vmx_interrupt_allowed, .nmi_allowed = vmx_nmi_allowed, .get_nmi_mask = vmx_get_nmi_mask, .set_nmi_mask = vmx_set_nmi_mask, .enable_nmi_window = enable_nmi_window, .enable_irq_window = enable_irq_window, .update_cr8_intercept = update_cr8_intercept, .set_virtual_apic_mode = vmx_set_virtual_apic_mode, .set_apic_access_page_addr = vmx_set_apic_access_page_addr, .get_enable_apicv = vmx_get_enable_apicv, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, .apicv_post_state_restore = vmx_apicv_post_state_restore, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, .sync_pir_to_irr = vmx_sync_pir_to_irr, .deliver_posted_interrupt = vmx_deliver_posted_interrupt, .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt, .set_tss_addr = vmx_set_tss_addr, .set_identity_map_addr = vmx_set_identity_map_addr, .get_tdp_level = get_ept_level, .get_mt_mask = vmx_get_mt_mask, .get_exit_info = vmx_get_exit_info, .get_lpage_level = vmx_get_lpage_level, .cpuid_update = vmx_cpuid_update, .rdtscp_supported = vmx_rdtscp_supported, .invpcid_supported = vmx_invpcid_supported, .set_supported_cpuid = vmx_set_supported_cpuid, .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, .read_l1_tsc_offset = vmx_read_l1_tsc_offset, .write_l1_tsc_offset = vmx_write_l1_tsc_offset, .set_tdp_cr3 = vmx_set_cr3, .check_intercept = vmx_check_intercept, .handle_external_intr = vmx_handle_external_intr, .mpx_supported = vmx_mpx_supported, .xsaves_supported = vmx_xsaves_supported, .umip_emulated = vmx_umip_emulated, .check_nested_events = vmx_check_nested_events, .request_immediate_exit = vmx_request_immediate_exit, .sched_in = vmx_sched_in, .slot_enable_log_dirty = vmx_slot_enable_log_dirty, .slot_disable_log_dirty = vmx_slot_disable_log_dirty, .flush_log_dirty = vmx_flush_log_dirty, .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, .write_log_dirty = vmx_write_pml_buffer, .pre_block = vmx_pre_block, .post_block = vmx_post_block, .pmu_ops = &intel_pmu_ops, .update_pi_irte = vmx_update_pi_irte, #ifdef CONFIG_X86_64 .set_hv_timer = vmx_set_hv_timer, .cancel_hv_timer = vmx_cancel_hv_timer, #endif .setup_mce = vmx_setup_mce, .get_nested_state = vmx_get_nested_state, .set_nested_state = vmx_set_nested_state, .get_vmcs12_pages = nested_get_vmcs12_pages, .smi_allowed = vmx_smi_allowed, .pre_enter_smm = vmx_pre_enter_smm, .pre_leave_smm = vmx_pre_leave_smm, .enable_smi_window = enable_smi_window, }; static void vmx_cleanup_l1d_flush(void) { if (vmx_l1d_flush_pages) { free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); vmx_l1d_flush_pages = NULL; } /* Restore state so sysfs ignores VMX */ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; } static void vmx_exit(void) { #ifdef CONFIG_KEXEC_CORE RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); synchronize_rcu(); #endif kvm_exit(); #if IS_ENABLED(CONFIG_HYPERV) if (static_branch_unlikely(&enable_evmcs)) { int cpu; struct hv_vp_assist_page *vp_ap; /* * Reset everything to support using non-enlightened VMCS * access later (e.g. when we reload the module with * enlightened_vmcs=0) */ for_each_online_cpu(cpu) { vp_ap = hv_get_vp_assist_page(cpu); if (!vp_ap) continue; vp_ap->current_nested_vmcs = 0; vp_ap->enlighten_vmentry = 0; } static_branch_disable(&enable_evmcs); } #endif vmx_cleanup_l1d_flush(); } module_exit(vmx_exit); static int __init vmx_init(void) { int r; #if IS_ENABLED(CONFIG_HYPERV) /* * Enlightened VMCS usage should be recommended and the host needs * to support eVMCS v1 or above. We can also disable eVMCS support * with module parameter. */ if (enlightened_vmcs && ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= KVM_EVMCS_VERSION) { int cpu; /* Check that we have assist pages on all online CPUs */ for_each_online_cpu(cpu) { if (!hv_get_vp_assist_page(cpu)) { enlightened_vmcs = false; break; } } if (enlightened_vmcs) { pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); static_branch_enable(&enable_evmcs); } } else { enlightened_vmcs = false; } #endif r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), THIS_MODULE); if (r) return r; /* * Must be called after kvm_init() so enable_ept is properly set * up. Hand the parameter mitigation value in which was stored in * the pre module init parser. If no parameter was given, it will * contain 'auto' which will be turned into the default 'cond' * mitigation mode. */ if (boot_cpu_has(X86_BUG_L1TF)) { r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); if (r) { vmx_exit(); return r; } } #ifdef CONFIG_KEXEC_CORE rcu_assign_pointer(crash_vmclear_loaded_vmcss, crash_vmclear_local_loaded_vmcss); #endif vmx_check_vmcs12_offsets(); return 0; } module_init(vmx_init);