// SPDX-License-Identifier: GPL-2.0 /* * Dynamic function tracing support. * * Copyright (C) 2007-2008 Steven Rostedt * * Thanks goes to Ingo Molnar, for suggesting the idea. * Mathieu Desnoyers, for suggesting postponing the modifications. * Arjan van de Ven, for keeping me straight, and explaining to me * the dangers of modifying code on the run. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DYNAMIC_FTRACE int ftrace_arch_code_modify_prepare(void) { mutex_lock(&text_mutex); set_kernel_text_rw(); set_all_modules_text_rw(); return 0; } int ftrace_arch_code_modify_post_process(void) { set_all_modules_text_ro(); set_kernel_text_ro(); mutex_unlock(&text_mutex); return 0; } union ftrace_code_union { char code[MCOUNT_INSN_SIZE]; struct { unsigned char op; int offset; } __attribute__((packed)); }; static int ftrace_calc_offset(long ip, long addr) { return (int)(addr - ip); } static unsigned char * ftrace_text_replace(unsigned char op, unsigned long ip, unsigned long addr) { static union ftrace_code_union calc; calc.op = op; calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr); return calc.code; } static unsigned char * ftrace_call_replace(unsigned long ip, unsigned long addr) { return ftrace_text_replace(0xe8, ip, addr); } static inline int within(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr < end; } static unsigned long text_ip_addr(unsigned long ip) { /* * On x86_64, kernel text mappings are mapped read-only, so we use * the kernel identity mapping instead of the kernel text mapping * to modify the kernel text. * * For 32bit kernels, these mappings are same and we can use * kernel identity mapping to modify code. */ if (within(ip, (unsigned long)_text, (unsigned long)_etext)) ip = (unsigned long)__va(__pa_symbol(ip)); return ip; } static const unsigned char *ftrace_nop_replace(void) { return ideal_nops[NOP_ATOMIC5]; } static int ftrace_modify_code_direct(unsigned long ip, unsigned const char *old_code, unsigned const char *new_code) { unsigned char replaced[MCOUNT_INSN_SIZE]; ftrace_expected = old_code; /* * Note: * We are paranoid about modifying text, as if a bug was to happen, it * could cause us to read or write to someplace that could cause harm. * Carefully read and modify the code with probe_kernel_*(), and make * sure what we read is what we expected it to be before modifying it. */ /* read the text we want to modify */ if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE)) return -EFAULT; /* Make sure it is what we expect it to be */ if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0) return -EINVAL; ip = text_ip_addr(ip); /* replace the text with the new text */ if (probe_kernel_write((void *)ip, new_code, MCOUNT_INSN_SIZE)) return -EPERM; sync_core(); return 0; } int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec, unsigned long addr) { unsigned const char *new, *old; unsigned long ip = rec->ip; old = ftrace_call_replace(ip, addr); new = ftrace_nop_replace(); /* * On boot up, and when modules are loaded, the MCOUNT_ADDR * is converted to a nop, and will never become MCOUNT_ADDR * again. This code is either running before SMP (on boot up) * or before the code will ever be executed (module load). * We do not want to use the breakpoint version in this case, * just modify the code directly. */ if (addr == MCOUNT_ADDR) return ftrace_modify_code_direct(rec->ip, old, new); ftrace_expected = NULL; /* Normal cases use add_brk_on_nop */ WARN_ONCE(1, "invalid use of ftrace_make_nop"); return -EINVAL; } int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) { unsigned const char *new, *old; unsigned long ip = rec->ip; old = ftrace_nop_replace(); new = ftrace_call_replace(ip, addr); /* Should only be called when module is loaded */ return ftrace_modify_code_direct(rec->ip, old, new); } /* * The modifying_ftrace_code is used to tell the breakpoint * handler to call ftrace_int3_handler(). If it fails to * call this handler for a breakpoint added by ftrace, then * the kernel may crash. * * As atomic_writes on x86 do not need a barrier, we do not * need to add smp_mb()s for this to work. It is also considered * that we can not read the modifying_ftrace_code before * executing the breakpoint. That would be quite remarkable if * it could do that. Here's the flow that is required: * * CPU-0 CPU-1 * * atomic_inc(mfc); * write int3s * // implicit (r)mb * if (atomic_read(mfc)) * call ftrace_int3_handler() * * Then when we are finished: * * atomic_dec(mfc); * * If we hit a breakpoint that was not set by ftrace, it does not * matter if ftrace_int3_handler() is called or not. It will * simply be ignored. But it is crucial that a ftrace nop/caller * breakpoint is handled. No other user should ever place a * breakpoint on an ftrace nop/caller location. It must only * be done by this code. */ atomic_t modifying_ftrace_code __read_mostly; static int ftrace_modify_code(unsigned long ip, unsigned const char *old_code, unsigned const char *new_code); /* * Should never be called: * As it is only called by __ftrace_replace_code() which is called by * ftrace_replace_code() that x86 overrides, and by ftrace_update_code() * which is called to turn mcount into nops or nops into function calls * but not to convert a function from not using regs to one that uses * regs, which ftrace_modify_call() is for. */ int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr, unsigned long addr) { WARN_ON(1); ftrace_expected = NULL; return -EINVAL; } static unsigned long ftrace_update_func; static unsigned long ftrace_update_func_call; static int update_ftrace_func(unsigned long ip, void *new) { unsigned char old[MCOUNT_INSN_SIZE]; int ret; memcpy(old, (void *)ip, MCOUNT_INSN_SIZE); ftrace_update_func = ip; /* Make sure the breakpoints see the ftrace_update_func update */ smp_wmb(); /* See comment above by declaration of modifying_ftrace_code */ atomic_inc(&modifying_ftrace_code); ret = ftrace_modify_code(ip, old, new); atomic_dec(&modifying_ftrace_code); return ret; } int ftrace_update_ftrace_func(ftrace_func_t func) { unsigned long ip = (unsigned long)(&ftrace_call); unsigned char *new; int ret; ftrace_update_func_call = (unsigned long)func; new = ftrace_call_replace(ip, (unsigned long)func); ret = update_ftrace_func(ip, new); /* Also update the regs callback function */ if (!ret) { ip = (unsigned long)(&ftrace_regs_call); new = ftrace_call_replace(ip, (unsigned long)func); ret = update_ftrace_func(ip, new); } return ret; } static int is_ftrace_caller(unsigned long ip) { if (ip == ftrace_update_func) return 1; return 0; } /* * A breakpoint was added to the code address we are about to * modify, and this is the handle that will just skip over it. * We are either changing a nop into a trace call, or a trace * call to a nop. While the change is taking place, we treat * it just like it was a nop. */ int ftrace_int3_handler(struct pt_regs *regs) { unsigned long ip; if (WARN_ON_ONCE(!regs)) return 0; ip = regs->ip - INT3_INSN_SIZE; #ifdef CONFIG_X86_64 if (ftrace_location(ip)) { int3_emulate_call(regs, (unsigned long)ftrace_regs_caller); return 1; } else if (is_ftrace_caller(ip)) { if (!ftrace_update_func_call) { int3_emulate_jmp(regs, ip + CALL_INSN_SIZE); return 1; } int3_emulate_call(regs, ftrace_update_func_call); return 1; } #else if (ftrace_location(ip) || is_ftrace_caller(ip)) { int3_emulate_jmp(regs, ip + CALL_INSN_SIZE); return 1; } #endif return 0; } static int ftrace_write(unsigned long ip, const char *val, int size) { ip = text_ip_addr(ip); if (probe_kernel_write((void *)ip, val, size)) return -EPERM; return 0; } static int add_break(unsigned long ip, const char *old) { unsigned char replaced[MCOUNT_INSN_SIZE]; unsigned char brk = BREAKPOINT_INSTRUCTION; if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE)) return -EFAULT; ftrace_expected = old; /* Make sure it is what we expect it to be */ if (memcmp(replaced, old, MCOUNT_INSN_SIZE) != 0) return -EINVAL; return ftrace_write(ip, &brk, 1); } static int add_brk_on_call(struct dyn_ftrace *rec, unsigned long addr) { unsigned const char *old; unsigned long ip = rec->ip; old = ftrace_call_replace(ip, addr); return add_break(rec->ip, old); } static int add_brk_on_nop(struct dyn_ftrace *rec) { unsigned const char *old; old = ftrace_nop_replace(); return add_break(rec->ip, old); } static int add_breakpoints(struct dyn_ftrace *rec, int enable) { unsigned long ftrace_addr; int ret; ftrace_addr = ftrace_get_addr_curr(rec); ret = ftrace_test_record(rec, enable); switch (ret) { case FTRACE_UPDATE_IGNORE: return 0; case FTRACE_UPDATE_MAKE_CALL: /* converting nop to call */ return add_brk_on_nop(rec); case FTRACE_UPDATE_MODIFY_CALL: case FTRACE_UPDATE_MAKE_NOP: /* converting a call to a nop */ return add_brk_on_call(rec, ftrace_addr); } return 0; } /* * On error, we need to remove breakpoints. This needs to * be done caefully. If the address does not currently have a * breakpoint, we know we are done. Otherwise, we look at the * remaining 4 bytes of the instruction. If it matches a nop * we replace the breakpoint with the nop. Otherwise we replace * it with the call instruction. */ static int remove_breakpoint(struct dyn_ftrace *rec) { unsigned char ins[MCOUNT_INSN_SIZE]; unsigned char brk = BREAKPOINT_INSTRUCTION; const unsigned char *nop; unsigned long ftrace_addr; unsigned long ip = rec->ip; /* If we fail the read, just give up */ if (probe_kernel_read(ins, (void *)ip, MCOUNT_INSN_SIZE)) return -EFAULT; /* If this does not have a breakpoint, we are done */ if (ins[0] != brk) return 0; nop = ftrace_nop_replace(); /* * If the last 4 bytes of the instruction do not match * a nop, then we assume that this is a call to ftrace_addr. */ if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) != 0) { /* * For extra paranoidism, we check if the breakpoint is on * a call that would actually jump to the ftrace_addr. * If not, don't touch the breakpoint, we make just create * a disaster. */ ftrace_addr = ftrace_get_addr_new(rec); nop = ftrace_call_replace(ip, ftrace_addr); if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) == 0) goto update; /* Check both ftrace_addr and ftrace_old_addr */ ftrace_addr = ftrace_get_addr_curr(rec); nop = ftrace_call_replace(ip, ftrace_addr); ftrace_expected = nop; if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) != 0) return -EINVAL; } update: return ftrace_write(ip, nop, 1); } static int add_update_code(unsigned long ip, unsigned const char *new) { /* skip breakpoint */ ip++; new++; return ftrace_write(ip, new, MCOUNT_INSN_SIZE - 1); } static int add_update_call(struct dyn_ftrace *rec, unsigned long addr) { unsigned long ip = rec->ip; unsigned const char *new; new = ftrace_call_replace(ip, addr); return add_update_code(ip, new); } static int add_update_nop(struct dyn_ftrace *rec) { unsigned long ip = rec->ip; unsigned const char *new; new = ftrace_nop_replace(); return add_update_code(ip, new); } static int add_update(struct dyn_ftrace *rec, int enable) { unsigned long ftrace_addr; int ret; ret = ftrace_test_record(rec, enable); ftrace_addr = ftrace_get_addr_new(rec); switch (ret) { case FTRACE_UPDATE_IGNORE: return 0; case FTRACE_UPDATE_MODIFY_CALL: case FTRACE_UPDATE_MAKE_CALL: /* converting nop to call */ return add_update_call(rec, ftrace_addr); case FTRACE_UPDATE_MAKE_NOP: /* converting a call to a nop */ return add_update_nop(rec); } return 0; } static int finish_update_call(struct dyn_ftrace *rec, unsigned long addr) { unsigned long ip = rec->ip; unsigned const char *new; new = ftrace_call_replace(ip, addr); return ftrace_write(ip, new, 1); } static int finish_update_nop(struct dyn_ftrace *rec) { unsigned long ip = rec->ip; unsigned const char *new; new = ftrace_nop_replace(); return ftrace_write(ip, new, 1); } static int finish_update(struct dyn_ftrace *rec, int enable) { unsigned long ftrace_addr; int ret; ret = ftrace_update_record(rec, enable); ftrace_addr = ftrace_get_addr_new(rec); switch (ret) { case FTRACE_UPDATE_IGNORE: return 0; case FTRACE_UPDATE_MODIFY_CALL: case FTRACE_UPDATE_MAKE_CALL: /* converting nop to call */ return finish_update_call(rec, ftrace_addr); case FTRACE_UPDATE_MAKE_NOP: /* converting a call to a nop */ return finish_update_nop(rec); } return 0; } static void do_sync_core(void *data) { sync_core(); } static void run_sync(void) { int enable_irqs; /* No need to sync if there's only one CPU */ if (num_online_cpus() == 1) return; enable_irqs = irqs_disabled(); /* We may be called with interrupts disabled (on bootup). */ if (enable_irqs) local_irq_enable(); on_each_cpu(do_sync_core, NULL, 1); if (enable_irqs) local_irq_disable(); } void ftrace_replace_code(int enable) { struct ftrace_rec_iter *iter; struct dyn_ftrace *rec; const char *report = "adding breakpoints"; int count = 0; int ret; for_ftrace_rec_iter(iter) { rec = ftrace_rec_iter_record(iter); ret = add_breakpoints(rec, enable); if (ret) goto remove_breakpoints; count++; } run_sync(); report = "updating code"; count = 0; for_ftrace_rec_iter(iter) { rec = ftrace_rec_iter_record(iter); ret = add_update(rec, enable); if (ret) goto remove_breakpoints; count++; } run_sync(); report = "removing breakpoints"; count = 0; for_ftrace_rec_iter(iter) { rec = ftrace_rec_iter_record(iter); ret = finish_update(rec, enable); if (ret) goto remove_breakpoints; count++; } run_sync(); return; remove_breakpoints: pr_warn("Failed on %s (%d):\n", report, count); ftrace_bug(ret, rec); for_ftrace_rec_iter(iter) { rec = ftrace_rec_iter_record(iter); /* * Breakpoints are handled only when this function is in * progress. The system could not work with them. */ if (remove_breakpoint(rec)) BUG(); } run_sync(); } static int ftrace_modify_code(unsigned long ip, unsigned const char *old_code, unsigned const char *new_code) { int ret; ret = add_break(ip, old_code); if (ret) goto out; run_sync(); ret = add_update_code(ip, new_code); if (ret) goto fail_update; run_sync(); ret = ftrace_write(ip, new_code, 1); /* * The breakpoint is handled only when this function is in progress. * The system could not work if we could not remove it. */ BUG_ON(ret); out: run_sync(); return ret; fail_update: /* Also here the system could not work with the breakpoint */ if (ftrace_write(ip, old_code, 1)) BUG(); goto out; } void arch_ftrace_update_code(int command) { /* See comment above by declaration of modifying_ftrace_code */ atomic_inc(&modifying_ftrace_code); ftrace_modify_all_code(command); atomic_dec(&modifying_ftrace_code); } int __init ftrace_dyn_arch_init(void) { return 0; } /* Currently only x86_64 supports dynamic trampolines */ #ifdef CONFIG_X86_64 #ifdef CONFIG_MODULES #include /* Module allocation simplifies allocating memory for code */ static inline void *alloc_tramp(unsigned long size) { return module_alloc(size); } static inline void tramp_free(void *tramp, int size) { int npages = PAGE_ALIGN(size) >> PAGE_SHIFT; set_memory_nx((unsigned long)tramp, npages); set_memory_rw((unsigned long)tramp, npages); module_memfree(tramp); } #else /* Trampolines can only be created if modules are supported */ static inline void *alloc_tramp(unsigned long size) { return NULL; } static inline void tramp_free(void *tramp, int size) { } #endif /* Defined as markers to the end of the ftrace default trampolines */ extern void ftrace_regs_caller_end(void); extern void ftrace_epilogue(void); extern void ftrace_caller_op_ptr(void); extern void ftrace_regs_caller_op_ptr(void); /* movq function_trace_op(%rip), %rdx */ /* 0x48 0x8b 0x15 */ #define OP_REF_SIZE 7 /* * The ftrace_ops is passed to the function callback. Since the * trampoline only services a single ftrace_ops, we can pass in * that ops directly. * * The ftrace_op_code_union is used to create a pointer to the * ftrace_ops that will be passed to the callback function. */ union ftrace_op_code_union { char code[OP_REF_SIZE]; struct { char op[3]; int offset; } __attribute__((packed)); }; #define RET_SIZE 1 static unsigned long create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size) { unsigned long start_offset; unsigned long end_offset; unsigned long op_offset; unsigned long offset; unsigned long npages; unsigned long size; unsigned long retq; unsigned long *ptr; void *trampoline; void *ip; /* 48 8b 15 is movq (%rip), %rdx */ unsigned const char op_ref[] = { 0x48, 0x8b, 0x15 }; union ftrace_op_code_union op_ptr; int ret; if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { start_offset = (unsigned long)ftrace_regs_caller; end_offset = (unsigned long)ftrace_regs_caller_end; op_offset = (unsigned long)ftrace_regs_caller_op_ptr; } else { start_offset = (unsigned long)ftrace_caller; end_offset = (unsigned long)ftrace_epilogue; op_offset = (unsigned long)ftrace_caller_op_ptr; } size = end_offset - start_offset; /* * Allocate enough size to store the ftrace_caller code, * the iret , as well as the address of the ftrace_ops this * trampoline is used for. */ trampoline = alloc_tramp(size + RET_SIZE + sizeof(void *)); if (!trampoline) return 0; *tramp_size = size + RET_SIZE + sizeof(void *); npages = DIV_ROUND_UP(*tramp_size, PAGE_SIZE); /* Copy ftrace_caller onto the trampoline memory */ ret = probe_kernel_read(trampoline, (void *)start_offset, size); if (WARN_ON(ret < 0)) goto fail; ip = trampoline + size; /* The trampoline ends with ret(q) */ retq = (unsigned long)ftrace_stub; ret = probe_kernel_read(ip, (void *)retq, RET_SIZE); if (WARN_ON(ret < 0)) goto fail; /* * The address of the ftrace_ops that is used for this trampoline * is stored at the end of the trampoline. This will be used to * load the third parameter for the callback. Basically, that * location at the end of the trampoline takes the place of * the global function_trace_op variable. */ ptr = (unsigned long *)(trampoline + size + RET_SIZE); *ptr = (unsigned long)ops; op_offset -= start_offset; memcpy(&op_ptr, trampoline + op_offset, OP_REF_SIZE); /* Are we pointing to the reference? */ if (WARN_ON(memcmp(op_ptr.op, op_ref, 3) != 0)) goto fail; /* Load the contents of ptr into the callback parameter */ offset = (unsigned long)ptr; offset -= (unsigned long)trampoline + op_offset + OP_REF_SIZE; op_ptr.offset = offset; /* put in the new offset to the ftrace_ops */ memcpy(trampoline + op_offset, &op_ptr, OP_REF_SIZE); /* ALLOC_TRAMP flags lets us know we created it */ ops->flags |= FTRACE_OPS_FL_ALLOC_TRAMP; /* * Module allocation needs to be completed by making the page * executable. The page is still writable, which is a security hazard, * but anyhow ftrace breaks W^X completely. */ set_memory_x((unsigned long)trampoline, npages); return (unsigned long)trampoline; fail: tramp_free(trampoline, *tramp_size); return 0; } static unsigned long calc_trampoline_call_offset(bool save_regs) { unsigned long start_offset; unsigned long call_offset; if (save_regs) { start_offset = (unsigned long)ftrace_regs_caller; call_offset = (unsigned long)ftrace_regs_call; } else { start_offset = (unsigned long)ftrace_caller; call_offset = (unsigned long)ftrace_call; } return call_offset - start_offset; } void arch_ftrace_update_trampoline(struct ftrace_ops *ops) { ftrace_func_t func; unsigned char *new; unsigned long offset; unsigned long ip; unsigned int size; int ret, npages; if (ops->trampoline) { /* * The ftrace_ops caller may set up its own trampoline. * In such a case, this code must not modify it. */ if (!(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) return; npages = PAGE_ALIGN(ops->trampoline_size) >> PAGE_SHIFT; set_memory_rw(ops->trampoline, npages); } else { ops->trampoline = create_trampoline(ops, &size); if (!ops->trampoline) return; ops->trampoline_size = size; npages = PAGE_ALIGN(size) >> PAGE_SHIFT; } offset = calc_trampoline_call_offset(ops->flags & FTRACE_OPS_FL_SAVE_REGS); ip = ops->trampoline + offset; func = ftrace_ops_get_func(ops); ftrace_update_func_call = (unsigned long)func; /* Do a safe modify in case the trampoline is executing */ new = ftrace_call_replace(ip, (unsigned long)func); ret = update_ftrace_func(ip, new); set_memory_ro(ops->trampoline, npages); /* The update should never fail */ WARN_ON(ret); } /* Return the address of the function the trampoline calls */ static void *addr_from_call(void *ptr) { union ftrace_code_union calc; int ret; ret = probe_kernel_read(&calc, ptr, MCOUNT_INSN_SIZE); if (WARN_ON_ONCE(ret < 0)) return NULL; /* Make sure this is a call */ if (WARN_ON_ONCE(calc.op != 0xe8)) { pr_warn("Expected e8, got %x\n", calc.op); return NULL; } return ptr + MCOUNT_INSN_SIZE + calc.offset; } void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent, unsigned long frame_pointer); /* * If the ops->trampoline was not allocated, then it probably * has a static trampoline func, or is the ftrace caller itself. */ static void *static_tramp_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) { unsigned long offset; bool save_regs = rec->flags & FTRACE_FL_REGS_EN; void *ptr; if (ops && ops->trampoline) { #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* * We only know about function graph tracer setting as static * trampoline. */ if (ops->trampoline == FTRACE_GRAPH_ADDR) return (void *)prepare_ftrace_return; #endif return NULL; } offset = calc_trampoline_call_offset(save_regs); if (save_regs) ptr = (void *)FTRACE_REGS_ADDR + offset; else ptr = (void *)FTRACE_ADDR + offset; return addr_from_call(ptr); } void *arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) { unsigned long offset; /* If we didn't allocate this trampoline, consider it static */ if (!ops || !(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) return static_tramp_func(ops, rec); offset = calc_trampoline_call_offset(ops->flags & FTRACE_OPS_FL_SAVE_REGS); return addr_from_call((void *)ops->trampoline + offset); } void arch_ftrace_trampoline_free(struct ftrace_ops *ops) { if (!ops || !(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) return; tramp_free((void *)ops->trampoline, ops->trampoline_size); ops->trampoline = 0; } #endif /* CONFIG_X86_64 */ #endif /* CONFIG_DYNAMIC_FTRACE */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER #ifdef CONFIG_DYNAMIC_FTRACE extern void ftrace_graph_call(void); static unsigned char *ftrace_jmp_replace(unsigned long ip, unsigned long addr) { return ftrace_text_replace(0xe9, ip, addr); } static int ftrace_mod_jmp(unsigned long ip, void *func) { unsigned char *new; ftrace_update_func_call = 0UL; new = ftrace_jmp_replace(ip, (unsigned long)func); return update_ftrace_func(ip, new); } int ftrace_enable_ftrace_graph_caller(void) { unsigned long ip = (unsigned long)(&ftrace_graph_call); return ftrace_mod_jmp(ip, &ftrace_graph_caller); } int ftrace_disable_ftrace_graph_caller(void) { unsigned long ip = (unsigned long)(&ftrace_graph_call); return ftrace_mod_jmp(ip, &ftrace_stub); } #endif /* !CONFIG_DYNAMIC_FTRACE */ /* * Hook the return address and push it in the stack of return addrs * in current thread info. */ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent, unsigned long frame_pointer) { unsigned long old; int faulted; unsigned long return_hooker = (unsigned long) &return_to_handler; /* * When resuming from suspend-to-ram, this function can be indirectly * called from early CPU startup code while the CPU is in real mode, * which would fail miserably. Make sure the stack pointer is a * virtual address. * * This check isn't as accurate as virt_addr_valid(), but it should be * good enough for this purpose, and it's fast. */ if (unlikely((long)__builtin_frame_address(0) >= 0)) return; if (unlikely(ftrace_graph_is_dead())) return; if (unlikely(atomic_read(¤t->tracing_graph_pause))) return; /* * Protect against fault, even if it shouldn't * happen. This tool is too much intrusive to * ignore such a protection. */ asm volatile( "1: " _ASM_MOV " (%[parent]), %[old]\n" "2: " _ASM_MOV " %[return_hooker], (%[parent])\n" " movl $0, %[faulted]\n" "3:\n" ".section .fixup, \"ax\"\n" "4: movl $1, %[faulted]\n" " jmp 3b\n" ".previous\n" _ASM_EXTABLE(1b, 4b) _ASM_EXTABLE(2b, 4b) : [old] "=&r" (old), [faulted] "=r" (faulted) : [parent] "r" (parent), [return_hooker] "r" (return_hooker) : "memory" ); if (unlikely(faulted)) { ftrace_graph_stop(); WARN_ON(1); return; } if (function_graph_enter(old, self_addr, frame_pointer, parent)) *parent = old; } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */