/* * Support for dynamic reconfiguration for PCI, Memory, and CPU * Hotplug and Dynamic Logical Partitioning on RPA platforms. * * Copyright (C) 2009 Nathan Fontenot * Copyright (C) 2009 IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. */ #define pr_fmt(fmt) "dlpar: " fmt #include #include #include #include #include #include #include "of_helpers.h" #include "pseries.h" #include #include #include #include static struct workqueue_struct *pseries_hp_wq; struct pseries_hp_work { struct work_struct work; struct pseries_hp_errorlog *errlog; struct completion *hp_completion; int *rc; }; struct cc_workarea { __be32 drc_index; __be32 zero; __be32 name_offset; __be32 prop_length; __be32 prop_offset; }; void dlpar_free_cc_property(struct property *prop) { kfree(prop->name); kfree(prop->value); kfree(prop); } static struct property *dlpar_parse_cc_property(struct cc_workarea *ccwa) { struct property *prop; char *name; char *value; prop = kzalloc(sizeof(*prop), GFP_KERNEL); if (!prop) return NULL; name = (char *)ccwa + be32_to_cpu(ccwa->name_offset); prop->name = kstrdup(name, GFP_KERNEL); prop->length = be32_to_cpu(ccwa->prop_length); value = (char *)ccwa + be32_to_cpu(ccwa->prop_offset); prop->value = kmemdup(value, prop->length, GFP_KERNEL); if (!prop->value) { dlpar_free_cc_property(prop); return NULL; } return prop; } static struct device_node *dlpar_parse_cc_node(struct cc_workarea *ccwa) { struct device_node *dn; const char *name; dn = kzalloc(sizeof(*dn), GFP_KERNEL); if (!dn) return NULL; name = (const char *)ccwa + be32_to_cpu(ccwa->name_offset); dn->full_name = kstrdup(name, GFP_KERNEL); if (!dn->full_name) { kfree(dn); return NULL; } of_node_set_flag(dn, OF_DYNAMIC); of_node_init(dn); return dn; } static void dlpar_free_one_cc_node(struct device_node *dn) { struct property *prop; while (dn->properties) { prop = dn->properties; dn->properties = prop->next; dlpar_free_cc_property(prop); } kfree(dn->full_name); kfree(dn); } void dlpar_free_cc_nodes(struct device_node *dn) { if (dn->child) dlpar_free_cc_nodes(dn->child); if (dn->sibling) dlpar_free_cc_nodes(dn->sibling); dlpar_free_one_cc_node(dn); } #define COMPLETE 0 #define NEXT_SIBLING 1 #define NEXT_CHILD 2 #define NEXT_PROPERTY 3 #define PREV_PARENT 4 #define MORE_MEMORY 5 #define CALL_AGAIN -2 #define ERR_CFG_USE -9003 struct device_node *dlpar_configure_connector(__be32 drc_index, struct device_node *parent) { struct device_node *dn; struct device_node *first_dn = NULL; struct device_node *last_dn = NULL; struct property *property; struct property *last_property = NULL; struct cc_workarea *ccwa; char *data_buf; int cc_token; int rc = -1; cc_token = rtas_token("ibm,configure-connector"); if (cc_token == RTAS_UNKNOWN_SERVICE) return NULL; data_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); if (!data_buf) return NULL; ccwa = (struct cc_workarea *)&data_buf[0]; ccwa->drc_index = drc_index; ccwa->zero = 0; do { /* Since we release the rtas_data_buf lock between configure * connector calls we want to re-populate the rtas_data_buffer * with the contents of the previous call. */ spin_lock(&rtas_data_buf_lock); memcpy(rtas_data_buf, data_buf, RTAS_DATA_BUF_SIZE); rc = rtas_call(cc_token, 2, 1, NULL, rtas_data_buf, NULL); memcpy(data_buf, rtas_data_buf, RTAS_DATA_BUF_SIZE); spin_unlock(&rtas_data_buf_lock); switch (rc) { case COMPLETE: break; case NEXT_SIBLING: dn = dlpar_parse_cc_node(ccwa); if (!dn) goto cc_error; dn->parent = last_dn->parent; last_dn->sibling = dn; last_dn = dn; break; case NEXT_CHILD: dn = dlpar_parse_cc_node(ccwa); if (!dn) goto cc_error; if (!first_dn) { dn->parent = parent; first_dn = dn; } else { dn->parent = last_dn; if (last_dn) last_dn->child = dn; } last_dn = dn; break; case NEXT_PROPERTY: property = dlpar_parse_cc_property(ccwa); if (!property) goto cc_error; if (!last_dn->properties) last_dn->properties = property; else last_property->next = property; last_property = property; break; case PREV_PARENT: last_dn = last_dn->parent; break; case CALL_AGAIN: break; case MORE_MEMORY: case ERR_CFG_USE: default: printk(KERN_ERR "Unexpected Error (%d) " "returned from configure-connector\n", rc); goto cc_error; } } while (rc); cc_error: kfree(data_buf); if (rc) { if (first_dn) dlpar_free_cc_nodes(first_dn); return NULL; } return first_dn; } int dlpar_attach_node(struct device_node *dn, struct device_node *parent) { int rc; dn->parent = parent; rc = of_attach_node(dn); if (rc) { printk(KERN_ERR "Failed to add device node %pOF\n", dn); return rc; } return 0; } int dlpar_detach_node(struct device_node *dn) { struct device_node *child; int rc; child = of_get_next_child(dn, NULL); while (child) { dlpar_detach_node(child); child = of_get_next_child(dn, child); } rc = of_detach_node(dn); if (rc) return rc; of_node_put(dn); return 0; } #define DR_ENTITY_SENSE 9003 #define DR_ENTITY_PRESENT 1 #define DR_ENTITY_UNUSABLE 2 #define ALLOCATION_STATE 9003 #define ALLOC_UNUSABLE 0 #define ALLOC_USABLE 1 #define ISOLATION_STATE 9001 #define ISOLATE 0 #define UNISOLATE 1 int dlpar_acquire_drc(u32 drc_index) { int dr_status, rc; rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status, DR_ENTITY_SENSE, drc_index); if (rc || dr_status != DR_ENTITY_UNUSABLE) return -1; rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_USABLE); if (rc) return rc; rc = rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE); if (rc) { rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE); return rc; } return 0; } int dlpar_release_drc(u32 drc_index) { int dr_status, rc; rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status, DR_ENTITY_SENSE, drc_index); if (rc || dr_status != DR_ENTITY_PRESENT) return -1; rc = rtas_set_indicator(ISOLATION_STATE, drc_index, ISOLATE); if (rc) return rc; rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE); if (rc) { rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE); return rc; } return 0; } static int handle_dlpar_errorlog(struct pseries_hp_errorlog *hp_elog) { int rc; /* pseries error logs are in BE format, convert to cpu type */ switch (hp_elog->id_type) { case PSERIES_HP_ELOG_ID_DRC_COUNT: hp_elog->_drc_u.drc_count = be32_to_cpu(hp_elog->_drc_u.drc_count); break; case PSERIES_HP_ELOG_ID_DRC_INDEX: hp_elog->_drc_u.drc_index = be32_to_cpu(hp_elog->_drc_u.drc_index); break; case PSERIES_HP_ELOG_ID_DRC_IC: hp_elog->_drc_u.ic.count = be32_to_cpu(hp_elog->_drc_u.ic.count); hp_elog->_drc_u.ic.index = be32_to_cpu(hp_elog->_drc_u.ic.index); } switch (hp_elog->resource) { case PSERIES_HP_ELOG_RESOURCE_MEM: rc = dlpar_memory(hp_elog); break; case PSERIES_HP_ELOG_RESOURCE_CPU: rc = dlpar_cpu(hp_elog); break; default: pr_warn_ratelimited("Invalid resource (%d) specified\n", hp_elog->resource); rc = -EINVAL; } return rc; } static void pseries_hp_work_fn(struct work_struct *work) { struct pseries_hp_work *hp_work = container_of(work, struct pseries_hp_work, work); if (hp_work->rc) *(hp_work->rc) = handle_dlpar_errorlog(hp_work->errlog); else handle_dlpar_errorlog(hp_work->errlog); if (hp_work->hp_completion) complete(hp_work->hp_completion); kfree(hp_work->errlog); kfree((void *)work); } void queue_hotplug_event(struct pseries_hp_errorlog *hp_errlog, struct completion *hotplug_done, int *rc) { struct pseries_hp_work *work; struct pseries_hp_errorlog *hp_errlog_copy; hp_errlog_copy = kmalloc(sizeof(struct pseries_hp_errorlog), GFP_KERNEL); memcpy(hp_errlog_copy, hp_errlog, sizeof(struct pseries_hp_errorlog)); work = kmalloc(sizeof(struct pseries_hp_work), GFP_KERNEL); if (work) { INIT_WORK((struct work_struct *)work, pseries_hp_work_fn); work->errlog = hp_errlog_copy; work->hp_completion = hotplug_done; work->rc = rc; queue_work(pseries_hp_wq, (struct work_struct *)work); } else { *rc = -ENOMEM; kfree(hp_errlog_copy); complete(hotplug_done); } } static int dlpar_parse_resource(char **cmd, struct pseries_hp_errorlog *hp_elog) { char *arg; arg = strsep(cmd, " "); if (!arg) return -EINVAL; if (sysfs_streq(arg, "memory")) { hp_elog->resource = PSERIES_HP_ELOG_RESOURCE_MEM; } else if (sysfs_streq(arg, "cpu")) { hp_elog->resource = PSERIES_HP_ELOG_RESOURCE_CPU; } else { pr_err("Invalid resource specified.\n"); return -EINVAL; } return 0; } static int dlpar_parse_action(char **cmd, struct pseries_hp_errorlog *hp_elog) { char *arg; arg = strsep(cmd, " "); if (!arg) return -EINVAL; if (sysfs_streq(arg, "add")) { hp_elog->action = PSERIES_HP_ELOG_ACTION_ADD; } else if (sysfs_streq(arg, "remove")) { hp_elog->action = PSERIES_HP_ELOG_ACTION_REMOVE; } else { pr_err("Invalid action specified.\n"); return -EINVAL; } return 0; } static int dlpar_parse_id_type(char **cmd, struct pseries_hp_errorlog *hp_elog) { char *arg; u32 count, index; arg = strsep(cmd, " "); if (!arg) return -EINVAL; if (sysfs_streq(arg, "indexed-count")) { hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_IC; arg = strsep(cmd, " "); if (!arg) { pr_err("No DRC count specified.\n"); return -EINVAL; } if (kstrtou32(arg, 0, &count)) { pr_err("Invalid DRC count specified.\n"); return -EINVAL; } arg = strsep(cmd, " "); if (!arg) { pr_err("No DRC Index specified.\n"); return -EINVAL; } if (kstrtou32(arg, 0, &index)) { pr_err("Invalid DRC Index specified.\n"); return -EINVAL; } hp_elog->_drc_u.ic.count = cpu_to_be32(count); hp_elog->_drc_u.ic.index = cpu_to_be32(index); } else if (sysfs_streq(arg, "index")) { hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_INDEX; arg = strsep(cmd, " "); if (!arg) { pr_err("No DRC Index specified.\n"); return -EINVAL; } if (kstrtou32(arg, 0, &index)) { pr_err("Invalid DRC Index specified.\n"); return -EINVAL; } hp_elog->_drc_u.drc_index = cpu_to_be32(index); } else if (sysfs_streq(arg, "count")) { hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_COUNT; arg = strsep(cmd, " "); if (!arg) { pr_err("No DRC count specified.\n"); return -EINVAL; } if (kstrtou32(arg, 0, &count)) { pr_err("Invalid DRC count specified.\n"); return -EINVAL; } hp_elog->_drc_u.drc_count = cpu_to_be32(count); } else { pr_err("Invalid id_type specified.\n"); return -EINVAL; } return 0; } static ssize_t dlpar_store(struct class *class, struct class_attribute *attr, const char *buf, size_t count) { struct pseries_hp_errorlog *hp_elog; struct completion hotplug_done; char *argbuf; char *args; int rc; args = argbuf = kstrdup(buf, GFP_KERNEL); hp_elog = kzalloc(sizeof(*hp_elog), GFP_KERNEL); if (!hp_elog || !argbuf) { pr_info("Could not allocate resources for DLPAR operation\n"); kfree(argbuf); kfree(hp_elog); return -ENOMEM; } /* * Parse out the request from the user, this will be in the form: * */ rc = dlpar_parse_resource(&args, hp_elog); if (rc) goto dlpar_store_out; rc = dlpar_parse_action(&args, hp_elog); if (rc) goto dlpar_store_out; rc = dlpar_parse_id_type(&args, hp_elog); if (rc) goto dlpar_store_out; init_completion(&hotplug_done); queue_hotplug_event(hp_elog, &hotplug_done, &rc); wait_for_completion(&hotplug_done); dlpar_store_out: kfree(argbuf); kfree(hp_elog); if (rc) pr_err("Could not handle DLPAR request \"%s\"\n", buf); return rc ? rc : count; } static ssize_t dlpar_show(struct class *class, struct class_attribute *attr, char *buf) { return sprintf(buf, "%s\n", "memory,cpu"); } static CLASS_ATTR_RW(dlpar); int __init dlpar_workqueue_init(void) { if (pseries_hp_wq) return 0; pseries_hp_wq = alloc_workqueue("pseries hotplug workqueue", WQ_UNBOUND, 1); return pseries_hp_wq ? 0 : -ENOMEM; } static int __init dlpar_sysfs_init(void) { int rc; rc = dlpar_workqueue_init(); if (rc) return rc; return sysfs_create_file(kernel_kobj, &class_attr_dlpar.attr); } machine_device_initcall(pseries, dlpar_sysfs_init);