/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: MIPS specific KVM APIs * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "interrupt.h" #include "commpage.h" #define CREATE_TRACE_POINTS #include "trace.h" #ifndef VECTORSPACING #define VECTORSPACING 0x100 /* for EI/VI mode */ #endif #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x) struct kvm_stats_debugfs_item debugfs_entries[] = { { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU }, { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU }, { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU }, { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU }, { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU }, { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU }, { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU }, { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU }, { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU }, { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU }, { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU }, { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU }, { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU }, { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU }, { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU }, { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU }, { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU }, { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU }, #ifdef CONFIG_KVM_MIPS_VZ { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU }, { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU }, { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU }, { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU }, { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU }, { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU }, { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU }, { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU }, #endif { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU }, { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU }, { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU }, { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU }, {NULL} }; bool kvm_trace_guest_mode_change; int kvm_guest_mode_change_trace_reg(void) { kvm_trace_guest_mode_change = 1; return 0; } void kvm_guest_mode_change_trace_unreg(void) { kvm_trace_guest_mode_change = 0; } /* * XXXKYMA: We are simulatoring a processor that has the WII bit set in * Config7, so we are "runnable" if interrupts are pending */ int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return !!(vcpu->arch.pending_exceptions); } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return false; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return 1; } int kvm_arch_hardware_enable(void) { return kvm_mips_callbacks->hardware_enable(); } void kvm_arch_hardware_disable(void) { kvm_mips_callbacks->hardware_disable(); } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = 0; } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { switch (type) { #ifdef CONFIG_KVM_MIPS_VZ case KVM_VM_MIPS_VZ: #else case KVM_VM_MIPS_TE: #endif break; default: /* Unsupported KVM type */ return -EINVAL; }; /* Allocate page table to map GPA -> RPA */ kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); if (!kvm->arch.gpa_mm.pgd) return -ENOMEM; return 0; } bool kvm_arch_has_vcpu_debugfs(void) { return false; } int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) { return 0; } void kvm_mips_free_vcpus(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { kvm_arch_vcpu_free(vcpu); } mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); mutex_unlock(&kvm->lock); } static void kvm_mips_free_gpa_pt(struct kvm *kvm) { /* It should always be safe to remove after flushing the whole range */ WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); pgd_free(NULL, kvm->arch.gpa_mm.pgd); } void kvm_arch_destroy_vm(struct kvm *kvm) { kvm_mips_free_vcpus(kvm); kvm_mips_free_gpa_pt(kvm); } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -ENOIOCTLCMD; } int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, unsigned long npages) { return 0; } void kvm_arch_flush_shadow_all(struct kvm *kvm) { /* Flush whole GPA */ kvm_mips_flush_gpa_pt(kvm, 0, ~0); /* Let implementation do the rest */ kvm_mips_callbacks->flush_shadow_all(kvm); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { /* * The slot has been made invalid (ready for moving or deletion), so we * need to ensure that it can no longer be accessed by any guest VCPUs. */ spin_lock(&kvm->mmu_lock); /* Flush slot from GPA */ kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, slot->base_gfn + slot->npages - 1); /* Let implementation do the rest */ kvm_mips_callbacks->flush_shadow_memslot(kvm, slot); spin_unlock(&kvm->mmu_lock); } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change) { return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { int needs_flush; kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", __func__, kvm, mem->slot, mem->guest_phys_addr, mem->memory_size, mem->userspace_addr); /* * If dirty page logging is enabled, write protect all pages in the slot * ready for dirty logging. * * There is no need to do this in any of the following cases: * CREATE: No dirty mappings will already exist. * MOVE/DELETE: The old mappings will already have been cleaned up by * kvm_arch_flush_shadow_memslot() */ if (change == KVM_MR_FLAGS_ONLY && (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { spin_lock(&kvm->mmu_lock); /* Write protect GPA page table entries */ needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, new->base_gfn + new->npages - 1); /* Let implementation do the rest */ if (needs_flush) kvm_mips_callbacks->flush_shadow_memslot(kvm, new); spin_unlock(&kvm->mmu_lock); } } static inline void dump_handler(const char *symbol, void *start, void *end) { u32 *p; pr_debug("LEAF(%s)\n", symbol); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (p = start; p < (u32 *)end; ++p) pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); pr_debug("\t.set\tpop\n"); pr_debug("\tEND(%s)\n", symbol); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { int err, size; void *gebase, *p, *handler, *refill_start, *refill_end; int i; struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); if (!vcpu) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto out_free_cpu; kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu); /* * Allocate space for host mode exception handlers that handle * guest mode exits */ if (cpu_has_veic || cpu_has_vint) size = 0x200 + VECTORSPACING * 64; else size = 0x4000; gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); if (!gebase) { err = -ENOMEM; goto out_uninit_cpu; } kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", ALIGN(size, PAGE_SIZE), gebase); /* * Check new ebase actually fits in CP0_EBase. The lack of a write gate * limits us to the low 512MB of physical address space. If the memory * we allocate is out of range, just give up now. */ if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { kvm_err("CP0_EBase.WG required for guest exception base %pK\n", gebase); err = -ENOMEM; goto out_free_gebase; } /* Save new ebase */ vcpu->arch.guest_ebase = gebase; /* Build guest exception vectors dynamically in unmapped memory */ handler = gebase + 0x2000; /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ refill_start = gebase; if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT)) refill_start += 0x080; refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); /* General Exception Entry point */ kvm_mips_build_exception(gebase + 0x180, handler); /* For vectored interrupts poke the exception code @ all offsets 0-7 */ for (i = 0; i < 8; i++) { kvm_debug("L1 Vectored handler @ %p\n", gebase + 0x200 + (i * VECTORSPACING)); kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, handler); } /* General exit handler */ p = handler; p = kvm_mips_build_exit(p); /* Guest entry routine */ vcpu->arch.vcpu_run = p; p = kvm_mips_build_vcpu_run(p); /* Dump the generated code */ pr_debug("#include \n"); pr_debug("#include \n"); pr_debug("\n"); dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); dump_handler("kvm_tlb_refill", refill_start, refill_end); dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); /* Invalidate the icache for these ranges */ flush_icache_range((unsigned long)gebase, (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); /* * Allocate comm page for guest kernel, a TLB will be reserved for * mapping GVA @ 0xFFFF8000 to this page */ vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); if (!vcpu->arch.kseg0_commpage) { err = -ENOMEM; goto out_free_gebase; } kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); kvm_mips_commpage_init(vcpu); /* Init */ vcpu->arch.last_sched_cpu = -1; vcpu->arch.last_exec_cpu = -1; return vcpu; out_free_gebase: kfree(gebase); out_uninit_cpu: kvm_vcpu_uninit(vcpu); out_free_cpu: kfree(vcpu); out: return ERR_PTR(err); } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { hrtimer_cancel(&vcpu->arch.comparecount_timer); kvm_vcpu_uninit(vcpu); kvm_mips_dump_stats(vcpu); kvm_mmu_free_memory_caches(vcpu); kfree(vcpu->arch.guest_ebase); kfree(vcpu->arch.kseg0_commpage); kfree(vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -ENOIOCTLCMD; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { int r = -EINTR; vcpu_load(vcpu); kvm_sigset_activate(vcpu); if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) kvm_mips_complete_mmio_load(vcpu, run); vcpu->mmio_needed = 0; } if (run->immediate_exit) goto out; lose_fpu(1); local_irq_disable(); guest_enter_irqoff(); trace_kvm_enter(vcpu); /* * Make sure the read of VCPU requests in vcpu_run() callback is not * reordered ahead of the write to vcpu->mode, or we could miss a TLB * flush request while the requester sees the VCPU as outside of guest * mode and not needing an IPI. */ smp_store_mb(vcpu->mode, IN_GUEST_MODE); r = kvm_mips_callbacks->vcpu_run(run, vcpu); trace_kvm_out(vcpu); guest_exit_irqoff(); local_irq_enable(); out: kvm_sigset_deactivate(vcpu); vcpu_put(vcpu); return r; } int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq) { int intr = (int)irq->irq; struct kvm_vcpu *dvcpu = NULL; if (intr == 3 || intr == -3 || intr == 4 || intr == -4) kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, (int)intr); if (irq->cpu == -1) dvcpu = vcpu; else dvcpu = vcpu->kvm->vcpus[irq->cpu]; if (intr == 2 || intr == 3 || intr == 4) { kvm_mips_callbacks->queue_io_int(dvcpu, irq); } else if (intr == -2 || intr == -3 || intr == -4) { kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); } else { kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, irq->cpu, irq->irq); return -EINVAL; } dvcpu->arch.wait = 0; if (swq_has_sleeper(&dvcpu->wq)) swake_up_one(&dvcpu->wq); return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -ENOIOCTLCMD; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -ENOIOCTLCMD; } static u64 kvm_mips_get_one_regs[] = { KVM_REG_MIPS_R0, KVM_REG_MIPS_R1, KVM_REG_MIPS_R2, KVM_REG_MIPS_R3, KVM_REG_MIPS_R4, KVM_REG_MIPS_R5, KVM_REG_MIPS_R6, KVM_REG_MIPS_R7, KVM_REG_MIPS_R8, KVM_REG_MIPS_R9, KVM_REG_MIPS_R10, KVM_REG_MIPS_R11, KVM_REG_MIPS_R12, KVM_REG_MIPS_R13, KVM_REG_MIPS_R14, KVM_REG_MIPS_R15, KVM_REG_MIPS_R16, KVM_REG_MIPS_R17, KVM_REG_MIPS_R18, KVM_REG_MIPS_R19, KVM_REG_MIPS_R20, KVM_REG_MIPS_R21, KVM_REG_MIPS_R22, KVM_REG_MIPS_R23, KVM_REG_MIPS_R24, KVM_REG_MIPS_R25, KVM_REG_MIPS_R26, KVM_REG_MIPS_R27, KVM_REG_MIPS_R28, KVM_REG_MIPS_R29, KVM_REG_MIPS_R30, KVM_REG_MIPS_R31, #ifndef CONFIG_CPU_MIPSR6 KVM_REG_MIPS_HI, KVM_REG_MIPS_LO, #endif KVM_REG_MIPS_PC, }; static u64 kvm_mips_get_one_regs_fpu[] = { KVM_REG_MIPS_FCR_IR, KVM_REG_MIPS_FCR_CSR, }; static u64 kvm_mips_get_one_regs_msa[] = { KVM_REG_MIPS_MSA_IR, KVM_REG_MIPS_MSA_CSR, }; static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) { unsigned long ret; ret = ARRAY_SIZE(kvm_mips_get_one_regs); if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; /* odd doubles */ if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) ret += 16; } if (kvm_mips_guest_can_have_msa(&vcpu->arch)) ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; ret += kvm_mips_callbacks->num_regs(vcpu); return ret; } static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) { u64 index; unsigned int i; if (copy_to_user(indices, kvm_mips_get_one_regs, sizeof(kvm_mips_get_one_regs))) return -EFAULT; indices += ARRAY_SIZE(kvm_mips_get_one_regs); if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, sizeof(kvm_mips_get_one_regs_fpu))) return -EFAULT; indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); for (i = 0; i < 32; ++i) { index = KVM_REG_MIPS_FPR_32(i); if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; /* skip odd doubles if no F64 */ if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) continue; index = KVM_REG_MIPS_FPR_64(i); if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } } if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { if (copy_to_user(indices, kvm_mips_get_one_regs_msa, sizeof(kvm_mips_get_one_regs_msa))) return -EFAULT; indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); for (i = 0; i < 32; ++i) { index = KVM_REG_MIPS_VEC_128(i); if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } } return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); } static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct mips_fpu_struct *fpu = &vcpu->arch.fpu; int ret; s64 v; s64 vs[2]; unsigned int idx; switch (reg->id) { /* General purpose registers */ case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; break; #ifndef CONFIG_CPU_MIPSR6 case KVM_REG_MIPS_HI: v = (long)vcpu->arch.hi; break; case KVM_REG_MIPS_LO: v = (long)vcpu->arch.lo; break; #endif case KVM_REG_MIPS_PC: v = (long)vcpu->arch.pc; break; /* Floating point registers */ case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_FPR_32(0); /* Odd singles in top of even double when FR=0 */ if (kvm_read_c0_guest_status(cop0) & ST0_FR) v = get_fpr32(&fpu->fpr[idx], 0); else v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); break; case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_FPR_64(0); /* Can't access odd doubles in FR=0 mode */ if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) return -EINVAL; v = get_fpr64(&fpu->fpr[idx], 0); break; case KVM_REG_MIPS_FCR_IR: if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; v = boot_cpu_data.fpu_id; break; case KVM_REG_MIPS_FCR_CSR: if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; v = fpu->fcr31; break; /* MIPS SIMD Architecture (MSA) registers */ case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; /* Can't access MSA registers in FR=0 mode */ if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_VEC_128(0); #ifdef CONFIG_CPU_LITTLE_ENDIAN /* least significant byte first */ vs[0] = get_fpr64(&fpu->fpr[idx], 0); vs[1] = get_fpr64(&fpu->fpr[idx], 1); #else /* most significant byte first */ vs[0] = get_fpr64(&fpu->fpr[idx], 1); vs[1] = get_fpr64(&fpu->fpr[idx], 0); #endif break; case KVM_REG_MIPS_MSA_IR: if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; v = boot_cpu_data.msa_id; break; case KVM_REG_MIPS_MSA_CSR: if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; v = fpu->msacsr; break; /* registers to be handled specially */ default: ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); if (ret) return ret; break; } if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; return put_user(v, uaddr64); } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; u32 v32 = (u32)v; return put_user(v32, uaddr32); } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { void __user *uaddr = (void __user *)(long)reg->addr; return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; } else { return -EINVAL; } } static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct mips_fpu_struct *fpu = &vcpu->arch.fpu; s64 v; s64 vs[2]; unsigned int idx; if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; if (get_user(v, uaddr64) != 0) return -EFAULT; } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; s32 v32; if (get_user(v32, uaddr32) != 0) return -EFAULT; v = (s64)v32; } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { void __user *uaddr = (void __user *)(long)reg->addr; return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; } else { return -EINVAL; } switch (reg->id) { /* General purpose registers */ case KVM_REG_MIPS_R0: /* Silently ignore requests to set $0 */ break; case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; break; #ifndef CONFIG_CPU_MIPSR6 case KVM_REG_MIPS_HI: vcpu->arch.hi = v; break; case KVM_REG_MIPS_LO: vcpu->arch.lo = v; break; #endif case KVM_REG_MIPS_PC: vcpu->arch.pc = v; break; /* Floating point registers */ case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_FPR_32(0); /* Odd singles in top of even double when FR=0 */ if (kvm_read_c0_guest_status(cop0) & ST0_FR) set_fpr32(&fpu->fpr[idx], 0, v); else set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); break; case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_FPR_64(0); /* Can't access odd doubles in FR=0 mode */ if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) return -EINVAL; set_fpr64(&fpu->fpr[idx], 0, v); break; case KVM_REG_MIPS_FCR_IR: if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; /* Read-only */ break; case KVM_REG_MIPS_FCR_CSR: if (!kvm_mips_guest_has_fpu(&vcpu->arch)) return -EINVAL; fpu->fcr31 = v; break; /* MIPS SIMD Architecture (MSA) registers */ case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; idx = reg->id - KVM_REG_MIPS_VEC_128(0); #ifdef CONFIG_CPU_LITTLE_ENDIAN /* least significant byte first */ set_fpr64(&fpu->fpr[idx], 0, vs[0]); set_fpr64(&fpu->fpr[idx], 1, vs[1]); #else /* most significant byte first */ set_fpr64(&fpu->fpr[idx], 1, vs[0]); set_fpr64(&fpu->fpr[idx], 0, vs[1]); #endif break; case KVM_REG_MIPS_MSA_IR: if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; /* Read-only */ break; case KVM_REG_MIPS_MSA_CSR: if (!kvm_mips_guest_has_msa(&vcpu->arch)) return -EINVAL; fpu->msacsr = v; break; /* registers to be handled specially */ default: return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); } return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { int r = 0; if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) return -EINVAL; if (cap->flags) return -EINVAL; if (cap->args[0]) return -EINVAL; switch (cap->cap) { case KVM_CAP_MIPS_FPU: vcpu->arch.fpu_enabled = true; break; case KVM_CAP_MIPS_MSA: vcpu->arch.msa_enabled = true; break; default: r = -EINVAL; break; } return r; } long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; if (ioctl == KVM_INTERRUPT) { struct kvm_mips_interrupt irq; if (copy_from_user(&irq, argp, sizeof(irq))) return -EFAULT; kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, irq.irq); return kvm_vcpu_ioctl_interrupt(vcpu, &irq); } return -ENOIOCTLCMD; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r; vcpu_load(vcpu); switch (ioctl) { case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) break; if (ioctl == KVM_SET_ONE_REG) r = kvm_mips_set_reg(vcpu, ®); else r = kvm_mips_get_reg(vcpu, ®); break; } case KVM_GET_REG_LIST: { struct kvm_reg_list __user *user_list = argp; struct kvm_reg_list reg_list; unsigned n; r = -EFAULT; if (copy_from_user(®_list, user_list, sizeof(reg_list))) break; n = reg_list.n; reg_list.n = kvm_mips_num_regs(vcpu); if (copy_to_user(user_list, ®_list, sizeof(reg_list))) break; r = -E2BIG; if (n < reg_list.n) break; r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); break; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) break; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); break; } default: r = -ENOIOCTLCMD; } vcpu_put(vcpu); return r; } /** * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot * @kvm: kvm instance * @log: slot id and address to which we copy the log * * Steps 1-4 below provide general overview of dirty page logging. See * kvm_get_dirty_log_protect() function description for additional details. * * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we * always flush the TLB (step 4) even if previous step failed and the dirty * bitmap may be corrupt. Regardless of previous outcome the KVM logging API * does not preclude user space subsequent dirty log read. Flushing TLB ensures * writes will be marked dirty for next log read. * * 1. Take a snapshot of the bit and clear it if needed. * 2. Write protect the corresponding page. * 3. Copy the snapshot to the userspace. * 4. Flush TLB's if needed. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; bool is_dirty = false; int r; mutex_lock(&kvm->slots_lock); r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); if (is_dirty) { slots = kvm_memslots(kvm); memslot = id_to_memslot(slots, log->slot); /* Let implementation handle TLB/GVA invalidation */ kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); } mutex_unlock(&kvm->slots_lock); return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { long r; switch (ioctl) { default: r = -ENOIOCTLCMD; } return r; } int kvm_arch_init(void *opaque) { if (kvm_mips_callbacks) { kvm_err("kvm: module already exists\n"); return -EEXIST; } return kvm_mips_emulation_init(&kvm_mips_callbacks); } void kvm_arch_exit(void) { kvm_mips_callbacks = NULL; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -ENOIOCTLCMD; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -ENOIOCTLCMD; } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOIOCTLCMD; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOIOCTLCMD; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r; switch (ext) { case KVM_CAP_ONE_REG: case KVM_CAP_ENABLE_CAP: case KVM_CAP_READONLY_MEM: case KVM_CAP_SYNC_MMU: case KVM_CAP_IMMEDIATE_EXIT: r = 1; break; case KVM_CAP_NR_VCPUS: r = num_online_cpus(); break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_MAX_VCPU_ID: r = KVM_MAX_VCPU_ID; break; case KVM_CAP_MIPS_FPU: /* We don't handle systems with inconsistent cpu_has_fpu */ r = !!raw_cpu_has_fpu; break; case KVM_CAP_MIPS_MSA: /* * We don't support MSA vector partitioning yet: * 1) It would require explicit support which can't be tested * yet due to lack of support in current hardware. * 2) It extends the state that would need to be saved/restored * by e.g. QEMU for migration. * * When vector partitioning hardware becomes available, support * could be added by requiring a flag when enabling * KVM_CAP_MIPS_MSA capability to indicate that userland knows * to save/restore the appropriate extra state. */ r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); break; default: r = kvm_mips_callbacks->check_extension(kvm, ext); break; } return r; } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvm_mips_pending_timer(vcpu) || kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI; } int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) { int i; struct mips_coproc *cop0; if (!vcpu) return -1; kvm_debug("VCPU Register Dump:\n"); kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); for (i = 0; i < 32; i += 4) { kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, vcpu->arch.gprs[i], vcpu->arch.gprs[i + 1], vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); } kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); cop0 = vcpu->arch.cop0; kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0)); kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; vcpu_load(vcpu); for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) vcpu->arch.gprs[i] = regs->gpr[i]; vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ vcpu->arch.hi = regs->hi; vcpu->arch.lo = regs->lo; vcpu->arch.pc = regs->pc; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; vcpu_load(vcpu); for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) regs->gpr[i] = vcpu->arch.gprs[i]; regs->hi = vcpu->arch.hi; regs->lo = vcpu->arch.lo; regs->pc = vcpu->arch.pc; vcpu_put(vcpu); return 0; } static void kvm_mips_comparecount_func(unsigned long data) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; kvm_mips_callbacks->queue_timer_int(vcpu); vcpu->arch.wait = 0; if (swq_has_sleeper(&vcpu->wq)) swake_up_one(&vcpu->wq); } /* low level hrtimer wake routine */ static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); kvm_mips_comparecount_func((unsigned long) vcpu); return kvm_mips_count_timeout(vcpu); } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { int err; err = kvm_mips_callbacks->vcpu_init(vcpu); if (err) return err; hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { kvm_mips_callbacks->vcpu_uninit(vcpu); } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return 0; } /* Initial guest state */ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { return kvm_mips_callbacks->vcpu_setup(vcpu); } static void kvm_mips_set_c0_status(void) { u32 status = read_c0_status(); if (cpu_has_dsp) status |= (ST0_MX); write_c0_status(status); ehb(); } /* * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) */ int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) { u32 cause = vcpu->arch.host_cp0_cause; u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; enum emulation_result er = EMULATE_DONE; u32 inst; int ret = RESUME_GUEST; vcpu->mode = OUTSIDE_GUEST_MODE; /* re-enable HTW before enabling interrupts */ if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) htw_start(); /* Set a default exit reason */ run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; /* * Set the appropriate status bits based on host CPU features, * before we hit the scheduler */ kvm_mips_set_c0_status(); local_irq_enable(); kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", cause, opc, run, vcpu); trace_kvm_exit(vcpu, exccode); if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { /* * Do a privilege check, if in UM most of these exit conditions * end up causing an exception to be delivered to the Guest * Kernel */ er = kvm_mips_check_privilege(cause, opc, run, vcpu); if (er == EMULATE_PRIV_FAIL) { goto skip_emul; } else if (er == EMULATE_FAIL) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; goto skip_emul; } } switch (exccode) { case EXCCODE_INT: kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); ++vcpu->stat.int_exits; if (need_resched()) cond_resched(); ret = RESUME_GUEST; break; case EXCCODE_CPU: kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); ++vcpu->stat.cop_unusable_exits; ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); /* XXXKYMA: Might need to return to user space */ if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) ret = RESUME_HOST; break; case EXCCODE_MOD: ++vcpu->stat.tlbmod_exits; ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); break; case EXCCODE_TLBS: kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, badvaddr); ++vcpu->stat.tlbmiss_st_exits; ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); break; case EXCCODE_TLBL: kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); ++vcpu->stat.tlbmiss_ld_exits; ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); break; case EXCCODE_ADES: ++vcpu->stat.addrerr_st_exits; ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); break; case EXCCODE_ADEL: ++vcpu->stat.addrerr_ld_exits; ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); break; case EXCCODE_SYS: ++vcpu->stat.syscall_exits; ret = kvm_mips_callbacks->handle_syscall(vcpu); break; case EXCCODE_RI: ++vcpu->stat.resvd_inst_exits; ret = kvm_mips_callbacks->handle_res_inst(vcpu); break; case EXCCODE_BP: ++vcpu->stat.break_inst_exits; ret = kvm_mips_callbacks->handle_break(vcpu); break; case EXCCODE_TR: ++vcpu->stat.trap_inst_exits; ret = kvm_mips_callbacks->handle_trap(vcpu); break; case EXCCODE_MSAFPE: ++vcpu->stat.msa_fpe_exits; ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); break; case EXCCODE_FPE: ++vcpu->stat.fpe_exits; ret = kvm_mips_callbacks->handle_fpe(vcpu); break; case EXCCODE_MSADIS: ++vcpu->stat.msa_disabled_exits; ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); break; case EXCCODE_GE: /* defer exit accounting to handler */ ret = kvm_mips_callbacks->handle_guest_exit(vcpu); break; default: if (cause & CAUSEF_BD) opc += 1; inst = 0; kvm_get_badinstr(opc, vcpu, &inst); kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", exccode, opc, inst, badvaddr, kvm_read_c0_guest_status(vcpu->arch.cop0)); kvm_arch_vcpu_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; } skip_emul: local_irq_disable(); if (ret == RESUME_GUEST) kvm_vz_acquire_htimer(vcpu); if (er == EMULATE_DONE && !(ret & RESUME_HOST)) kvm_mips_deliver_interrupts(vcpu, cause); if (!(ret & RESUME_HOST)) { /* Only check for signals if not already exiting to userspace */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; ret = (-EINTR << 2) | RESUME_HOST; ++vcpu->stat.signal_exits; trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); } } if (ret == RESUME_GUEST) { trace_kvm_reenter(vcpu); /* * Make sure the read of VCPU requests in vcpu_reenter() * callback is not reordered ahead of the write to vcpu->mode, * or we could miss a TLB flush request while the requester sees * the VCPU as outside of guest mode and not needing an IPI. */ smp_store_mb(vcpu->mode, IN_GUEST_MODE); kvm_mips_callbacks->vcpu_reenter(run, vcpu); /* * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context * is live), restore FCR31 / MSACSR. * * This should be before returning to the guest exception * vector, as it may well cause an [MSA] FP exception if there * are pending exception bits unmasked. (see * kvm_mips_csr_die_notifier() for how that is handled). */ if (kvm_mips_guest_has_fpu(&vcpu->arch) && read_c0_status() & ST0_CU1) __kvm_restore_fcsr(&vcpu->arch); if (kvm_mips_guest_has_msa(&vcpu->arch) && read_c0_config5() & MIPS_CONF5_MSAEN) __kvm_restore_msacsr(&vcpu->arch); } /* Disable HTW before returning to guest or host */ if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) htw_stop(); return ret; } /* Enable FPU for guest and restore context */ void kvm_own_fpu(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned int sr, cfg5; preempt_disable(); sr = kvm_read_c0_guest_status(cop0); /* * If MSA state is already live, it is undefined how it interacts with * FR=0 FPU state, and we don't want to hit reserved instruction * exceptions trying to save the MSA state later when CU=1 && FR=1, so * play it safe and save it first. * * In theory we shouldn't ever hit this case since kvm_lose_fpu() should * get called when guest CU1 is set, however we can't trust the guest * not to clobber the status register directly via the commpage. */ if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) kvm_lose_fpu(vcpu); /* * Enable FPU for guest * We set FR and FRE according to guest context */ change_c0_status(ST0_CU1 | ST0_FR, sr); if (cpu_has_fre) { cfg5 = kvm_read_c0_guest_config5(cop0); change_c0_config5(MIPS_CONF5_FRE, cfg5); } enable_fpu_hazard(); /* If guest FPU state not active, restore it now */ if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { __kvm_restore_fpu(&vcpu->arch); vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); } else { trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); } preempt_enable(); } #ifdef CONFIG_CPU_HAS_MSA /* Enable MSA for guest and restore context */ void kvm_own_msa(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned int sr, cfg5; preempt_disable(); /* * Enable FPU if enabled in guest, since we're restoring FPU context * anyway. We set FR and FRE according to guest context. */ if (kvm_mips_guest_has_fpu(&vcpu->arch)) { sr = kvm_read_c0_guest_status(cop0); /* * If FR=0 FPU state is already live, it is undefined how it * interacts with MSA state, so play it safe and save it first. */ if (!(sr & ST0_FR) && (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) kvm_lose_fpu(vcpu); change_c0_status(ST0_CU1 | ST0_FR, sr); if (sr & ST0_CU1 && cpu_has_fre) { cfg5 = kvm_read_c0_guest_config5(cop0); change_c0_config5(MIPS_CONF5_FRE, cfg5); } } /* Enable MSA for guest */ set_c0_config5(MIPS_CONF5_MSAEN); enable_fpu_hazard(); switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { case KVM_MIPS_AUX_FPU: /* * Guest FPU state already loaded, only restore upper MSA state */ __kvm_restore_msa_upper(&vcpu->arch); vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); break; case 0: /* Neither FPU or MSA already active, restore full MSA state */ __kvm_restore_msa(&vcpu->arch); vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; if (kvm_mips_guest_has_fpu(&vcpu->arch)) vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU_MSA); break; default: trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); break; } preempt_enable(); } #endif /* Drop FPU & MSA without saving it */ void kvm_drop_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { disable_msa(); trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; } if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { clear_c0_status(ST0_CU1 | ST0_FR); trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; } preempt_enable(); } /* Save and disable FPU & MSA */ void kvm_lose_fpu(struct kvm_vcpu *vcpu) { /* * With T&E, FPU & MSA get disabled in root context (hardware) when it * is disabled in guest context (software), but the register state in * the hardware may still be in use. * This is why we explicitly re-enable the hardware before saving. */ preempt_disable(); if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { set_c0_config5(MIPS_CONF5_MSAEN); enable_fpu_hazard(); } __kvm_save_msa(&vcpu->arch); trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); /* Disable MSA & FPU */ disable_msa(); if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { clear_c0_status(ST0_CU1 | ST0_FR); disable_fpu_hazard(); } vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { set_c0_status(ST0_CU1); enable_fpu_hazard(); } __kvm_save_fpu(&vcpu->arch); vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); /* Disable FPU */ clear_c0_status(ST0_CU1 | ST0_FR); disable_fpu_hazard(); } preempt_enable(); } /* * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP * exception if cause bits are set in the value being written. */ static int kvm_mips_csr_die_notify(struct notifier_block *self, unsigned long cmd, void *ptr) { struct die_args *args = (struct die_args *)ptr; struct pt_regs *regs = args->regs; unsigned long pc; /* Only interested in FPE and MSAFPE */ if (cmd != DIE_FP && cmd != DIE_MSAFP) return NOTIFY_DONE; /* Return immediately if guest context isn't active */ if (!(current->flags & PF_VCPU)) return NOTIFY_DONE; /* Should never get here from user mode */ BUG_ON(user_mode(regs)); pc = instruction_pointer(regs); switch (cmd) { case DIE_FP: /* match 2nd instruction in __kvm_restore_fcsr */ if (pc != (unsigned long)&__kvm_restore_fcsr + 4) return NOTIFY_DONE; break; case DIE_MSAFP: /* match 2nd/3rd instruction in __kvm_restore_msacsr */ if (!cpu_has_msa || pc < (unsigned long)&__kvm_restore_msacsr + 4 || pc > (unsigned long)&__kvm_restore_msacsr + 8) return NOTIFY_DONE; break; } /* Move PC forward a little and continue executing */ instruction_pointer(regs) += 4; return NOTIFY_STOP; } static struct notifier_block kvm_mips_csr_die_notifier = { .notifier_call = kvm_mips_csr_die_notify, }; static int __init kvm_mips_init(void) { int ret; ret = kvm_mips_entry_setup(); if (ret) return ret; ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); if (ret) return ret; register_die_notifier(&kvm_mips_csr_die_notifier); return 0; } static void __exit kvm_mips_exit(void) { kvm_exit(); unregister_die_notifier(&kvm_mips_csr_die_notifier); } module_init(kvm_mips_init); module_exit(kvm_mips_exit); EXPORT_TRACEPOINT_SYMBOL(kvm_exit);