/* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/kvm/coproc.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Authors: Rusty Russell * Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sys_regs.h" #include "trace.h" /* * All of this file is extremly similar to the ARM coproc.c, but the * types are different. My gut feeling is that it should be pretty * easy to merge, but that would be an ABI breakage -- again. VFP * would also need to be abstracted. * * For AArch32, we only take care of what is being trapped. Anything * that has to do with init and userspace access has to go via the * 64bit interface. */ static bool read_from_write_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); return false; } static bool write_to_read_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); return false; } u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg) { if (!vcpu->arch.sysregs_loaded_on_cpu) goto immediate_read; /* * System registers listed in the switch are not saved on every * exit from the guest but are only saved on vcpu_put. * * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but * should never be listed below, because the guest cannot modify its * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's * thread when emulating cross-VCPU communication. */ switch (reg) { case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1); case SCTLR_EL1: return read_sysreg_s(sctlr_EL12); case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1); case CPACR_EL1: return read_sysreg_s(cpacr_EL12); case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12); case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12); case TCR_EL1: return read_sysreg_s(tcr_EL12); case ESR_EL1: return read_sysreg_s(esr_EL12); case AFSR0_EL1: return read_sysreg_s(afsr0_EL12); case AFSR1_EL1: return read_sysreg_s(afsr1_EL12); case FAR_EL1: return read_sysreg_s(far_EL12); case MAIR_EL1: return read_sysreg_s(mair_EL12); case VBAR_EL1: return read_sysreg_s(vbar_EL12); case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12); case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0); case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0); case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1); case AMAIR_EL1: return read_sysreg_s(amair_EL12); case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12); case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1); case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2); case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2); case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2); } immediate_read: return __vcpu_sys_reg(vcpu, reg); } void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) { if (!vcpu->arch.sysregs_loaded_on_cpu) goto immediate_write; /* * System registers listed in the switch are not restored on every * entry to the guest but are only restored on vcpu_load. * * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but * should never be listed below, because the the MPIDR should only be * set once, before running the VCPU, and never changed later. */ switch (reg) { case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return; case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return; case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return; case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return; case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return; case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return; case TCR_EL1: write_sysreg_s(val, tcr_EL12); return; case ESR_EL1: write_sysreg_s(val, esr_EL12); return; case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return; case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return; case FAR_EL1: write_sysreg_s(val, far_EL12); return; case MAIR_EL1: write_sysreg_s(val, mair_EL12); return; case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return; case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return; case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return; case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return; case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return; case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return; case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return; case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return; case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return; case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return; case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return; } immediate_write: __vcpu_sys_reg(vcpu, reg) = val; } /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ static u32 cache_levels; /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ #define CSSELR_MAX 12 /* Which cache CCSIDR represents depends on CSSELR value. */ static u32 get_ccsidr(u32 csselr) { u32 ccsidr; /* Make sure noone else changes CSSELR during this! */ local_irq_disable(); write_sysreg(csselr, csselr_el1); isb(); ccsidr = read_sysreg(ccsidr_el1); local_irq_enable(); return ccsidr; } /* * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). */ static bool access_dcsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * Only track S/W ops if we don't have FWB. It still indicates * that the guest is a bit broken (S/W operations should only * be done by firmware, knowing that there is only a single * CPU left in the system, and certainly not from non-secure * software). */ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) kvm_set_way_flush(vcpu); return true; } /* * Generic accessor for VM registers. Only called as long as HCR_TVM * is set. If the guest enables the MMU, we stop trapping the VM * sys_regs and leave it in complete control of the caches. */ static bool access_vm_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool was_enabled = vcpu_has_cache_enabled(vcpu); u64 val; int reg = r->reg; BUG_ON(!p->is_write); /* See the 32bit mapping in kvm_host.h */ if (p->is_aarch32) reg = r->reg / 2; if (!p->is_aarch32 || !p->is_32bit) { val = p->regval; } else { val = vcpu_read_sys_reg(vcpu, reg); if (r->reg % 2) val = (p->regval << 32) | (u64)lower_32_bits(val); else val = ((u64)upper_32_bits(val) << 32) | lower_32_bits(p->regval); } vcpu_write_sys_reg(vcpu, val, reg); kvm_toggle_cache(vcpu, was_enabled); return true; } /* * Trap handler for the GICv3 SGI generation system register. * Forward the request to the VGIC emulation. * The cp15_64 code makes sure this automatically works * for both AArch64 and AArch32 accesses. */ static bool access_gic_sgi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool g1; if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure * group. */ if (p->is_aarch32) { switch (p->Op1) { default: /* Keep GCC quiet */ case 0: /* ICC_SGI1R */ g1 = true; break; case 1: /* ICC_ASGI1R */ case 2: /* ICC_SGI0R */ g1 = false; break; } } else { switch (p->Op2) { default: /* Keep GCC quiet */ case 5: /* ICC_SGI1R_EL1 */ g1 = true; break; case 6: /* ICC_ASGI1R_EL1 */ case 7: /* ICC_SGI0R_EL1 */ g1 = false; break; } } vgic_v3_dispatch_sgi(vcpu, p->regval, g1); return true; } static bool access_gic_sre(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; return true; } static bool trap_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); else return read_zero(vcpu, p); } static bool trap_undef(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { kvm_inject_undefined(vcpu); return false; } static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { p->regval = (1 << 3); return true; } } static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { p->regval = read_sysreg(dbgauthstatus_el1); return true; } } /* * We want to avoid world-switching all the DBG registers all the * time: * * - If we've touched any debug register, it is likely that we're * going to touch more of them. It then makes sense to disable the * traps and start doing the save/restore dance * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is * then mandatory to save/restore the registers, as the guest * depends on them. * * For this, we use a DIRTY bit, indicating the guest has modified the * debug registers, used as follow: * * On guest entry: * - If the dirty bit is set (because we're coming back from trapping), * disable the traps, save host registers, restore guest registers. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), * set the dirty bit, disable the traps, save host registers, * restore guest registers. * - Otherwise, enable the traps * * On guest exit: * - If the dirty bit is set, save guest registers, restore host * registers and clear the dirty bit. This ensure that the host can * now use the debug registers. */ static bool trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { vcpu_write_sys_reg(vcpu, p->regval, r->reg); vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; } else { p->regval = vcpu_read_sys_reg(vcpu, r->reg); } trace_trap_reg(__func__, r->reg, p->is_write, p->regval); return true; } /* * reg_to_dbg/dbg_to_reg * * A 32 bit write to a debug register leave top bits alone * A 32 bit read from a debug register only returns the bottom bits * * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the * hyp.S code switches between host and guest values in future. */ static void reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, u64 *dbg_reg) { u64 val = p->regval; if (p->is_32bit) { val &= 0xffffffffUL; val |= ((*dbg_reg >> 32) << 32); } *dbg_reg = val; vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; } static void dbg_to_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, u64 *dbg_reg) { p->regval = *dbg_reg; if (p->is_32bit) p->regval &= 0xffffffffUL; } static bool trap_bvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; if (p->is_write) reg_to_dbg(vcpu, p, dbg_reg); else dbg_to_reg(vcpu, p, dbg_reg); trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); return true; } static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static void reset_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val; } static bool trap_bcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; if (p->is_write) reg_to_dbg(vcpu, p, dbg_reg); else dbg_to_reg(vcpu, p, dbg_reg); trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); return true; } static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static void reset_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val; } static bool trap_wvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; if (p->is_write) reg_to_dbg(vcpu, p, dbg_reg); else dbg_to_reg(vcpu, p, dbg_reg); trace_trap_reg(__func__, rd->reg, p->is_write, vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]); return true; } static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static void reset_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val; } static bool trap_wcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; if (p->is_write) reg_to_dbg(vcpu, p, dbg_reg); else dbg_to_reg(vcpu, p, dbg_reg); trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); return true; } static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) return -EFAULT; return 0; } static void reset_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val; } static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 amair = read_sysreg(amair_el1); vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); } static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mpidr; /* * Map the vcpu_id into the first three affinity level fields of * the MPIDR. We limit the number of VCPUs in level 0 due to a * limitation to 16 CPUs in that level in the ICC_SGIxR registers * of the GICv3 to be able to address each CPU directly when * sending IPIs. */ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); } static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 pmcr, val; pmcr = read_sysreg(pmcr_el0); /* * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN * except PMCR.E resetting to zero. */ val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); __vcpu_sys_reg(vcpu, r->reg) = val; } static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) { u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); if (!enabled) kvm_inject_undefined(vcpu); return !enabled; } static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); } static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); } static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); } static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); } static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { /* Only update writeable bits of PMCR */ val = __vcpu_sys_reg(vcpu, PMCR_EL0); val &= ~ARMV8_PMU_PMCR_MASK; val |= p->regval & ARMV8_PMU_PMCR_MASK; __vcpu_sys_reg(vcpu, PMCR_EL0) = val; kvm_pmu_handle_pmcr(vcpu, val); } else { /* PMCR.P & PMCR.C are RAZ */ val = __vcpu_sys_reg(vcpu, PMCR_EL0) & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); p->regval = val; } return true; } static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (pmu_access_event_counter_el0_disabled(vcpu)) return false; if (p->is_write) __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; else /* return PMSELR.SEL field */ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; return true; } static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 pmceid; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); BUG_ON(p->is_write); if (pmu_access_el0_disabled(vcpu)) return false; if (!(p->Op2 & 1)) pmceid = read_sysreg(pmceid0_el0); else pmceid = read_sysreg(pmceid1_el0); p->regval = pmceid; return true; } static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) { u64 pmcr, val; pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { kvm_inject_undefined(vcpu); return false; } return true; } static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (r->CRn == 9 && r->CRm == 13) { if (r->Op2 == 2) { /* PMXEVCNTR_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; } else if (r->Op2 == 0) { /* PMCCNTR_EL0 */ if (pmu_access_cycle_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } else { return false; } } else if (r->CRn == 0 && r->CRm == 9) { /* PMCCNTR */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } else if (r->CRn == 14 && (r->CRm & 12) == 8) { /* PMEVCNTRn_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); } else { return false; } if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { if (pmu_access_el0_disabled(vcpu)) return false; kvm_pmu_set_counter_value(vcpu, idx, p->regval); } else { p->regval = kvm_pmu_get_counter_value(vcpu, idx); } return true; } static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx, reg; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (pmu_access_el0_disabled(vcpu)) return false; if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { /* PMXEVTYPER_EL0 */ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; reg = PMEVTYPER0_EL0 + idx; } else if (r->CRn == 14 && (r->CRm & 12) == 12) { idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); if (idx == ARMV8_PMU_CYCLE_IDX) reg = PMCCFILTR_EL0; else /* PMEVTYPERn_EL0 */ reg = PMEVTYPER0_EL0 + idx; } else { BUG(); } if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; } else { p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; } return true; } static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val, mask; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (pmu_access_el0_disabled(vcpu)) return false; mask = kvm_pmu_valid_counter_mask(vcpu); if (p->is_write) { val = p->regval & mask; if (r->Op2 & 0x1) { /* accessing PMCNTENSET_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; kvm_pmu_enable_counter(vcpu, val); } else { /* accessing PMCNTENCLR_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; kvm_pmu_disable_counter(vcpu, val); } } else { p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask; } return true; } static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (!vcpu_mode_priv(vcpu)) { kvm_inject_undefined(vcpu); return false; } if (p->is_write) { u64 val = p->regval & mask; if (r->Op2 & 0x1) /* accessing PMINTENSET_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; else /* accessing PMINTENCLR_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; } else { p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask; } return true; } static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { if (r->CRm & 0x2) /* accessing PMOVSSET_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); else /* accessing PMOVSCLR_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); } else { p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask; } return true; } static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask; if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (!p->is_write) return read_from_write_only(vcpu, p, r); if (pmu_write_swinc_el0_disabled(vcpu)) return false; mask = kvm_pmu_valid_counter_mask(vcpu); kvm_pmu_software_increment(vcpu, p->regval & mask); return true; } static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!kvm_arm_pmu_v3_ready(vcpu)) return trap_raz_wi(vcpu, p, r); if (p->is_write) { if (!vcpu_mode_priv(vcpu)) { kvm_inject_undefined(vcpu); return false; } __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval & ARMV8_PMU_USERENR_MASK; } else { p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) & ARMV8_PMU_USERENR_MASK; } return true; } /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } /* Macro to expand the PMEVCNTRn_EL0 register */ #define PMU_PMEVCNTR_EL0(n) \ { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \ access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), } /* Macro to expand the PMEVTYPERn_EL0 register */ #define PMU_PMEVTYPER_EL0(n) \ { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \ access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), } static bool access_cntp_tval(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 now = kvm_phys_timer_read(); u64 cval; if (p->is_write) { kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval + now); } else { cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); p->regval = cval - now; } return true; } static bool access_cntp_ctl(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval); else p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL); return true; } static bool access_cntp_cval(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval); else p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); return true; } /* Read a sanitised cpufeature ID register by sys_reg_desc */ static u64 read_id_reg(struct sys_reg_desc const *r, bool raz) { u32 id = sys_reg((u32)r->Op0, (u32)r->Op1, (u32)r->CRn, (u32)r->CRm, (u32)r->Op2); u64 val = raz ? 0 : read_sanitised_ftr_reg(id); if (id == SYS_ID_AA64PFR0_EL1) { if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT)) kvm_debug("SVE unsupported for guests, suppressing\n"); val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT); } else if (id == SYS_ID_AA64MMFR1_EL1) { if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT)) kvm_debug("LORegions unsupported for guests, suppressing\n"); val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT); } return val; } /* cpufeature ID register access trap handlers */ static bool __access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r, bool raz) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = read_id_reg(r, raz); return true; } static bool access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { return __access_id_reg(vcpu, p, r, false); } static bool access_raz_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { return __access_id_reg(vcpu, p, r, true); } static int reg_from_user(u64 *val, const void __user *uaddr, u64 id); static int reg_to_user(void __user *uaddr, const u64 *val, u64 id); static u64 sys_reg_to_index(const struct sys_reg_desc *reg); /* * cpufeature ID register user accessors * * For now, these registers are immutable for userspace, so no values * are stored, and for set_id_reg() we don't allow the effective value * to be changed. */ static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr, bool raz) { const u64 id = sys_reg_to_index(rd); const u64 val = read_id_reg(rd, raz); return reg_to_user(uaddr, &val, id); } static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr, bool raz) { const u64 id = sys_reg_to_index(rd); int err; u64 val; err = reg_from_user(&val, uaddr, id); if (err) return err; /* This is what we mean by invariant: you can't change it. */ if (val != read_id_reg(rd, raz)) return -EINVAL; return 0; } static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { return __get_id_reg(rd, uaddr, false); } static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { return __set_id_reg(rd, uaddr, false); } static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { return __get_id_reg(rd, uaddr, true); } static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr) { return __set_id_reg(rd, uaddr, true); } /* sys_reg_desc initialiser for known cpufeature ID registers */ #define ID_SANITISED(name) { \ SYS_DESC(SYS_##name), \ .access = access_id_reg, \ .get_user = get_id_reg, \ .set_user = set_id_reg, \ } /* * sys_reg_desc initialiser for architecturally unallocated cpufeature ID * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 * (1 <= crm < 8, 0 <= Op2 < 8). */ #define ID_UNALLOCATED(crm, op2) { \ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ .access = access_raz_id_reg, \ .get_user = get_raz_id_reg, \ .set_user = set_raz_id_reg, \ } /* * sys_reg_desc initialiser for known ID registers that we hide from guests. * For now, these are exposed just like unallocated ID regs: they appear * RAZ for the guest. */ #define ID_HIDDEN(name) { \ SYS_DESC(SYS_##name), \ .access = access_raz_id_reg, \ .get_user = get_raz_id_reg, \ .set_user = set_raz_id_reg, \ } /* * Architected system registers. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 * * Debug handling: We do trap most, if not all debug related system * registers. The implementation is good enough to ensure that a guest * can use these with minimal performance degradation. The drawback is * that we don't implement any of the external debug, none of the * OSlock protocol. This should be revisited if we ever encounter a * more demanding guest... */ static const struct sys_reg_desc sys_reg_descs[] = { { SYS_DESC(SYS_DC_ISW), access_dcsw }, { SYS_DESC(SYS_DC_CSW), access_dcsw }, { SYS_DESC(SYS_DC_CISW), access_dcsw }, DBG_BCR_BVR_WCR_WVR_EL1(0), DBG_BCR_BVR_WCR_WVR_EL1(1), { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, DBG_BCR_BVR_WCR_WVR_EL1(2), DBG_BCR_BVR_WCR_WVR_EL1(3), DBG_BCR_BVR_WCR_WVR_EL1(4), DBG_BCR_BVR_WCR_WVR_EL1(5), DBG_BCR_BVR_WCR_WVR_EL1(6), DBG_BCR_BVR_WCR_WVR_EL1(7), DBG_BCR_BVR_WCR_WVR_EL1(8), DBG_BCR_BVR_WCR_WVR_EL1(9), DBG_BCR_BVR_WCR_WVR_EL1(10), DBG_BCR_BVR_WCR_WVR_EL1(11), DBG_BCR_BVR_WCR_WVR_EL1(12), DBG_BCR_BVR_WCR_WVR_EL1(13), DBG_BCR_BVR_WCR_WVR_EL1(14), DBG_BCR_BVR_WCR_WVR_EL1(15), { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi }, { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 }, { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, // DBGDTR[TR]X_EL0 share the same encoding { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, /* * ID regs: all ID_SANITISED() entries here must have corresponding * entries in arm64_ftr_regs[]. */ /* AArch64 mappings of the AArch32 ID registers */ /* CRm=1 */ ID_SANITISED(ID_PFR0_EL1), ID_SANITISED(ID_PFR1_EL1), ID_SANITISED(ID_DFR0_EL1), ID_HIDDEN(ID_AFR0_EL1), ID_SANITISED(ID_MMFR0_EL1), ID_SANITISED(ID_MMFR1_EL1), ID_SANITISED(ID_MMFR2_EL1), ID_SANITISED(ID_MMFR3_EL1), /* CRm=2 */ ID_SANITISED(ID_ISAR0_EL1), ID_SANITISED(ID_ISAR1_EL1), ID_SANITISED(ID_ISAR2_EL1), ID_SANITISED(ID_ISAR3_EL1), ID_SANITISED(ID_ISAR4_EL1), ID_SANITISED(ID_ISAR5_EL1), ID_SANITISED(ID_MMFR4_EL1), ID_UNALLOCATED(2,7), /* CRm=3 */ ID_SANITISED(MVFR0_EL1), ID_SANITISED(MVFR1_EL1), ID_SANITISED(MVFR2_EL1), ID_UNALLOCATED(3,3), ID_UNALLOCATED(3,4), ID_UNALLOCATED(3,5), ID_UNALLOCATED(3,6), ID_UNALLOCATED(3,7), /* AArch64 ID registers */ /* CRm=4 */ ID_SANITISED(ID_AA64PFR0_EL1), ID_SANITISED(ID_AA64PFR1_EL1), ID_UNALLOCATED(4,2), ID_UNALLOCATED(4,3), ID_UNALLOCATED(4,4), ID_UNALLOCATED(4,5), ID_UNALLOCATED(4,6), ID_UNALLOCATED(4,7), /* CRm=5 */ ID_SANITISED(ID_AA64DFR0_EL1), ID_SANITISED(ID_AA64DFR1_EL1), ID_UNALLOCATED(5,2), ID_UNALLOCATED(5,3), ID_HIDDEN(ID_AA64AFR0_EL1), ID_HIDDEN(ID_AA64AFR1_EL1), ID_UNALLOCATED(5,6), ID_UNALLOCATED(5,7), /* CRm=6 */ ID_SANITISED(ID_AA64ISAR0_EL1), ID_SANITISED(ID_AA64ISAR1_EL1), ID_UNALLOCATED(6,2), ID_UNALLOCATED(6,3), ID_UNALLOCATED(6,4), ID_UNALLOCATED(6,5), ID_UNALLOCATED(6,6), ID_UNALLOCATED(6,7), /* CRm=7 */ ID_SANITISED(ID_AA64MMFR0_EL1), ID_SANITISED(ID_AA64MMFR1_EL1), ID_SANITISED(ID_AA64MMFR2_EL1), ID_UNALLOCATED(7,3), ID_UNALLOCATED(7,4), ID_UNALLOCATED(7,5), ID_UNALLOCATED(7,6), ID_UNALLOCATED(7,7), { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 }, { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 }, { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, { SYS_DESC(SYS_LORSA_EL1), trap_undef }, { SYS_DESC(SYS_LOREA_EL1), trap_undef }, { SYS_DESC(SYS_LORN_EL1), trap_undef }, { SYS_DESC(SYS_LORC_EL1), trap_undef }, { SYS_DESC(SYS_LORID_EL1), trap_undef }, { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 }, { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 }, { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 }, { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 }, { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 }, { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 }, { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 }, { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid }, { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid }, { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 }, { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper }, { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr }, /* * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 }, { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 }, { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval }, { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl }, { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval }, /* PMEVCNTRn_EL0 */ PMU_PMEVCNTR_EL0(0), PMU_PMEVCNTR_EL0(1), PMU_PMEVCNTR_EL0(2), PMU_PMEVCNTR_EL0(3), PMU_PMEVCNTR_EL0(4), PMU_PMEVCNTR_EL0(5), PMU_PMEVCNTR_EL0(6), PMU_PMEVCNTR_EL0(7), PMU_PMEVCNTR_EL0(8), PMU_PMEVCNTR_EL0(9), PMU_PMEVCNTR_EL0(10), PMU_PMEVCNTR_EL0(11), PMU_PMEVCNTR_EL0(12), PMU_PMEVCNTR_EL0(13), PMU_PMEVCNTR_EL0(14), PMU_PMEVCNTR_EL0(15), PMU_PMEVCNTR_EL0(16), PMU_PMEVCNTR_EL0(17), PMU_PMEVCNTR_EL0(18), PMU_PMEVCNTR_EL0(19), PMU_PMEVCNTR_EL0(20), PMU_PMEVCNTR_EL0(21), PMU_PMEVCNTR_EL0(22), PMU_PMEVCNTR_EL0(23), PMU_PMEVCNTR_EL0(24), PMU_PMEVCNTR_EL0(25), PMU_PMEVCNTR_EL0(26), PMU_PMEVCNTR_EL0(27), PMU_PMEVCNTR_EL0(28), PMU_PMEVCNTR_EL0(29), PMU_PMEVCNTR_EL0(30), /* PMEVTYPERn_EL0 */ PMU_PMEVTYPER_EL0(0), PMU_PMEVTYPER_EL0(1), PMU_PMEVTYPER_EL0(2), PMU_PMEVTYPER_EL0(3), PMU_PMEVTYPER_EL0(4), PMU_PMEVTYPER_EL0(5), PMU_PMEVTYPER_EL0(6), PMU_PMEVTYPER_EL0(7), PMU_PMEVTYPER_EL0(8), PMU_PMEVTYPER_EL0(9), PMU_PMEVTYPER_EL0(10), PMU_PMEVTYPER_EL0(11), PMU_PMEVTYPER_EL0(12), PMU_PMEVTYPER_EL0(13), PMU_PMEVTYPER_EL0(14), PMU_PMEVTYPER_EL0(15), PMU_PMEVTYPER_EL0(16), PMU_PMEVTYPER_EL0(17), PMU_PMEVTYPER_EL0(18), PMU_PMEVTYPER_EL0(19), PMU_PMEVTYPER_EL0(20), PMU_PMEVTYPER_EL0(21), PMU_PMEVTYPER_EL0(22), PMU_PMEVTYPER_EL0(23), PMU_PMEVTYPER_EL0(24), PMU_PMEVTYPER_EL0(25), PMU_PMEVTYPER_EL0(26), PMU_PMEVTYPER_EL0(27), PMU_PMEVTYPER_EL0(28), PMU_PMEVTYPER_EL0(29), PMU_PMEVTYPER_EL0(30), /* * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 }, { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, }; static bool trap_dbgidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) | (6 << 16) | (el3 << 14) | (el3 << 12)); return true; } } static bool trap_debug32(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { vcpu_cp14(vcpu, r->reg) = p->regval; vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; } else { p->regval = vcpu_cp14(vcpu, r->reg); } return true; } /* AArch32 debug register mappings * * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] * * All control registers and watchpoint value registers are mapped to * the lower 32 bits of their AArch64 equivalents. We share the trap * handlers with the above AArch64 code which checks what mode the * system is in. */ static bool trap_xvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; if (p->is_write) { u64 val = *dbg_reg; val &= 0xffffffffUL; val |= p->regval << 32; *dbg_reg = val; vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; } else { p->regval = *dbg_reg >> 32; } trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); return true; } #define DBG_BCR_BVR_WCR_WVR(n) \ /* DBGBVRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ /* DBGBCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ /* DBGWVRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ /* DBGWCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } #define DBGBXVR(n) \ { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n } /* * Trapped cp14 registers. We generally ignore most of the external * debug, on the principle that they don't really make sense to a * guest. Revisit this one day, would this principle change. */ static const struct sys_reg_desc cp14_regs[] = { /* DBGIDR */ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr }, /* DBGDTRRXext */ { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(0), /* DBGDSCRint */ { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(1), /* DBGDCCINT */ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 }, /* DBGDSCRext */ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 }, DBG_BCR_BVR_WCR_WVR(2), /* DBGDTR[RT]Xint */ { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, /* DBGDTR[RT]Xext */ { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(3), DBG_BCR_BVR_WCR_WVR(4), DBG_BCR_BVR_WCR_WVR(5), /* DBGWFAR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, /* DBGOSECCR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(6), /* DBGVCR */ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 }, DBG_BCR_BVR_WCR_WVR(7), DBG_BCR_BVR_WCR_WVR(8), DBG_BCR_BVR_WCR_WVR(9), DBG_BCR_BVR_WCR_WVR(10), DBG_BCR_BVR_WCR_WVR(11), DBG_BCR_BVR_WCR_WVR(12), DBG_BCR_BVR_WCR_WVR(13), DBG_BCR_BVR_WCR_WVR(14), DBG_BCR_BVR_WCR_WVR(15), /* DBGDRAR (32bit) */ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, DBGBXVR(0), /* DBGOSLAR */ { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, DBGBXVR(1), /* DBGOSLSR */ { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, DBGBXVR(2), DBGBXVR(3), /* DBGOSDLR */ { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, DBGBXVR(4), /* DBGPRCR */ { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, DBGBXVR(5), DBGBXVR(6), DBGBXVR(7), DBGBXVR(8), DBGBXVR(9), DBGBXVR(10), DBGBXVR(11), DBGBXVR(12), DBGBXVR(13), DBGBXVR(14), DBGBXVR(15), /* DBGDSAR (32bit) */ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, /* DBGDEVID2 */ { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, /* DBGDEVID1 */ { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, /* DBGDEVID */ { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, /* DBGCLAIMSET */ { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, /* DBGCLAIMCLR */ { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, /* DBGAUTHSTATUS */ { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, }; /* Trapped cp14 64bit registers */ static const struct sys_reg_desc cp14_64_regs[] = { /* DBGDRAR (64bit) */ { Op1( 0), CRm( 1), .access = trap_raz_wi }, /* DBGDSAR (64bit) */ { Op1( 0), CRm( 2), .access = trap_raz_wi }, }; /* Macro to expand the PMEVCNTRn register */ #define PMU_PMEVCNTR(n) \ /* PMEVCNTRn */ \ { Op1(0), CRn(0b1110), \ CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ access_pmu_evcntr } /* Macro to expand the PMEVTYPERn register */ #define PMU_PMEVTYPER(n) \ /* PMEVTYPERn */ \ { Op1(0), CRn(0b1110), \ CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ access_pmu_evtyper } /* * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, * depending on the way they are accessed (as a 32bit or a 64bit * register). */ static const struct sys_reg_desc cp15_regs[] = { { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR }, { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR }, { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR }, { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR }, { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR }, { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR }, { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR }, { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR }, { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR }, /* * DC{C,I,CI}SW operations: */ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, /* PMU */ { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr }, { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten }, { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten }, { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs }, { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc }, { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr }, { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid }, { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid }, { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr }, { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper }, { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr }, { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr }, { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten }, { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten }, { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs }, { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR }, { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR }, { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 }, { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 }, /* ICC_SRE */ { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID }, /* CNTP_TVAL */ { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval }, /* CNTP_CTL */ { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl }, /* PMEVCNTRn */ PMU_PMEVCNTR(0), PMU_PMEVCNTR(1), PMU_PMEVCNTR(2), PMU_PMEVCNTR(3), PMU_PMEVCNTR(4), PMU_PMEVCNTR(5), PMU_PMEVCNTR(6), PMU_PMEVCNTR(7), PMU_PMEVCNTR(8), PMU_PMEVCNTR(9), PMU_PMEVCNTR(10), PMU_PMEVCNTR(11), PMU_PMEVCNTR(12), PMU_PMEVCNTR(13), PMU_PMEVCNTR(14), PMU_PMEVCNTR(15), PMU_PMEVCNTR(16), PMU_PMEVCNTR(17), PMU_PMEVCNTR(18), PMU_PMEVCNTR(19), PMU_PMEVCNTR(20), PMU_PMEVCNTR(21), PMU_PMEVCNTR(22), PMU_PMEVCNTR(23), PMU_PMEVCNTR(24), PMU_PMEVCNTR(25), PMU_PMEVCNTR(26), PMU_PMEVCNTR(27), PMU_PMEVCNTR(28), PMU_PMEVCNTR(29), PMU_PMEVCNTR(30), /* PMEVTYPERn */ PMU_PMEVTYPER(0), PMU_PMEVTYPER(1), PMU_PMEVTYPER(2), PMU_PMEVTYPER(3), PMU_PMEVTYPER(4), PMU_PMEVTYPER(5), PMU_PMEVTYPER(6), PMU_PMEVTYPER(7), PMU_PMEVTYPER(8), PMU_PMEVTYPER(9), PMU_PMEVTYPER(10), PMU_PMEVTYPER(11), PMU_PMEVTYPER(12), PMU_PMEVTYPER(13), PMU_PMEVTYPER(14), PMU_PMEVTYPER(15), PMU_PMEVTYPER(16), PMU_PMEVTYPER(17), PMU_PMEVTYPER(18), PMU_PMEVTYPER(19), PMU_PMEVTYPER(20), PMU_PMEVTYPER(21), PMU_PMEVTYPER(22), PMU_PMEVTYPER(23), PMU_PMEVTYPER(24), PMU_PMEVTYPER(25), PMU_PMEVTYPER(26), PMU_PMEVTYPER(27), PMU_PMEVTYPER(28), PMU_PMEVTYPER(29), PMU_PMEVTYPER(30), /* PMCCFILTR */ { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper }, }; static const struct sys_reg_desc cp15_64_regs[] = { { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr }, { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval }, }; /* Target specific emulation tables */ static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; void kvm_register_target_sys_reg_table(unsigned int target, struct kvm_sys_reg_target_table *table) { target_tables[target] = table; } /* Get specific register table for this target. */ static const struct sys_reg_desc *get_target_table(unsigned target, bool mode_is_64, size_t *num) { struct kvm_sys_reg_target_table *table; table = target_tables[target]; if (mode_is_64) { *num = table->table64.num; return table->table64.table; } else { *num = table->table32.num; return table->table32.table; } } #define reg_to_match_value(x) \ ({ \ unsigned long val; \ val = (x)->Op0 << 14; \ val |= (x)->Op1 << 11; \ val |= (x)->CRn << 7; \ val |= (x)->CRm << 3; \ val |= (x)->Op2; \ val; \ }) static int match_sys_reg(const void *key, const void *elt) { const unsigned long pval = (unsigned long)key; const struct sys_reg_desc *r = elt; return pval - reg_to_match_value(r); } static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num) { unsigned long pval = reg_to_match_value(params); return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg); } int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } static void perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { /* * Not having an accessor means that we have configured a trap * that we don't know how to handle. This certainly qualifies * as a gross bug that should be fixed right away. */ BUG_ON(!r->access); /* Skip instruction if instructed so */ if (likely(r->access(vcpu, params, r))) kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); } /* * emulate_cp -- tries to match a sys_reg access in a handling table, and * call the corresponding trap handler. * * @params: pointer to the descriptor of the access * @table: array of trap descriptors * @num: size of the trap descriptor array * * Return 0 if the access has been handled, and -1 if not. */ static int emulate_cp(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *table, size_t num) { const struct sys_reg_desc *r; if (!table) return -1; /* Not handled */ r = find_reg(params, table, num); if (r) { perform_access(vcpu, params, r); return 0; } /* Not handled */ return -1; } static void unhandled_cp_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); int cp = -1; switch(hsr_ec) { case ESR_ELx_EC_CP15_32: case ESR_ELx_EC_CP15_64: cp = 15; break; case ESR_ELx_EC_CP14_MR: case ESR_ELx_EC_CP14_64: cp = 14; break; default: WARN_ON(1); } kvm_err("Unsupported guest CP%d access at: %08lx\n", cp, *vcpu_pc(vcpu)); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); } /** * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global, const struct sys_reg_desc *target_specific, size_t nr_specific) { struct sys_reg_params params; u32 hsr = kvm_vcpu_get_hsr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int Rt2 = (hsr >> 10) & 0x1f; params.is_aarch32 = true; params.is_32bit = false; params.CRm = (hsr >> 1) & 0xf; params.is_write = ((hsr & 1) == 0); params.Op0 = 0; params.Op1 = (hsr >> 16) & 0xf; params.Op2 = 0; params.CRn = 0; /* * Make a 64-bit value out of Rt and Rt2. As we use the same trap * backends between AArch32 and AArch64, we get away with it. */ if (params.is_write) { params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; } /* * Try to emulate the coprocessor access using the target * specific table first, and using the global table afterwards. * If either of the tables contains a handler, handle the * potential register operation in the case of a read and return * with success. */ if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || !emulate_cp(vcpu, ¶ms, global, nr_global)) { /* Split up the value between registers for the read side */ if (!params.is_write) { vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); } return 1; } unhandled_cp_access(vcpu, ¶ms); return 1; } /** * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global, const struct sys_reg_desc *target_specific, size_t nr_specific) { struct sys_reg_params params; u32 hsr = kvm_vcpu_get_hsr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); params.is_aarch32 = true; params.is_32bit = true; params.CRm = (hsr >> 1) & 0xf; params.regval = vcpu_get_reg(vcpu, Rt); params.is_write = ((hsr & 1) == 0); params.CRn = (hsr >> 10) & 0xf; params.Op0 = 0; params.Op1 = (hsr >> 14) & 0x7; params.Op2 = (hsr >> 17) & 0x7; if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || !emulate_cp(vcpu, ¶ms, global, nr_global)) { if (!params.is_write) vcpu_set_reg(vcpu, Rt, params.regval); return 1; } unhandled_cp_access(vcpu, ¶ms); return 1; } int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) { const struct sys_reg_desc *target_specific; size_t num; target_specific = get_target_table(vcpu->arch.target, false, &num); return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs), target_specific, num); } int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) { const struct sys_reg_desc *target_specific; size_t num; target_specific = get_target_table(vcpu->arch.target, false, &num); return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), target_specific, num); } int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) { return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs), NULL, 0); } int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) { return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs), NULL, 0); } static int emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { size_t num; const struct sys_reg_desc *table, *r; table = get_target_table(vcpu->arch.target, true, &num); /* Search target-specific then generic table. */ r = find_reg(params, table, num); if (!r) r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); if (likely(r)) { perform_access(vcpu, params, r); } else { kvm_err("Unsupported guest sys_reg access at: %lx\n", *vcpu_pc(vcpu)); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); } return 1; } static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, const struct sys_reg_desc *table, size_t num, unsigned long *bmap) { unsigned long i; for (i = 0; i < num; i++) if (table[i].reset) { int reg = table[i].reg; table[i].reset(vcpu, &table[i]); if (reg > 0 && reg < NR_SYS_REGS) set_bit(reg, bmap); } } /** * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct sys_reg_params params; unsigned long esr = kvm_vcpu_get_hsr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int ret; trace_kvm_handle_sys_reg(esr); params.is_aarch32 = false; params.is_32bit = false; params.Op0 = (esr >> 20) & 3; params.Op1 = (esr >> 14) & 0x7; params.CRn = (esr >> 10) & 0xf; params.CRm = (esr >> 1) & 0xf; params.Op2 = (esr >> 17) & 0x7; params.regval = vcpu_get_reg(vcpu, Rt); params.is_write = !(esr & 1); ret = emulate_sys_reg(vcpu, ¶ms); if (!params.is_write) vcpu_set_reg(vcpu, Rt, params.regval); return ret; } /****************************************************************************** * Userspace API *****************************************************************************/ static bool index_to_params(u64 id, struct sys_reg_params *params) { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U64: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM64_SYSREG_OP0_MASK | KVM_REG_ARM64_SYSREG_OP1_MASK | KVM_REG_ARM64_SYSREG_CRN_MASK | KVM_REG_ARM64_SYSREG_CRM_MASK | KVM_REG_ARM64_SYSREG_OP2_MASK)) return false; params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); return true; default: return false; } } const struct sys_reg_desc *find_reg_by_id(u64 id, struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num) { if (!index_to_params(id, params)) return NULL; return find_reg(params, table, num); } /* Decode an index value, and find the sys_reg_desc entry. */ static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id) { size_t num; const struct sys_reg_desc *table, *r; struct sys_reg_params params; /* We only do sys_reg for now. */ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) return NULL; table = get_target_table(vcpu->arch.target, true, &num); r = find_reg_by_id(id, ¶ms, table, num); if (!r) r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); /* Not saved in the sys_reg array and not otherwise accessible? */ if (r && !(r->reg || r->get_user)) r = NULL; return r; } /* * These are the invariant sys_reg registers: we let the guest see the * host versions of these, so they're part of the guest state. * * A future CPU may provide a mechanism to present different values to * the guest, or a future kvm may trap them. */ #define FUNCTION_INVARIANT(reg) \ static void get_##reg(struct kvm_vcpu *v, \ const struct sys_reg_desc *r) \ { \ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ } FUNCTION_INVARIANT(midr_el1) FUNCTION_INVARIANT(ctr_el0) FUNCTION_INVARIANT(revidr_el1) FUNCTION_INVARIANT(clidr_el1) FUNCTION_INVARIANT(aidr_el1) /* ->val is filled in by kvm_sys_reg_table_init() */ static struct sys_reg_desc invariant_sys_regs[] = { { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, }; static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) { if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) { if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } static int get_invariant_sys_reg(u64 id, void __user *uaddr) { struct sys_reg_params params; const struct sys_reg_desc *r; r = find_reg_by_id(id, ¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; return reg_to_user(uaddr, &r->val, id); } static int set_invariant_sys_reg(u64 id, void __user *uaddr) { struct sys_reg_params params; const struct sys_reg_desc *r; int err; u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ r = find_reg_by_id(id, ¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; err = reg_from_user(&val, uaddr, id); if (err) return err; /* This is what we mean by invariant: you can't change it. */ if (r->val != val) return -EINVAL; return 0; } static bool is_valid_cache(u32 val) { u32 level, ctype; if (val >= CSSELR_MAX) return false; /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ level = (val >> 1); ctype = (cache_levels >> (level * 3)) & 7; switch (ctype) { case 0: /* No cache */ return false; case 1: /* Instruction cache only */ return (val & 1); case 2: /* Data cache only */ case 4: /* Unified cache */ return !(val & 1); case 3: /* Separate instruction and data caches */ return true; default: /* Reserved: we can't know instruction or data. */ return false; } } static int demux_c15_get(u64 id, void __user *uaddr) { u32 val; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; return put_user(get_ccsidr(val), uval); default: return -ENOENT; } } static int demux_c15_set(u64 id, void __user *uaddr) { u32 val, newval; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; if (get_user(newval, uval)) return -EFAULT; /* This is also invariant: you can't change it. */ if (newval != get_ccsidr(val)) return -EINVAL; return 0; default: return -ENOENT; } } int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct sys_reg_desc *r; void __user *uaddr = (void __user *)(unsigned long)reg->addr; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(reg->id, uaddr); if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) return -ENOENT; r = index_to_sys_reg_desc(vcpu, reg->id); if (!r) return get_invariant_sys_reg(reg->id, uaddr); if (r->get_user) return (r->get_user)(vcpu, r, reg, uaddr); return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id); } int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct sys_reg_desc *r; void __user *uaddr = (void __user *)(unsigned long)reg->addr; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(reg->id, uaddr); if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) return -ENOENT; r = index_to_sys_reg_desc(vcpu, reg->id); if (!r) return set_invariant_sys_reg(reg->id, uaddr); if (r->set_user) return (r->set_user)(vcpu, r, reg, uaddr); return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); } static unsigned int num_demux_regs(void) { unsigned int i, count = 0; for (i = 0; i < CSSELR_MAX; i++) if (is_valid_cache(i)) count++; return count; } static int write_demux_regids(u64 __user *uindices) { u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; unsigned int i; val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; for (i = 0; i < CSSELR_MAX; i++) { if (!is_valid_cache(i)) continue; if (put_user(val | i, uindices)) return -EFAULT; uindices++; } return 0; } static u64 sys_reg_to_index(const struct sys_reg_desc *reg) { return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM64_SYSREG | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); } static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) { if (!*uind) return true; if (put_user(sys_reg_to_index(reg), *uind)) return false; (*uind)++; return true; } static int walk_one_sys_reg(const struct sys_reg_desc *rd, u64 __user **uind, unsigned int *total) { /* * Ignore registers we trap but don't save, * and for which no custom user accessor is provided. */ if (!(rd->reg || rd->get_user)) return 0; if (!copy_reg_to_user(rd, uind)) return -EFAULT; (*total)++; return 0; } /* Assumed ordered tables, see kvm_sys_reg_table_init. */ static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) { const struct sys_reg_desc *i1, *i2, *end1, *end2; unsigned int total = 0; size_t num; int err; /* We check for duplicates here, to allow arch-specific overrides. */ i1 = get_target_table(vcpu->arch.target, true, &num); end1 = i1 + num; i2 = sys_reg_descs; end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); BUG_ON(i1 == end1 || i2 == end2); /* Walk carefully, as both tables may refer to the same register. */ while (i1 || i2) { int cmp = cmp_sys_reg(i1, i2); /* target-specific overrides generic entry. */ if (cmp <= 0) err = walk_one_sys_reg(i1, &uind, &total); else err = walk_one_sys_reg(i2, &uind, &total); if (err) return err; if (cmp <= 0 && ++i1 == end1) i1 = NULL; if (cmp >= 0 && ++i2 == end2) i2 = NULL; } return total; } unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(invariant_sys_regs) + num_demux_regs() + walk_sys_regs(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int err; /* Then give them all the invariant registers' indices. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) return -EFAULT; uindices++; } err = walk_sys_regs(vcpu, uindices); if (err < 0) return err; uindices += err; return write_demux_regids(uindices); } static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n) { unsigned int i; for (i = 1; i < n; i++) { if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) { kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); return 1; } } return 0; } void kvm_sys_reg_table_init(void) { unsigned int i; struct sys_reg_desc clidr; /* Make sure tables are unique and in order. */ BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs))); BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs))); BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs))); BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs))); BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs))); /* We abuse the reset function to overwrite the table itself. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); /* * CLIDR format is awkward, so clean it up. See ARM B4.1.20: * * If software reads the Cache Type fields from Ctype1 * upwards, once it has seen a value of 0b000, no caches * exist at further-out levels of the hierarchy. So, for * example, if Ctype3 is the first Cache Type field with a * value of 0b000, the values of Ctype4 to Ctype7 must be * ignored. */ get_clidr_el1(NULL, &clidr); /* Ugly... */ cache_levels = clidr.val; for (i = 0; i < 7; i++) if (((cache_levels >> (i*3)) & 7) == 0) break; /* Clear all higher bits. */ cache_levels &= (1 << (i*3))-1; } /** * kvm_reset_sys_regs - sets system registers to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on the * virtual CPU struct to their architecturally defined reset values. */ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) { size_t num; const struct sys_reg_desc *table; DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, }; /* Generic chip reset first (so target could override). */ reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap); table = get_target_table(vcpu->arch.target, true, &num); reset_sys_reg_descs(vcpu, table, num, bmap); for (num = 1; num < NR_SYS_REGS; num++) { if (WARN(!test_bit(num, bmap), "Didn't reset __vcpu_sys_reg(%zi)\n", num)) break; } }