/* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Check whether the FP regs were dirtied while in the host-side run loop: */ static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu) { if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | KVM_ARM64_FP_HOST); return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); } /* Save the 32-bit only FPSIMD system register state */ static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2); } static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) { /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to * it will cause an exception. */ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { write_sysreg(1 << 30, fpexc32_el2); isb(); } } static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu) { /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ write_sysreg(0, pmselr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); } static void __hyp_text __deactivate_traps_common(void) { write_sysreg(0, hstr_el2); write_sysreg(0, pmuserenr_el0); } static void activate_traps_vhe(struct kvm_vcpu *vcpu) { u64 val; val = read_sysreg(cpacr_el1); val |= CPACR_EL1_TTA; val &= ~CPACR_EL1_ZEN; if (!update_fp_enabled(vcpu)) { val &= ~CPACR_EL1_FPEN; __activate_traps_fpsimd32(vcpu); } write_sysreg(val, cpacr_el1); write_sysreg(kvm_get_hyp_vector(), vbar_el1); } NOKPROBE_SYMBOL(activate_traps_vhe); static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu) { u64 val; __activate_traps_common(vcpu); val = CPTR_EL2_DEFAULT; val |= CPTR_EL2_TTA | CPTR_EL2_TZ; if (!update_fp_enabled(vcpu)) { val |= CPTR_EL2_TFP; __activate_traps_fpsimd32(vcpu); } write_sysreg(val, cptr_el2); } static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu) { u64 hcr = vcpu->arch.hcr_el2; write_sysreg(hcr, hcr_el2); if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); if (has_vhe()) activate_traps_vhe(vcpu); else __activate_traps_nvhe(vcpu); } static void deactivate_traps_vhe(void) { extern char vectors[]; /* kernel exception vectors */ write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1); write_sysreg(vectors, vbar_el1); } NOKPROBE_SYMBOL(deactivate_traps_vhe); static void __hyp_text __deactivate_traps_nvhe(void) { u64 mdcr_el2 = read_sysreg(mdcr_el2); __deactivate_traps_common(); mdcr_el2 &= MDCR_EL2_HPMN_MASK; mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; write_sysreg(mdcr_el2, mdcr_el2); write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2); write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); } static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) vcpu->arch.hcr_el2 = read_sysreg(hcr_el2); if (has_vhe()) deactivate_traps_vhe(); else __deactivate_traps_nvhe(); } void activate_traps_vhe_load(struct kvm_vcpu *vcpu) { __activate_traps_common(vcpu); } void deactivate_traps_vhe_put(void) { u64 mdcr_el2 = read_sysreg(mdcr_el2); mdcr_el2 &= MDCR_EL2_HPMN_MASK | MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT | MDCR_EL2_TPMS; write_sysreg(mdcr_el2, mdcr_el2); __deactivate_traps_common(); } static void __hyp_text __activate_vm(struct kvm *kvm) { write_sysreg(kvm->arch.vttbr, vttbr_el2); } static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu) { write_sysreg(0, vttbr_el2); } /* Save VGICv3 state on non-VHE systems */ static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_save_state(vcpu); __vgic_v3_deactivate_traps(vcpu); } } /* Restore VGICv3 state on non_VEH systems */ static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_activate_traps(vcpu); __vgic_v3_restore_state(vcpu); } } static bool __hyp_text __true_value(void) { return true; } static bool __hyp_text __false_value(void) { return false; } static hyp_alternate_select(__check_arm_834220, __false_value, __true_value, ARM64_WORKAROUND_834220); static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar) { u64 par, tmp; /* * Resolve the IPA the hard way using the guest VA. * * Stage-1 translation already validated the memory access * rights. As such, we can use the EL1 translation regime, and * don't have to distinguish between EL0 and EL1 access. * * We do need to save/restore PAR_EL1 though, as we haven't * saved the guest context yet, and we may return early... */ par = read_sysreg(par_el1); asm volatile("at s1e1r, %0" : : "r" (far)); isb(); tmp = read_sysreg(par_el1); write_sysreg(par, par_el1); if (unlikely(tmp & 1)) return false; /* Translation failed, back to guest */ /* Convert PAR to HPFAR format */ *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4; return true; } static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) { u8 ec; u64 esr; u64 hpfar, far; esr = vcpu->arch.fault.esr_el2; ec = ESR_ELx_EC(esr); if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW) return true; far = read_sysreg_el2(far); /* * The HPFAR can be invalid if the stage 2 fault did not * happen during a stage 1 page table walk (the ESR_EL2.S1PTW * bit is clear) and one of the two following cases are true: * 1. The fault was due to a permission fault * 2. The processor carries errata 834220 * * Therefore, for all non S1PTW faults where we either have a * permission fault or the errata workaround is enabled, we * resolve the IPA using the AT instruction. */ if (!(esr & ESR_ELx_S1PTW) && (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) { if (!__translate_far_to_hpfar(far, &hpfar)) return false; } else { hpfar = read_sysreg(hpfar_el2); } vcpu->arch.fault.far_el2 = far; vcpu->arch.fault.hpfar_el2 = hpfar; return true; } /* Skip an instruction which has been emulated. Returns true if * execution can continue or false if we need to exit hyp mode because * single-step was in effect. */ static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu) { *vcpu_pc(vcpu) = read_sysreg_el2(elr); if (vcpu_mode_is_32bit(vcpu)) { vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); } else { *vcpu_pc(vcpu) += 4; } write_sysreg_el2(*vcpu_pc(vcpu), elr); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { vcpu->arch.fault.esr_el2 = (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22; return false; } else { return true; } } static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu) { struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state; if (has_vhe()) write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN, cpacr_el1); else write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP, cptr_el2); isb(); if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { /* * In the SVE case, VHE is assumed: it is enforced by * Kconfig and kvm_arch_init(). */ if (system_supports_sve() && (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) { struct thread_struct *thread = container_of( host_fpsimd, struct thread_struct, uw.fpsimd_state); sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr); } else { __fpsimd_save_state(host_fpsimd); } vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; } __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs); /* Skip restoring fpexc32 for AArch64 guests */ if (!(read_sysreg(hcr_el2) & HCR_RW)) write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2], fpexc32_el2); vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; return true; } /* * Return true when we were able to fixup the guest exit and should return to * the guest, false when we should restore the host state and return to the * main run loop. */ static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr); /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (*exit_code != ARM_EXCEPTION_TRAP) goto exit; /* * We trap the first access to the FP/SIMD to save the host context * and restore the guest context lazily. * If FP/SIMD is not implemented, handle the trap and inject an * undefined instruction exception to the guest. */ if (system_supports_fpsimd() && kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD) return __hyp_switch_fpsimd(vcpu); if (!__populate_fault_info(vcpu)) return true; if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { bool valid; valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW && kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_dabt_isextabt(vcpu) && !kvm_vcpu_dabt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1 && __skip_instr(vcpu)) return true; if (ret == -1) { /* Promote an illegal access to an * SError. If we would be returning * due to single-step clear the SS * bit so handle_exit knows what to * do after dealing with the error. */ if (!__skip_instr(vcpu)) *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; *exit_code = ARM_EXCEPTION_EL1_SERROR; } goto exit; } } if (static_branch_unlikely(&vgic_v3_cpuif_trap) && (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 || kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) { int ret = __vgic_v3_perform_cpuif_access(vcpu); if (ret == 1 && __skip_instr(vcpu)) return true; } exit: /* Return to the host kernel and handle the exit */ return false; } static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu) { if (!cpus_have_const_cap(ARM64_SSBD)) return false; return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG); } static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ARM64_SSBD /* * The host runs with the workaround always present. If the * guest wants it disabled, so be it... */ if (__needs_ssbd_off(vcpu) && __hyp_this_cpu_read(arm64_ssbd_callback_required)) arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL); #endif } static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ARM64_SSBD /* * If the guest has disabled the workaround, bring it back on. */ if (__needs_ssbd_off(vcpu) && __hyp_this_cpu_read(arm64_ssbd_callback_required)) arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL); #endif } /* Switch to the guest for VHE systems running in EL2 */ int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; u64 exit_code; host_ctxt = vcpu->arch.host_cpu_context; host_ctxt->__hyp_running_vcpu = vcpu; guest_ctxt = &vcpu->arch.ctxt; sysreg_save_host_state_vhe(host_ctxt); __activate_traps(vcpu); __activate_vm(vcpu->kvm); sysreg_restore_guest_state_vhe(guest_ctxt); __debug_switch_to_guest(vcpu); __set_guest_arch_workaround_state(vcpu); do { /* Jump in the fire! */ exit_code = __guest_enter(vcpu, host_ctxt); /* And we're baaack! */ } while (fixup_guest_exit(vcpu, &exit_code)); __set_host_arch_workaround_state(vcpu); sysreg_save_guest_state_vhe(guest_ctxt); __deactivate_traps(vcpu); sysreg_restore_host_state_vhe(host_ctxt); if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) __fpsimd_save_fpexc32(vcpu); __debug_switch_to_host(vcpu); return exit_code; } NOKPROBE_SYMBOL(kvm_vcpu_run_vhe); /* Switch to the guest for legacy non-VHE systems */ int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; u64 exit_code; vcpu = kern_hyp_va(vcpu); host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); host_ctxt->__hyp_running_vcpu = vcpu; guest_ctxt = &vcpu->arch.ctxt; __sysreg_save_state_nvhe(host_ctxt); __activate_traps(vcpu); __activate_vm(kern_hyp_va(vcpu->kvm)); __hyp_vgic_restore_state(vcpu); __timer_enable_traps(vcpu); /* * We must restore the 32-bit state before the sysregs, thanks * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). */ __sysreg32_restore_state(vcpu); __sysreg_restore_state_nvhe(guest_ctxt); __debug_switch_to_guest(vcpu); __set_guest_arch_workaround_state(vcpu); do { /* Jump in the fire! */ exit_code = __guest_enter(vcpu, host_ctxt); /* And we're baaack! */ } while (fixup_guest_exit(vcpu, &exit_code)); __set_host_arch_workaround_state(vcpu); __sysreg_save_state_nvhe(guest_ctxt); __sysreg32_save_state(vcpu); __timer_disable_traps(vcpu); __hyp_vgic_save_state(vcpu); __deactivate_traps(vcpu); __deactivate_vm(vcpu); __sysreg_restore_state_nvhe(host_ctxt); if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) __fpsimd_save_fpexc32(vcpu); /* * This must come after restoring the host sysregs, since a non-VHE * system may enable SPE here and make use of the TTBRs. */ __debug_switch_to_host(vcpu); return exit_code; } static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n"; static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par, struct kvm_cpu_context *__host_ctxt) { struct kvm_vcpu *vcpu; unsigned long str_va; vcpu = __host_ctxt->__hyp_running_vcpu; if (read_sysreg(vttbr_el2)) { __timer_disable_traps(vcpu); __deactivate_traps(vcpu); __deactivate_vm(vcpu); __sysreg_restore_state_nvhe(__host_ctxt); } /* * Force the panic string to be loaded from the literal pool, * making sure it is a kernel address and not a PC-relative * reference. */ asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va)); __hyp_do_panic(str_va, spsr, elr, read_sysreg(esr_el2), read_sysreg_el2(far), read_sysreg(hpfar_el2), par, vcpu); } static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par, struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu *vcpu; vcpu = host_ctxt->__hyp_running_vcpu; __deactivate_traps(vcpu); sysreg_restore_host_state_vhe(host_ctxt); panic(__hyp_panic_string, spsr, elr, read_sysreg_el2(esr), read_sysreg_el2(far), read_sysreg(hpfar_el2), par, vcpu); } NOKPROBE_SYMBOL(__hyp_call_panic_vhe); void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt) { u64 spsr = read_sysreg_el2(spsr); u64 elr = read_sysreg_el2(elr); u64 par = read_sysreg(par_el1); if (!has_vhe()) __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt); else __hyp_call_panic_vhe(spsr, elr, par, host_ctxt); unreachable(); }