/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "../unit_test/unit_test.h" #include "libyuv/cpu_id.h" #include "libyuv/scale.h" #include "libyuv/scale_row.h" // For ScaleRowDown2Box_Odd_C #define STRINGIZE(line) #line #define FILELINESTR(file, line) file ":" STRINGIZE(line) namespace libyuv { // Test scaling with C vs Opt and return maximum pixel difference. 0 = exact. static int TestFilter(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } int i, j; int src_width_uv = (Abs(src_width) + 1) >> 1; int src_height_uv = (Abs(src_height) + 1) >> 1; int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height)); int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv); int src_stride_y = Abs(src_width); int src_stride_uv = src_width_uv; align_buffer_page_end(src_y, src_y_plane_size); align_buffer_page_end(src_u, src_uv_plane_size); align_buffer_page_end(src_v, src_uv_plane_size); if (!src_y || !src_u || !src_v) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } MemRandomize(src_y, src_y_plane_size); MemRandomize(src_u, src_uv_plane_size); MemRandomize(src_v, src_uv_plane_size); int dst_width_uv = (dst_width + 1) >> 1; int dst_height_uv = (dst_height + 1) >> 1; int64_t dst_y_plane_size = (dst_width) * (dst_height); int64_t dst_uv_plane_size = (dst_width_uv) * (dst_height_uv); int dst_stride_y = dst_width; int dst_stride_uv = dst_width_uv; align_buffer_page_end(dst_y_c, dst_y_plane_size); align_buffer_page_end(dst_u_c, dst_uv_plane_size); align_buffer_page_end(dst_v_c, dst_uv_plane_size); align_buffer_page_end(dst_y_opt, dst_y_plane_size); align_buffer_page_end(dst_u_opt, dst_uv_plane_size); align_buffer_page_end(dst_v_opt, dst_uv_plane_size); if (!dst_y_c || !dst_u_c || !dst_v_c || !dst_y_opt || !dst_u_opt || !dst_v_opt) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. double c_time = get_time(); I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv, src_width, src_height, dst_y_c, dst_stride_y, dst_u_c, dst_stride_uv, dst_v_c, dst_stride_uv, dst_width, dst_height, f); c_time = (get_time() - c_time); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. double opt_time = get_time(); for (i = 0; i < benchmark_iterations; ++i) { I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv, src_width, src_height, dst_y_opt, dst_stride_y, dst_u_opt, dst_stride_uv, dst_v_opt, dst_stride_uv, dst_width, dst_height, f); } opt_time = (get_time() - opt_time) / benchmark_iterations; // Report performance of C vs OPT. printf("filter %d - %8d us C - %8d us OPT\n", f, static_cast(c_time * 1e6), static_cast(opt_time * 1e6)); // C version may be a little off from the optimized. Order of // operations may introduce rounding somewhere. So do a difference // of the buffers and look to see that the max difference is not // over 3. int max_diff = 0; for (i = 0; i < (dst_height); ++i) { for (j = 0; j < (dst_width); ++j) { int abs_diff = Abs(dst_y_c[(i * dst_stride_y) + j] - dst_y_opt[(i * dst_stride_y) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } } } for (i = 0; i < (dst_height_uv); ++i) { for (j = 0; j < (dst_width_uv); ++j) { int abs_diff = Abs(dst_u_c[(i * dst_stride_uv) + j] - dst_u_opt[(i * dst_stride_uv) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } abs_diff = Abs(dst_v_c[(i * dst_stride_uv) + j] - dst_v_opt[(i * dst_stride_uv) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } } } free_aligned_buffer_page_end(dst_y_c); free_aligned_buffer_page_end(dst_u_c); free_aligned_buffer_page_end(dst_v_c); free_aligned_buffer_page_end(dst_y_opt); free_aligned_buffer_page_end(dst_u_opt); free_aligned_buffer_page_end(dst_v_opt); free_aligned_buffer_page_end(src_y); free_aligned_buffer_page_end(src_u); free_aligned_buffer_page_end(src_v); return max_diff; } // Test scaling with 8 bit C vs 16 bit C and return maximum pixel difference. // 0 = exact. static int TestFilter_16(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } int i; int src_width_uv = (Abs(src_width) + 1) >> 1; int src_height_uv = (Abs(src_height) + 1) >> 1; int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height)); int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv); int src_stride_y = Abs(src_width); int src_stride_uv = src_width_uv; align_buffer_page_end(src_y, src_y_plane_size); align_buffer_page_end(src_u, src_uv_plane_size); align_buffer_page_end(src_v, src_uv_plane_size); align_buffer_page_end(src_y_16, src_y_plane_size * 2); align_buffer_page_end(src_u_16, src_uv_plane_size * 2); align_buffer_page_end(src_v_16, src_uv_plane_size * 2); if (!src_y || !src_u || !src_v || !src_y_16 || !src_u_16 || !src_v_16) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } uint16_t* p_src_y_16 = reinterpret_cast(src_y_16); uint16_t* p_src_u_16 = reinterpret_cast(src_u_16); uint16_t* p_src_v_16 = reinterpret_cast(src_v_16); MemRandomize(src_y, src_y_plane_size); MemRandomize(src_u, src_uv_plane_size); MemRandomize(src_v, src_uv_plane_size); for (i = 0; i < src_y_plane_size; ++i) { p_src_y_16[i] = src_y[i]; } for (i = 0; i < src_uv_plane_size; ++i) { p_src_u_16[i] = src_u[i]; p_src_v_16[i] = src_v[i]; } int dst_width_uv = (dst_width + 1) >> 1; int dst_height_uv = (dst_height + 1) >> 1; int dst_y_plane_size = (dst_width) * (dst_height); int dst_uv_plane_size = (dst_width_uv) * (dst_height_uv); int dst_stride_y = dst_width; int dst_stride_uv = dst_width_uv; align_buffer_page_end(dst_y_8, dst_y_plane_size); align_buffer_page_end(dst_u_8, dst_uv_plane_size); align_buffer_page_end(dst_v_8, dst_uv_plane_size); align_buffer_page_end(dst_y_16, dst_y_plane_size * 2); align_buffer_page_end(dst_u_16, dst_uv_plane_size * 2); align_buffer_page_end(dst_v_16, dst_uv_plane_size * 2); uint16_t* p_dst_y_16 = reinterpret_cast(dst_y_16); uint16_t* p_dst_u_16 = reinterpret_cast(dst_u_16); uint16_t* p_dst_v_16 = reinterpret_cast(dst_v_16); MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv, src_width, src_height, dst_y_8, dst_stride_y, dst_u_8, dst_stride_uv, dst_v_8, dst_stride_uv, dst_width, dst_height, f); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. for (i = 0; i < benchmark_iterations; ++i) { I420Scale_16(p_src_y_16, src_stride_y, p_src_u_16, src_stride_uv, p_src_v_16, src_stride_uv, src_width, src_height, p_dst_y_16, dst_stride_y, p_dst_u_16, dst_stride_uv, p_dst_v_16, dst_stride_uv, dst_width, dst_height, f); } // Expect an exact match. int max_diff = 0; for (i = 0; i < dst_y_plane_size; ++i) { int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]); if (abs_diff > max_diff) { max_diff = abs_diff; } } for (i = 0; i < dst_uv_plane_size; ++i) { int abs_diff = Abs(dst_u_8[i] - p_dst_u_16[i]); if (abs_diff > max_diff) { max_diff = abs_diff; } abs_diff = Abs(dst_v_8[i] - p_dst_v_16[i]); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_page_end(dst_y_8); free_aligned_buffer_page_end(dst_u_8); free_aligned_buffer_page_end(dst_v_8); free_aligned_buffer_page_end(dst_y_16); free_aligned_buffer_page_end(dst_u_16); free_aligned_buffer_page_end(dst_v_16); free_aligned_buffer_page_end(src_y); free_aligned_buffer_page_end(src_u); free_aligned_buffer_page_end(src_v); free_aligned_buffer_page_end(src_y_16); free_aligned_buffer_page_end(src_u_16); free_aligned_buffer_page_end(src_v_16); return max_diff; } // The following adjustments in dimensions ensure the scale factor will be // exactly achieved. // 2 is chroma subsample. #define DX(x, nom, denom) static_cast(((Abs(x) / nom + 1) / 2) * nom * 2) #define SX(x, nom, denom) static_cast(((x / nom + 1) / 2) * denom * 2) #define TEST_FACTOR1(name, filter, nom, denom, max_diff) \ TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter) { \ int diff = TestFilter( \ SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter##_16) { \ int diff = TestFilter_16( \ SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } // Test a scale factor with all 4 filters. Expect unfiltered to be exact, but // filtering is different fixed point implementations for SSSE3, Neon and C. #define TEST_FACTOR(name, nom, denom, boxdiff) \ TEST_FACTOR1(name, None, nom, denom, 0) \ TEST_FACTOR1(name, Linear, nom, denom, 3) \ TEST_FACTOR1(name, Bilinear, nom, denom, 3) \ TEST_FACTOR1(name, Box, nom, denom, boxdiff) TEST_FACTOR(2, 1, 2, 0) TEST_FACTOR(4, 1, 4, 0) TEST_FACTOR(8, 1, 8, 0) TEST_FACTOR(3by4, 3, 4, 1) TEST_FACTOR(3by8, 3, 8, 1) TEST_FACTOR(3, 1, 3, 0) #undef TEST_FACTOR1 #undef TEST_FACTOR #undef SX #undef DX #define TEST_SCALETO1(name, width, height, filter, max_diff) \ TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \ int diff = TestFilter(benchmark_width_, benchmark_height_, width, height, \ kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \ int diff = TestFilter(width, height, Abs(benchmark_width_), \ Abs(benchmark_height_), kFilter##filter, \ benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter##_16) { \ int diff = TestFilter_16(benchmark_width_, benchmark_height_, width, \ height, kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter##_16) { \ int diff = TestFilter_16(width, height, Abs(benchmark_width_), \ Abs(benchmark_height_), kFilter##filter, \ benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } // Test scale to a specified size with all 4 filters. #define TEST_SCALETO(name, width, height) \ TEST_SCALETO1(name, width, height, None, 0) \ TEST_SCALETO1(name, width, height, Linear, 3) \ TEST_SCALETO1(name, width, height, Bilinear, 3) \ TEST_SCALETO1(name, width, height, Box, 3) TEST_SCALETO(Scale, 1, 1) TEST_SCALETO(Scale, 320, 240) TEST_SCALETO(Scale, 569, 480) TEST_SCALETO(Scale, 640, 360) TEST_SCALETO(Scale, 1280, 720) TEST_SCALETO(Scale, 1920, 1080) #undef TEST_SCALETO1 #undef TEST_SCALETO #ifdef HAS_SCALEROWDOWN2_SSSE3 TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_Odd_SSSE3) { SIMD_ALIGNED(uint8_t orig_pixels[128 * 2]); SIMD_ALIGNED(uint8_t dst_pixels_opt[64]); SIMD_ALIGNED(uint8_t dst_pixels_c[64]); memset(orig_pixels, 0, sizeof(orig_pixels)); memset(dst_pixels_opt, 0, sizeof(dst_pixels_opt)); memset(dst_pixels_c, 0, sizeof(dst_pixels_c)); int has_ssse3 = TestCpuFlag(kCpuHasSSSE3); if (!has_ssse3) { printf("Warning SSSE3 not detected; Skipping test.\n"); } else { // TL. orig_pixels[0] = 255u; orig_pixels[1] = 0u; orig_pixels[128 + 0] = 0u; orig_pixels[128 + 1] = 0u; // TR. orig_pixels[2] = 0u; orig_pixels[3] = 100u; orig_pixels[128 + 2] = 0u; orig_pixels[128 + 3] = 0u; // BL. orig_pixels[4] = 0u; orig_pixels[5] = 0u; orig_pixels[128 + 4] = 50u; orig_pixels[128 + 5] = 0u; // BR. orig_pixels[6] = 0u; orig_pixels[7] = 0u; orig_pixels[128 + 6] = 0u; orig_pixels[128 + 7] = 20u; // Odd. orig_pixels[126] = 4u; orig_pixels[127] = 255u; orig_pixels[128 + 126] = 16u; orig_pixels[128 + 127] = 255u; // Test regular half size. ScaleRowDown2Box_C(orig_pixels, 128, dst_pixels_c, 64); EXPECT_EQ(64u, dst_pixels_c[0]); EXPECT_EQ(25u, dst_pixels_c[1]); EXPECT_EQ(13u, dst_pixels_c[2]); EXPECT_EQ(5u, dst_pixels_c[3]); EXPECT_EQ(0u, dst_pixels_c[4]); EXPECT_EQ(133u, dst_pixels_c[63]); // Test Odd width version - Last pixel is just 1 horizontal pixel. ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64); EXPECT_EQ(64u, dst_pixels_c[0]); EXPECT_EQ(25u, dst_pixels_c[1]); EXPECT_EQ(13u, dst_pixels_c[2]); EXPECT_EQ(5u, dst_pixels_c[3]); EXPECT_EQ(0u, dst_pixels_c[4]); EXPECT_EQ(10u, dst_pixels_c[63]); // Test one pixel less, should skip the last pixel. memset(dst_pixels_c, 0, sizeof(dst_pixels_c)); ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 63); EXPECT_EQ(64u, dst_pixels_c[0]); EXPECT_EQ(25u, dst_pixels_c[1]); EXPECT_EQ(13u, dst_pixels_c[2]); EXPECT_EQ(5u, dst_pixels_c[3]); EXPECT_EQ(0u, dst_pixels_c[4]); EXPECT_EQ(0u, dst_pixels_c[63]); // Test regular half size SSSE3. ScaleRowDown2Box_SSSE3(orig_pixels, 128, dst_pixels_opt, 64); EXPECT_EQ(64u, dst_pixels_opt[0]); EXPECT_EQ(25u, dst_pixels_opt[1]); EXPECT_EQ(13u, dst_pixels_opt[2]); EXPECT_EQ(5u, dst_pixels_opt[3]); EXPECT_EQ(0u, dst_pixels_opt[4]); EXPECT_EQ(133u, dst_pixels_opt[63]); // Compare C and SSSE3 match. ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64); ScaleRowDown2Box_Odd_SSSE3(orig_pixels, 128, dst_pixels_opt, 64); for (int i = 0; i < 64; ++i) { EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); } } } #endif // HAS_SCALEROWDOWN2_SSSE3 extern "C" void ScaleRowUp2_16_NEON(const uint16_t* src_ptr, ptrdiff_t src_stride, uint16_t* dst, int dst_width); extern "C" void ScaleRowUp2_16_MMI(const uint16_t* src_ptr, ptrdiff_t src_stride, uint16_t* dst, int dst_width); extern "C" void ScaleRowUp2_16_C(const uint16_t* src_ptr, ptrdiff_t src_stride, uint16_t* dst, int dst_width); TEST_F(LibYUVScaleTest, TestScaleRowUp2_16) { SIMD_ALIGNED(uint16_t orig_pixels[640 * 2 + 1]); // 2 rows + 1 pixel overrun. SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]); SIMD_ALIGNED(uint16_t dst_pixels_c[1280]); memset(orig_pixels, 0, sizeof(orig_pixels)); memset(dst_pixels_opt, 1, sizeof(dst_pixels_opt)); memset(dst_pixels_c, 2, sizeof(dst_pixels_c)); for (int i = 0; i < 640 * 2 + 1; ++i) { orig_pixels[i] = i; } ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_c[0], 1280); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { #if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) int has_neon = TestCpuFlag(kCpuHasNEON); if (has_neon) { ScaleRowUp2_16_NEON(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280); } else { ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280); } #elif !defined(LIBYUV_DISABLE_MMI) && defined(_MIPS_ARCH_LOONGSON3A) int has_mmi = TestCpuFlag(kCpuHasMMI); if (has_mmi) { ScaleRowUp2_16_MMI(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280); } else { ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280); } #else ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280); #endif } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); } EXPECT_EQ(dst_pixels_c[0], (0 * 9 + 1 * 3 + 640 * 3 + 641 * 1 + 8) / 16); EXPECT_EQ(dst_pixels_c[1279], 800); } extern "C" void ScaleRowDown2Box_16_NEON(const uint16_t* src_ptr, ptrdiff_t src_stride, uint16_t* dst, int dst_width); TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_16) { SIMD_ALIGNED(uint16_t orig_pixels[2560 * 2]); SIMD_ALIGNED(uint16_t dst_pixels_c[1280]); SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]); memset(orig_pixels, 0, sizeof(orig_pixels)); memset(dst_pixels_c, 1, sizeof(dst_pixels_c)); memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt)); for (int i = 0; i < 2560 * 2; ++i) { orig_pixels[i] = i; } ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_c[0], 1280); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { #if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) int has_neon = TestCpuFlag(kCpuHasNEON); if (has_neon) { ScaleRowDown2Box_16_NEON(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280); } else { ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280); } #else ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280); #endif } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); } EXPECT_EQ(dst_pixels_c[0], (0 + 1 + 2560 + 2561 + 2) / 4); EXPECT_EQ(dst_pixels_c[1279], 3839); } // Test scaling plane with 8 bit C vs 16 bit C and return maximum pixel // difference. // 0 = exact. static int TestPlaneFilter_16(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } int i; int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height)); int src_stride_y = Abs(src_width); int dst_y_plane_size = dst_width * dst_height; int dst_stride_y = dst_width; align_buffer_page_end(src_y, src_y_plane_size); align_buffer_page_end(src_y_16, src_y_plane_size * 2); align_buffer_page_end(dst_y_8, dst_y_plane_size); align_buffer_page_end(dst_y_16, dst_y_plane_size * 2); uint16_t* p_src_y_16 = reinterpret_cast(src_y_16); uint16_t* p_dst_y_16 = reinterpret_cast(dst_y_16); MemRandomize(src_y, src_y_plane_size); memset(dst_y_8, 0, dst_y_plane_size); memset(dst_y_16, 1, dst_y_plane_size * 2); for (i = 0; i < src_y_plane_size; ++i) { p_src_y_16[i] = src_y[i] & 255; } MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y_8, dst_stride_y, dst_width, dst_height, f); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. for (i = 0; i < benchmark_iterations; ++i) { ScalePlane_16(p_src_y_16, src_stride_y, src_width, src_height, p_dst_y_16, dst_stride_y, dst_width, dst_height, f); } // Expect an exact match. int max_diff = 0; for (i = 0; i < dst_y_plane_size; ++i) { int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_page_end(dst_y_8); free_aligned_buffer_page_end(dst_y_16); free_aligned_buffer_page_end(src_y); free_aligned_buffer_page_end(src_y_16); return max_diff; } // The following adjustments in dimensions ensure the scale factor will be // exactly achieved. // 2 is chroma subsample. #define DX(x, nom, denom) static_cast(((Abs(x) / nom + 1) / 2) * nom * 2) #define SX(x, nom, denom) static_cast(((x / nom + 1) / 2) * denom * 2) #define TEST_FACTOR1(name, filter, nom, denom, max_diff) \ TEST_F(LibYUVScaleTest, ScalePlaneDownBy##name##_##filter##_16) { \ int diff = TestPlaneFilter_16( \ SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } // Test a scale factor with all 4 filters. Expect unfiltered to be exact, but // filtering is different fixed point implementations for SSSE3, Neon and C. #define TEST_FACTOR(name, nom, denom, boxdiff) \ TEST_FACTOR1(name, None, nom, denom, 0) \ TEST_FACTOR1(name, Linear, nom, denom, boxdiff) \ TEST_FACTOR1(name, Bilinear, nom, denom, boxdiff) \ TEST_FACTOR1(name, Box, nom, denom, boxdiff) TEST_FACTOR(2, 1, 2, 0) TEST_FACTOR(4, 1, 4, 0) TEST_FACTOR(8, 1, 8, 0) TEST_FACTOR(3by4, 3, 4, 1) TEST_FACTOR(3by8, 3, 8, 1) TEST_FACTOR(3, 1, 3, 0) #undef TEST_FACTOR1 #undef TEST_FACTOR #undef SX #undef DX } // namespace libyuv