#include "x86/msr.h" #include "x86/processor.h" #include "x86/apic-defs.h" #include "x86/apic.h" #include "x86/desc.h" #include "x86/isr.h" #include "x86/vm.h" #include "libcflat.h" #include #define FIXED_CNT_INDEX 32 #define PC_VECTOR 32 #define EVNSEL_EVENT_SHIFT 0 #define EVNTSEL_UMASK_SHIFT 8 #define EVNTSEL_USR_SHIFT 16 #define EVNTSEL_OS_SHIFT 17 #define EVNTSEL_EDGE_SHIFT 18 #define EVNTSEL_PC_SHIFT 19 #define EVNTSEL_INT_SHIFT 20 #define EVNTSEL_EN_SHIF 22 #define EVNTSEL_INV_SHIF 23 #define EVNTSEL_CMASK_SHIFT 24 #define EVNTSEL_EN (1 << EVNTSEL_EN_SHIF) #define EVNTSEL_USR (1 << EVNTSEL_USR_SHIFT) #define EVNTSEL_OS (1 << EVNTSEL_OS_SHIFT) #define EVNTSEL_PC (1 << EVNTSEL_PC_SHIFT) #define EVNTSEL_INT (1 << EVNTSEL_INT_SHIFT) #define EVNTSEL_INV (1 << EVNTSEL_INV_SHIF) #define N 1000000 typedef struct { uint32_t ctr; uint32_t config; uint64_t count; int idx; } pmu_counter_t; union cpuid10_eax { struct { unsigned int version_id:8; unsigned int num_counters:8; unsigned int bit_width:8; unsigned int mask_length:8; } split; unsigned int full; } eax; union cpuid10_ebx { struct { unsigned int no_unhalted_core_cycles:1; unsigned int no_instructions_retired:1; unsigned int no_unhalted_reference_cycles:1; unsigned int no_llc_reference:1; unsigned int no_llc_misses:1; unsigned int no_branch_instruction_retired:1; unsigned int no_branch_misses_retired:1; } split; unsigned int full; } ebx; union cpuid10_edx { struct { unsigned int num_counters_fixed:5; unsigned int bit_width_fixed:8; unsigned int reserved:19; } split; unsigned int full; } edx; struct pmu_event { const char *name; uint32_t unit_sel; int min; int max; } gp_events[] = { {"core cycles", 0x003c, 1*N, 50*N}, {"instructions", 0x00c0, 10*N, 10.2*N}, {"ref cycles", 0x013c, 0.1*N, 30*N}, {"llc refference", 0x4f2e, 1, 2*N}, {"llc misses", 0x412e, 1, 1*N}, {"branches", 0x00c4, 1*N, 1.1*N}, {"branch misses", 0x00c5, 0, 0.1*N}, }, fixed_events[] = { {"fixed 1", MSR_CORE_PERF_FIXED_CTR0, 10*N, 10.2*N}, {"fixed 2", MSR_CORE_PERF_FIXED_CTR0 + 1, 1*N, 30*N}, {"fixed 3", MSR_CORE_PERF_FIXED_CTR0 + 2, 0.1*N, 30*N} }; static int num_counters; char *buf; static inline void loop() { unsigned long tmp, tmp2, tmp3; asm volatile("1: mov (%1), %2; add $64, %1; nop; nop; nop; nop; nop; nop; nop; loop 1b" : "=c"(tmp), "=r"(tmp2), "=r"(tmp3): "0"(N), "1"(buf)); } volatile uint64_t irq_received; static void cnt_overflow(isr_regs_t *regs) { irq_received++; apic_write(APIC_EOI, 0); } static bool check_irq(void) { int i; irq_received = 0; irq_enable(); for (i = 0; i < 100000 && !irq_received; i++) asm volatile("pause"); irq_disable(); return irq_received; } static bool is_gp(pmu_counter_t *evt) { return evt->ctr < MSR_CORE_PERF_FIXED_CTR0; } static int event_to_global_idx(pmu_counter_t *cnt) { return cnt->ctr - (is_gp(cnt) ? MSR_IA32_PERFCTR0 : (MSR_CORE_PERF_FIXED_CTR0 - FIXED_CNT_INDEX)); } static struct pmu_event* get_counter_event(pmu_counter_t *cnt) { if (is_gp(cnt)) { int i; for (i = 0; i < sizeof(gp_events)/sizeof(gp_events[0]); i++) if (gp_events[i].unit_sel == (cnt->config & 0xffff)) return &gp_events[i]; } else return &fixed_events[cnt->ctr - MSR_CORE_PERF_FIXED_CTR0]; return (void*)0; } static void global_enable(pmu_counter_t *cnt) { cnt->idx = event_to_global_idx(cnt); wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL) | (1ull << cnt->idx)); } static void global_disable(pmu_counter_t *cnt) { wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL) & ~(1ull << cnt->idx)); } static void start_event(pmu_counter_t *evt) { wrmsr(evt->ctr, evt->count); if (is_gp(evt)) wrmsr(MSR_P6_EVNTSEL0 + event_to_global_idx(evt), evt->config | EVNTSEL_EN); else { uint32_t ctrl = rdmsr(MSR_CORE_PERF_FIXED_CTR_CTRL); int shift = (evt->ctr - MSR_CORE_PERF_FIXED_CTR0) * 4; uint32_t usrospmi = 0; if (evt->config & EVNTSEL_OS) usrospmi |= (1 << 0); if (evt->config & EVNTSEL_USR) usrospmi |= (1 << 1); if (evt->config & EVNTSEL_INT) usrospmi |= (1 << 3); // PMI on overflow ctrl = (ctrl & ~(0xf << shift)) | (usrospmi << shift); wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, ctrl); } global_enable(evt); } static void stop_event(pmu_counter_t *evt) { global_disable(evt); if (is_gp(evt)) wrmsr(MSR_P6_EVNTSEL0 + event_to_global_idx(evt), evt->config & ~EVNTSEL_EN); else { uint32_t ctrl = rdmsr(MSR_CORE_PERF_FIXED_CTR_CTRL); int shift = (evt->ctr - MSR_CORE_PERF_FIXED_CTR0) * 4; wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, ctrl & ~(0xf << shift)); } evt->count = rdmsr(evt->ctr); } static void measure(pmu_counter_t *evt, int count) { int i; for (i = 0; i < count; i++) start_event(&evt[i]); loop(); for (i = 0; i < count; i++) stop_event(&evt[i]); } static bool verify_event(uint64_t count, struct pmu_event *e) { // printf("%lld >= %lld <= %lld\n", e->min, count, e->max); return count >= e->min && count <= e->max; } static bool verify_counter(pmu_counter_t *cnt) { return verify_event(cnt->count, get_counter_event(cnt)); } static void check_gp_counter(struct pmu_event *evt) { pmu_counter_t cnt = { .ctr = MSR_IA32_PERFCTR0, .config = EVNTSEL_OS | EVNTSEL_USR | evt->unit_sel, }; int i; for (i = 0; i < num_counters; i++, cnt.ctr++) { cnt.count = 0; measure(&cnt, 1); report("%s-%d", verify_event(cnt.count, evt), evt->name, i); } } static void check_gp_counters(void) { int i; for (i = 0; i < sizeof(gp_events)/sizeof(gp_events[0]); i++) if (!(ebx.full & (1 << i))) check_gp_counter(&gp_events[i]); else printf("GP event '%s' is disabled\n", gp_events[i].name); } static void check_fixed_counters(void) { pmu_counter_t cnt = { .config = EVNTSEL_OS | EVNTSEL_USR, }; int i; for (i = 0; i < edx.split.num_counters_fixed; i++) { cnt.count = 0; cnt.ctr = fixed_events[i].unit_sel; measure(&cnt, 1); report("fixed-%d", verify_event(cnt.count, &fixed_events[i]), i); } } static void check_counters_many(void) { pmu_counter_t cnt[10]; int i, n; for (i = 0, n = 0; n < num_counters; i++) { if (ebx.full & (1 << i)) continue; cnt[n].count = 0; cnt[n].ctr = MSR_IA32_PERFCTR0 + n; cnt[n].config = EVNTSEL_OS | EVNTSEL_USR | gp_events[i % ARRAY_SIZE(gp_events)].unit_sel; n++; } for (i = 0; i < edx.split.num_counters_fixed; i++) { cnt[n].count = 0; cnt[n].ctr = fixed_events[i].unit_sel; cnt[n].config = EVNTSEL_OS | EVNTSEL_USR; n++; } measure(cnt, n); for (i = 0; i < n; i++) if (!verify_counter(&cnt[i])) break; report("all counters", i == n); } static void check_counter_overflow(void) { uint64_t count; int i; pmu_counter_t cnt = { .ctr = MSR_IA32_PERFCTR0, .config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel /* instructions */, .count = 0, }; measure(&cnt, 1); count = cnt.count; /* clear status before test */ wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_STATUS)); report_prefix_push("overflow"); for (i = 0; i < num_counters + 1; i++, cnt.ctr++) { uint64_t status; int idx; if (i == num_counters) cnt.ctr = fixed_events[0].unit_sel; if (i % 2) cnt.config |= EVNTSEL_INT; else cnt.config &= ~EVNTSEL_INT; idx = event_to_global_idx(&cnt); cnt.count = 1 - count; measure(&cnt, 1); report("cntr-%d", cnt.count == 1, i); status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS); report("status-%d", status & (1ull << idx), i); wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, status); status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS); report("status clear-%d", !(status & (1ull << idx)), i); report("irq-%d", check_irq() == (i % 2), i); } report_prefix_pop(); } static void check_gp_counter_cmask(void) { pmu_counter_t cnt = { .ctr = MSR_IA32_PERFCTR0, .config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel /* instructions */, .count = 0, }; cnt.config |= (0x2 << EVNTSEL_CMASK_SHIFT); measure(&cnt, 1); report("cmask", cnt.count < gp_events[1].min); } static void check_rdpmc(void) { uint64_t val = 0x1f3456789ull; int i; report_prefix_push("rdpmc"); for (i = 0; i < num_counters; i++) { uint64_t x = (val & 0xffffffff) | ((1ull << (eax.split.bit_width - 32)) - 1) << 32; wrmsr(MSR_IA32_PERFCTR0 + i, val); report("cntr-%d", rdpmc(i) == x, i); report("fast-%d", rdpmc(i | (1<<31)) == (u32)val, i); } for (i = 0; i < edx.split.num_counters_fixed; i++) { uint64_t x = (val & 0xffffffff) | ((1ull << (edx.split.bit_width_fixed - 32)) - 1) << 32; wrmsr(MSR_CORE_PERF_FIXED_CTR0 + i, val); report("fixed cntr-%d", rdpmc(i | (1 << 30)) == x, i); report("fixed fast-%d", rdpmc(i | (3<<30)) == (u32)val, i); } report_prefix_pop(); } int main(int ac, char **av) { struct cpuid id = cpuid(10); setup_vm(); setup_idt(); handle_irq(PC_VECTOR, cnt_overflow); buf = vmalloc(N*64); eax.full = id.a; ebx.full = id.b; edx.full = id.d; if (!eax.split.version_id) { printf("No pmu is detected!\n"); return report_summary(); } printf("PMU version: %d\n", eax.split.version_id); printf("GP counters: %d\n", eax.split.num_counters); printf("GP counter width: %d\n", eax.split.bit_width); printf("Mask length: %d\n", eax.split.mask_length); printf("Fixed counters: %d\n", edx.split.num_counters_fixed); printf("Fixed counter width: %d\n", edx.split.bit_width_fixed); num_counters = eax.split.num_counters; apic_write(APIC_LVTPC, PC_VECTOR); check_gp_counters(); check_fixed_counters(); check_rdpmc(); check_counters_many(); check_counter_overflow(); check_gp_counter_cmask(); return report_summary(); }