/* * Timer tests for the ARM virt machine. * * Copyright (C) 2017, Alexander Graf * * This work is licensed under the terms of the GNU GPL, version 2. */ #include #include #include #include #include #include #define ARCH_TIMER_CTL_ENABLE (1 << 0) #define ARCH_TIMER_CTL_IMASK (1 << 1) #define ARCH_TIMER_CTL_ISTATUS (1 << 2) static void *gic_ispendr; static bool ptimer_unsupported; static void ptimer_unsupported_handler(struct pt_regs *regs, unsigned int esr) { ptimer_unsupported = true; regs->pc += 4; } static u64 read_vtimer_counter(void) { return read_sysreg(cntvct_el0); } static u64 read_vtimer_cval(void) { return read_sysreg(cntv_cval_el0); } static void write_vtimer_cval(u64 val) { write_sysreg(val, cntv_cval_el0); } static u64 read_vtimer_ctl(void) { return read_sysreg(cntv_ctl_el0); } static void write_vtimer_ctl(u64 val) { write_sysreg(val, cntv_ctl_el0); } static u64 read_ptimer_counter(void) { return read_sysreg(cntpct_el0); } static u64 read_ptimer_cval(void) { return read_sysreg(cntp_cval_el0); } static void write_ptimer_cval(u64 val) { write_sysreg(val, cntp_cval_el0); } static u64 read_ptimer_ctl(void) { return read_sysreg(cntp_ctl_el0); } static void write_ptimer_ctl(u64 val) { write_sysreg(val, cntp_ctl_el0); } struct timer_info { u32 irq; u32 irq_flags; bool irq_received; u64 (*read_counter)(void); u64 (*read_cval)(void); void (*write_cval)(u64); u64 (*read_ctl)(void); void (*write_ctl)(u64); }; static struct timer_info vtimer_info = { .irq_received = false, .read_counter = read_vtimer_counter, .read_cval = read_vtimer_cval, .write_cval = write_vtimer_cval, .read_ctl = read_vtimer_ctl, .write_ctl = write_vtimer_ctl, }; static struct timer_info ptimer_info = { .irq_received = false, .read_counter = read_ptimer_counter, .read_cval = read_ptimer_cval, .write_cval = write_ptimer_cval, .read_ctl = read_ptimer_ctl, .write_ctl = write_ptimer_ctl, }; static void set_timer_irq_enabled(struct timer_info *info, bool enabled) { u32 val = 0; if (enabled) val = 1 << PPI(info->irq); switch (gic_version()) { case 2: writel(val, gicv2_dist_base() + GICD_ISENABLER + 0); break; case 3: writel(val, gicv3_sgi_base() + GICR_ISENABLER0); break; } } static void irq_handler(struct pt_regs *regs) { struct timer_info *info; u32 irqstat = gic_read_iar(); u32 irqnr = gic_iar_irqnr(irqstat); if (irqnr != GICC_INT_SPURIOUS) gic_write_eoir(irqstat); if (irqnr == PPI(vtimer_info.irq)) { info = &vtimer_info; } else if (irqnr == PPI(ptimer_info.irq)) { info = &ptimer_info; } else { report_info("Unexpected interrupt: %d\n", irqnr); return; } info->write_ctl(ARCH_TIMER_CTL_IMASK | ARCH_TIMER_CTL_ENABLE); info->irq_received = true; } static bool gic_timer_pending(struct timer_info *info) { return readl(gic_ispendr) & (1 << PPI(info->irq)); } static bool test_cval_10msec(struct timer_info *info) { u64 time_10ms = read_sysreg(cntfrq_el0) / 100; u64 time_1us = time_10ms / 10000; u64 before_timer, after_timer; s64 difference; /* Program timer to fire in 10 ms */ before_timer = info->read_counter(); info->write_cval(before_timer + time_10ms); info->write_ctl(ARCH_TIMER_CTL_ENABLE); isb(); /* Wait for the timer to fire */ while (!(info->read_ctl() & ARCH_TIMER_CTL_ISTATUS)) ; /* It fired, check how long it took */ after_timer = info->read_counter(); difference = after_timer - (before_timer + time_10ms); report_info("After timer: 0x%016lx", after_timer); report_info("Expected : 0x%016lx", before_timer + time_10ms); report_info("Difference : %ld us", difference / time_1us); if (difference < 0) { printf("ISTATUS set too early\n"); return false; } return difference < time_10ms; } static void test_timer(struct timer_info *info) { u64 now = info->read_counter(); u64 time_10s = read_sysreg(cntfrq_el0) * 10; u64 later = now + time_10s; /* We don't want the irq handler to fire because that will change the * timer state and we want to test the timer output signal. We can * still read the pending state even if it's disabled. */ set_timer_irq_enabled(info, false); /* Enable the timer, but schedule it for much later */ info->write_cval(later); info->write_ctl(ARCH_TIMER_CTL_ENABLE); isb(); report("not pending before", !gic_timer_pending(info)); info->write_cval(now - 1); isb(); report("interrupt signal pending", gic_timer_pending(info)); /* Disable the timer again and prepare to take interrupts */ info->write_ctl(0); set_timer_irq_enabled(info, true); report("latency within 10 ms", test_cval_10msec(info)); report("interrupt received", info->irq_received); /* Disable the timer again */ info->write_ctl(0); } static void test_vtimer(void) { report_prefix_push("vtimer-busy-loop"); test_timer(&vtimer_info); report_prefix_pop(); } static void test_ptimer(void) { if (ptimer_unsupported) return; report_prefix_push("ptimer-busy-loop"); test_timer(&ptimer_info); report_prefix_pop(); } static void test_init(void) { const struct fdt_property *prop; const void *fdt = dt_fdt(); int node, len; u32 *data; node = fdt_node_offset_by_compatible(fdt, -1, "arm,armv8-timer"); assert(node >= 0); prop = fdt_get_property(fdt, node, "interrupts", &len); assert(prop && len == (4 * 3 * sizeof(u32))); data = (u32 *)prop->data; assert(fdt32_to_cpu(data[3]) == 1); ptimer_info.irq = fdt32_to_cpu(data[4]); ptimer_info.irq_flags = fdt32_to_cpu(data[5]); assert(fdt32_to_cpu(data[6]) == 1); vtimer_info.irq = fdt32_to_cpu(data[7]); vtimer_info.irq_flags = fdt32_to_cpu(data[8]); install_exception_handler(EL1H_SYNC, ESR_EL1_EC_UNKNOWN, ptimer_unsupported_handler); read_sysreg(cntp_ctl_el0); install_exception_handler(EL1H_SYNC, ESR_EL1_EC_UNKNOWN, NULL); if (ptimer_unsupported && !ERRATA(7b6b46311a85)) { report_skip("Skipping ptimer tests. Set ERRATA_7b6b46311a85=y to enable."); } else if (ptimer_unsupported) { report("ptimer: read CNTP_CTL_EL0", false); report_info("ptimer: skipping remaining tests"); } gic_enable_defaults(); switch (gic_version()) { case 2: gic_ispendr = gicv2_dist_base() + GICD_ISPENDR; break; case 3: gic_ispendr = gicv3_sgi_base() + GICD_ISPENDR; break; } install_irq_handler(EL1H_IRQ, irq_handler); local_irq_enable(); } static void print_timer_info(void) { printf("CNTFRQ_EL0 : 0x%016lx\n", read_sysreg(cntfrq_el0)); if (!ptimer_unsupported){ printf("CNTPCT_EL0 : 0x%016lx\n", read_sysreg(cntpct_el0)); printf("CNTP_CTL_EL0 : 0x%016lx\n", read_sysreg(cntp_ctl_el0)); printf("CNTP_CVAL_EL0: 0x%016lx\n", read_sysreg(cntp_cval_el0)); } printf("CNTVCT_EL0 : 0x%016lx\n", read_sysreg(cntvct_el0)); printf("CNTV_CTL_EL0 : 0x%016lx\n", read_sysreg(cntv_ctl_el0)); printf("CNTV_CVAL_EL0: 0x%016lx\n", read_sysreg(cntv_cval_el0)); } int main(int argc, char **argv) { test_init(); print_timer_info(); test_vtimer(); test_ptimer(); return report_summary(); }