/* * * Wireless daemon for Linux * * Copyright (C) 2017-2019 Intel Corporation. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include "src/missing.h" #include "src/eap-private.h" #include "src/crypto.h" #include "src/simutil.h" /* * RFC 3174 functions */ /* * Section 3a - Circular left shift function S */ #define S(n, x) (((x) << (n)) | ((x) >> (32 - (n)))) /* * Section 5 - Functions and Constants Used * * K(t) - sequence of constant words K(0) - K(79) * (represented as a function, index t is constant for every 20 indexes) */ static uint32_t K(int t) { if (t >= 0 && t <= 19) return 0x5a827999; else if (t >= 20 && t <= 39) return 0x6ed9eba1; else if (t >= 40 && t <= 59) return 0x8f1bbcdc; else if (t >= 60 && t <= 79) return 0xca62c1d6; return 0; } /* * f(t, B, C, D) - sequence of logical functions f(0) - f(79) * Every 20 indexes the value of t computes a different bit manipulation of * B, C and D */ static uint32_t f(int t, uint32_t B, uint32_t C, uint32_t D) { if (t >= 0 && t <= 19) return (B & C) | ((~B) & D); else if (t >= 20 && t <= 39) return B ^ C ^ D; else if (t >= 40 && t <= 59) return (B & C) | (B & D) | (C & D); else if (t >= 60 && t <= 79) return B ^ C ^ D; return 0; } /* * RFC 3174 Section 6.1 Method 1 * * Core SHA1 block digest function. Computes the SHA1 digest of a single block. * Named G as it appears in FIPS 182 PRNG. * * The Linux kernel does not expose this specific block digest function to the * user. The SHA1 function exposed in the kernel automatically does the length * encoded padding to the block which is different than what EAP-SIM requires. * EAP-SIM requires and extra bits in the block to be zero. This function was * implemented for this reason. */ static void G(uint32_t *out, uint8_t *block) { int t; uint32_t H[5]; uint32_t W[80]; uint32_t A, B, C, D, E; uint32_t TEMP; H[0] = out[0]; H[1] = out[1]; H[2] = out[2]; H[3] = out[3]; H[4] = out[4]; /* * a. Divide M (block) into 16 words, W(0) ... W(15) where W(0) is the * left-most word */ for (t = 0; t < 16; t++) { /* copy each word */ W[t] = L_BE32_TO_CPU(((uint32_t *)block)[t]); } /* * b. for t = 16 to 79 do */ for (t = 16; t <= 79; t++) { /* W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)) */ W[t] = S(1, (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16])); } /* c. Let A = H0, B = H1, C = H2, D = H3, E = H4 */ A = H[0]; B = H[1]; C = H[2]; D = H[3]; E = H[4]; /* d. For t = 0 to 79 do */ for (t = 0; t <= 79; t++) { /* TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t); */ TEMP = (S(5, A)) + (f(t, B, C, D) + E + W[t] + K(t)); /* E = D; D = C; C = S^30(B); B = A; A = TEMP; */ E = D; D = C; C = S(30, B); B = A; A = TEMP; } /* * e. Let H[0-4] == A, B, C, D, E */ H[0] += A; H[1] += B; H[2] += C; H[3] += D; H[4] += E; memcpy(out, H, sizeof(H)); } bool eap_aka_derive_primes(const uint8_t *ck, const uint8_t *ik, const uint8_t *autn, const uint8_t *network, uint16_t net_len, uint8_t *ck_p, uint8_t *ik_p) { struct iovec iov[5]; struct l_checksum *hmac; uint8_t key[32]; uint8_t fc = 0x20; uint16_t l1 = L_CPU_TO_BE16(6); uint16_t name_len = L_CPU_TO_BE16(net_len); uint8_t digest[32]; memcpy(key, ck, EAP_AKA_CK_LEN); memcpy(key + EAP_AKA_CK_LEN, ik, EAP_AKA_IK_LEN); hmac = l_checksum_new_hmac(L_CHECKSUM_SHA256, key, 32); explicit_bzero(key, sizeof(key)); if (!hmac) return false; iov[0].iov_base = &fc; iov[0].iov_len = 1; iov[1].iov_base = (void *)network; iov[1].iov_len = net_len; iov[2].iov_base = &name_len; iov[2].iov_len = 2; iov[3].iov_base = (void *)autn; iov[3].iov_len = 6; iov[4].iov_base = &l1; iov[4].iov_len = 2; l_checksum_updatev(hmac, iov, 5); l_checksum_get_digest(hmac, digest, 32); l_checksum_free(hmac); memcpy(ck_p, digest, EAP_AKA_CK_LEN); memcpy(ik_p, digest + EAP_AKA_CK_LEN, EAP_AKA_IK_LEN); explicit_bzero(digest, sizeof(digest)); return true; } bool eap_aka_prf_prime(const uint8_t *ik_p, const uint8_t *ck_p, const char *identity, uint8_t *k_encr, uint8_t *k_aut, uint8_t *k_re, uint8_t *msk, uint8_t *emsk) { struct l_checksum *hmac; uint8_t key[32]; struct iovec iov[4]; /* digest continues to be reused each iteration */ uint8_t digest[32]; uint8_t i = 0x01; /* 7 iterations will be 224 bytes, 208 of which will get used */ uint8_t out[224]; uint8_t *pos = out; /* K = (IK'|CK') */ memcpy(key, ik_p, EAP_AKA_IK_LEN); memcpy(key + EAP_AKA_IK_LEN, ck_p, EAP_AKA_CK_LEN); hmac = l_checksum_new_hmac(L_CHECKSUM_SHA256, key, 32); explicit_bzero(key, sizeof(key)); if (!hmac) return false; iov[0].iov_base = digest; /* initial iteration digest is not used */ iov[0].iov_len = 0; iov[1].iov_base = (void *)"EAP-AKA'"; iov[1].iov_len = strlen("EAP-AKA'"); iov[2].iov_base = (void *)identity; iov[2].iov_len = strlen(identity); iov[3].iov_base = &i; iov[3].iov_len = 1; /* need 208 bytes for all keys */ while (pos < out + 224) { l_checksum_reset(hmac); l_checksum_updatev(hmac, iov, 4); l_checksum_get_digest(hmac, digest, 32); memcpy(pos, digest, 32); pos += 32; i++; /* set the digest length so it can be prepended as Tn */ iov[0].iov_len = 32; } explicit_bzero(digest, sizeof(digest)); l_checksum_free(hmac); pos = out; memcpy(k_encr, pos, EAP_SIM_K_ENCR_LEN); pos += EAP_SIM_K_ENCR_LEN; memcpy(k_aut, pos, EAP_AKA_PRIME_K_AUT_LEN); pos += EAP_AKA_PRIME_K_AUT_LEN; memcpy(k_re, pos, EAP_AKA_K_RE_LEN); pos += EAP_AKA_K_RE_LEN; memcpy(msk, pos, EAP_SIM_MSK_LEN); pos += EAP_SIM_MSK_LEN; memcpy(emsk, pos, EAP_SIM_EMSK_LEN); explicit_bzero(out, sizeof(out)); return true; } void eap_sim_fips_prf(const void *seed, size_t slen, uint8_t *out, size_t olen) { uint8_t xkey[64]; uint32_t w_i[5]; uint32_t t[] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }; uint8_t *pos = out; uint32_t c; int j, i; /* Copy seed and zero pad remainder */ memcpy(xkey, seed, slen); memset(xkey + slen, 0, sizeof(xkey) - slen); for (j = 0; j < (int)olen / 40; j++) { for (i = 0; i < 2; i++) { int k; memcpy(w_i, t, sizeof(t)); /* w_i = G(t, XVAL) */ G(w_i, xkey); for (k = 0; k < 5; k++) w_i[k] = L_CPU_TO_BE32(w_i[k]); memcpy(pos, w_i, 20); /* XKEY = (1 + XKEY + w_i) mod 2^b*/ c = 1; for (k = 19; k >= 0; k--) { uint32_t sum = xkey[k] + pos[k] + c; xkey[k] = sum & 0xff; c = sum >> 8; } pos += 20; } } } bool eap_sim_get_encryption_keys(const uint8_t *buf, uint8_t *k_encr, uint8_t *k_aut, uint8_t *msk, uint8_t *emsk) { const uint8_t *pos = buf; if (!buf || !msk || !emsk) { l_error("key pointers are invalid"); return false; } if (k_encr) memcpy(k_encr, pos, EAP_SIM_K_ENCR_LEN); pos += EAP_SIM_K_ENCR_LEN; if (k_aut) memcpy(k_aut, pos, EAP_SIM_K_AUT_LEN); pos += EAP_SIM_K_AUT_LEN; memcpy(msk, pos, EAP_SIM_MSK_LEN); pos += EAP_SIM_MSK_LEN; memcpy(emsk, pos, EAP_SIM_EMSK_LEN); return true; } bool eap_sim_derive_mac(enum eap_type type, const uint8_t *buf, size_t len, const uint8_t *key, uint8_t *mac) { if (type == EAP_TYPE_AKA_PRIME) return hmac_sha256(key, EAP_AKA_PRIME_K_AUT_LEN, buf, len, mac, EAP_SIM_MAC_LEN); else return hmac_sha1(key, EAP_SIM_K_AUT_LEN, buf, len, mac, EAP_SIM_MAC_LEN); } size_t eap_sim_build_header(struct eap_state *eap, enum eap_type method, uint8_t type, uint8_t *buf, uint16_t len) { buf[0] = 0x02; eap_save_last_id(eap, &buf[1]); l_put_be16(len, buf + 2); buf[4] = method; buf[5] = type; buf[6] = 0x00; buf[7] = 0x00; return 8; } void eap_sim_client_error(struct eap_state *eap, enum eap_type type, uint16_t code) { uint8_t buf[12]; eap_sim_build_header(eap, type, 0x0e, buf, 12); buf[8] = EAP_SIM_AT_CLIENT_ERROR_CODE; buf[9] = 1; l_put_be16(code, buf + 10); eap_method_respond(eap, buf, 12); } size_t eap_sim_add_attribute(uint8_t *buf, enum eap_sim_at attr, uint8_t ptype, const uint8_t *data, uint16_t dlen) { int i; uint8_t pos = 0; uint8_t pad = 0; buf[pos++] = attr; if (ptype == EAP_SIM_PAD_NONE) /* no padding indicates data directly follows ID/size */ buf[pos++] = EAP_SIM_ROUND(dlen + 2) / 4; else /* any padding indicates 2 extra bytes before data */ buf[pos++] = EAP_SIM_ROUND(dlen + 4) / 4; if (ptype == EAP_SIM_PAD_LENGTH) { /* Encode length in next two bytes */ l_put_be16(dlen, buf + pos); pos += 2; } else if (ptype == EAP_SIM_PAD_ZERO) { buf[pos++] = 0x00; buf[pos++] = 0x00; } else if (ptype == EAP_SIM_PAD_LENGTH_BITS) { l_put_be16(dlen * 8, buf + pos); pos += 2; } /* else no padding */ if (data) memcpy(buf + pos, data, dlen); else memset(buf + pos, 0, dlen); pad = (buf[1] * 4) - (dlen + pos); pos += dlen; /* If header + data is not in multiple of 4 bytes then pad */ for (i = 0; i < pad; i++) buf[pos + i] = 0x00; pos += pad; return pos; } bool eap_sim_verify_mac(struct eap_state *eap, enum eap_type type, const uint8_t *buf, uint16_t len, uint8_t *k_aut, uint8_t *extra, size_t elen) { struct l_checksum *hmac; struct eap_sim_tlv_iter iter; const uint8_t *mac_p = NULL; uint8_t zero_mac[EAP_SIM_MAC_LEN] = { 0 }; uint8_t hdr[5]; struct iovec iov[4]; eap_sim_tlv_iter_init(&iter, buf + 3, len - 3); while (eap_sim_tlv_iter_next(&iter)) { if (eap_sim_tlv_iter_get_type(&iter) == EAP_SIM_AT_MAC) { mac_p = eap_sim_tlv_iter_get_data(&iter) + 2; break; } } if (!mac_p) { l_error("packet did not contain AT_MAC attribute"); return false; } /* re-build EAP packet header */ hdr[0] = 0x01; eap_save_last_id(eap, &hdr[1]); l_put_be16(len + 5, hdr + 2); hdr[4] = type; iov[0].iov_base = (void *)hdr; iov[0].iov_len = 5; iov[1].iov_base = (void *)buf; iov[1].iov_len = len - EAP_SIM_MAC_LEN; iov[2].iov_base = zero_mac; iov[2].iov_len = EAP_SIM_MAC_LEN; iov[3].iov_base = extra; iov[3].iov_len = elen; if (type == EAP_TYPE_AKA_PRIME) hmac = l_checksum_new_hmac(L_CHECKSUM_SHA256, k_aut, EAP_AKA_PRIME_K_AUT_LEN); else hmac = l_checksum_new_hmac(L_CHECKSUM_SHA1, k_aut, EAP_SIM_K_AUT_LEN); l_checksum_updatev(hmac, iov, 4); /* reuse zero mac array for new mac */ l_checksum_get_digest(hmac, zero_mac, EAP_SIM_MAC_LEN); l_checksum_free(hmac); if (memcmp(zero_mac, mac_p, EAP_SIM_MAC_LEN)) { l_error("MAC does not match"); return false; } return true; } bool eap_sim_tlv_iter_init(struct eap_sim_tlv_iter *iter, const uint8_t *data, uint32_t len) { iter->data = NULL; iter->pos = data; iter->len = 0; iter->end = data + len; return true; } bool eap_sim_tlv_iter_next(struct eap_sim_tlv_iter *iter) { /* check room for tag/len */ if (iter->end - iter->pos < 2) return false; iter->tag = iter->pos[0]; iter->len = (iter->pos[1] * 4) - 2; iter->pos += 2; /* check room for value */ if (iter->end - iter->pos < iter->len) return false; iter->data = iter->pos; iter->pos += iter->len; return true; } uint8_t eap_sim_tlv_iter_get_type(struct eap_sim_tlv_iter *iter) { return iter->tag; } uint16_t eap_sim_tlv_iter_get_length(struct eap_sim_tlv_iter *iter) { return iter->len; } const void *eap_sim_tlv_iter_get_data(struct eap_sim_tlv_iter *iter) { return iter->data; }