/* * Copyright (c) 2013, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "private.h" #include "ecc.h" #include "ecc-private.h" #include "random.h" typedef struct { uint64_t m_low; uint64_t m_high; } uint128_t; static void vli_clear(uint64_t *vli, unsigned int ndigits) { unsigned int i; for (i = 0; i < ndigits; i++) vli[i] = 0; } /* Returns true if vli == 0, false otherwise. */ static bool vli_is_zero(const uint64_t *vli, unsigned int ndigits) { unsigned int i; for (i = 0; i < ndigits; i++) { if (vli[i]) return false; } return true; } /* Returns nonzero if bit bit of vli is set. */ static uint64_t vli_test_bit(const uint64_t *vli, unsigned int bit) { return (vli[bit / 64] & ((uint64_t) 1 << (bit % 64))); } /* Sets dest = src. */ static void vli_set(uint64_t *dest, const uint64_t *src, unsigned int ndigits) { unsigned int i; for (i = 0; i < ndigits; i++) dest[i] = src[i]; } /* Returns sign of left - right. */ int _vli_cmp(const uint64_t *left, const uint64_t *right, unsigned int ndigits) { int i; for (i = ndigits - 1; i >= 0; i--) { if (left[i] > right[i]) return 1; if (left[i] < right[i]) return -1; } return 0; } /* Computes result = in << c, returning carry. Can modify in place * (if result == in). 0 < shift < 64. */ static uint64_t vli_lshift(uint64_t *result, const uint64_t *in, unsigned int shift, unsigned int ndigits) { uint64_t carry = 0; unsigned int i; for (i = 0; i < ndigits; i++) { uint64_t temp = in[i]; result[i] = (temp << shift) | carry; carry = temp >> (64 - shift); } return carry; } /* Computes vli = vli >> 1. */ void _vli_rshift1(uint64_t *vli, unsigned int ndigits) { uint64_t *end = vli; uint64_t carry = 0; vli += ndigits; while (vli-- > end) { uint64_t temp = *vli; *vli = (temp >> 1) | carry; carry = temp << 63; } } /* Computes result = left + right, returning carry. Can modify in place. */ static uint64_t vli_add(uint64_t *result, const uint64_t *left, const uint64_t *right, unsigned int ndigits) { uint64_t carry = 0; unsigned int i; for (i = 0; i < ndigits; i++) { uint64_t sum; sum = left[i] + right[i] + carry; if (sum != left[i]) carry = (sum < left[i]); result[i] = sum; } return carry; } /* Computes result = left - right, returning borrow. Can modify in place. */ uint64_t _vli_sub(uint64_t *result, const uint64_t *left, const uint64_t *right, unsigned int ndigits) { uint64_t borrow = 0; unsigned int i; for (i = 0; i < ndigits; i++) { uint64_t diff; diff = left[i] - right[i] - borrow; if (diff != left[i]) borrow = (diff > left[i]); result[i] = diff; } return borrow; } static uint128_t mul_64_64(uint64_t left, uint64_t right) { uint64_t a0 = left & 0xffffffffull; uint64_t a1 = left >> 32; uint64_t b0 = right & 0xffffffffull; uint64_t b1 = right >> 32; uint64_t m0 = a0 * b0; uint64_t m1 = a0 * b1; uint64_t m2 = a1 * b0; uint64_t m3 = a1 * b1; uint128_t result; m2 += (m0 >> 32); m2 += m1; /* Overflow */ if (m2 < m1) m3 += 0x100000000ull; result.m_low = (m0 & 0xffffffffull) | (m2 << 32); result.m_high = m3 + (m2 >> 32); return result; } static uint128_t add_128_128(uint128_t a, uint128_t b) { uint128_t result; result.m_low = a.m_low + b.m_low; result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); return result; } static void vli_mult(uint64_t *result, const uint64_t *left, const uint64_t *right, unsigned int ndigits) { uint128_t r01 = { 0, 0 }; uint64_t r2 = 0; unsigned int i, k; /* Compute each digit of result in sequence, maintaining the * carries. */ for (k = 0; k < ndigits * 2 - 1; k++) { unsigned int min; if (k < ndigits) min = 0; else min = (k + 1) - ndigits; for (i = min; i <= k && i < ndigits; i++) { uint128_t product; product = mul_64_64(left[i], right[k - i]); r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[ndigits * 2 - 1] = r01.m_low; } static void vli_square(uint64_t *result, const uint64_t *left, unsigned int ndigits) { uint128_t r01 = { 0, 0 }; uint64_t r2 = 0; unsigned int i, k; for (k = 0; k < ndigits * 2 - 1; k++) { unsigned int min; if (k < ndigits) min = 0; else min = (k + 1) - ndigits; for (i = min; i <= k && i <= k - i; i++) { uint128_t product; product = mul_64_64(left[i], left[k - i]); if (i < k - i) { r2 += product.m_high >> 63; product.m_high = (product.m_high << 1) | (product.m_low >> 63); product.m_low <<= 1; } r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[ndigits * 2 - 1] = r01.m_low; } /* Computes result = (left + right) % mod. * Assumes that left < mod and right < mod, result != mod. */ void _vli_mod_add(uint64_t *result, const uint64_t *left, const uint64_t *right, const uint64_t *mod, unsigned int ndigits) { uint64_t carry; carry = vli_add(result, left, right, ndigits); /* result > mod (result = mod + remainder), so subtract mod to * get remainder. */ if (carry || _vli_cmp(result, mod, ndigits) >= 0) _vli_sub(result, result, mod, ndigits); } /* Computes result = (left - right) % mod. * Assumes that left < mod and right < mod, result != mod. */ void _vli_mod_sub(uint64_t *result, const uint64_t *left, const uint64_t *right, const uint64_t *mod, unsigned int ndigits) { uint64_t borrow = _vli_sub(result, left, right, ndigits); /* In this case, p_result == -diff == (max int) - diff. * Since -x % d == d - x, we can get the correct result from * result + mod (with overflow). */ if (borrow) vli_add(result, result, mod, ndigits); } /* Computes p_result = p_product % curve_p. * See algorithm 5 and 6 from * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */ static void vli_mmod_fast_192(uint64_t *result, const uint64_t *product, const uint64_t *curve_prime, uint64_t *tmp) { const unsigned int ndigits = 3; int carry; vli_set(result, product, ndigits); vli_set(tmp, &product[3], ndigits); carry = vli_add(result, result, tmp, ndigits); tmp[0] = 0; tmp[1] = product[3]; tmp[2] = product[4]; carry += vli_add(result, result, tmp, ndigits); tmp[0] = tmp[1] = product[5]; tmp[2] = 0; carry += vli_add(result, result, tmp, ndigits); while (carry || _vli_cmp(curve_prime, result, ndigits) != 1) carry -= _vli_sub(result, result, curve_prime, ndigits); } /* Computes result = product % curve_prime * from http://www.nsa.gov/ia/_files/nist-routines.pdf */ static void vli_mmod_fast_256(uint64_t *result, const uint64_t *product, const uint64_t *curve_prime, uint64_t *tmp) { int carry; const unsigned int ndigits = 4; /* t */ vli_set(result, product, ndigits); /* s1 */ tmp[0] = 0; tmp[1] = product[5] & 0xffffffff00000000ull; tmp[2] = product[6]; tmp[3] = product[7]; carry = vli_lshift(tmp, tmp, 1, ndigits); carry += vli_add(result, result, tmp, ndigits); /* s2 */ tmp[1] = product[6] << 32; tmp[2] = (product[6] >> 32) | (product[7] << 32); tmp[3] = product[7] >> 32; carry += vli_lshift(tmp, tmp, 1, ndigits); carry += vli_add(result, result, tmp, ndigits); /* s3 */ tmp[0] = product[4]; tmp[1] = product[5] & 0xffffffff; tmp[2] = 0; tmp[3] = product[7]; carry += vli_add(result, result, tmp, ndigits); /* s4 */ tmp[0] = (product[4] >> 32) | (product[5] << 32); tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); tmp[2] = product[7]; tmp[3] = (product[6] >> 32) | (product[4] << 32); carry += vli_add(result, result, tmp, ndigits); /* d1 */ tmp[0] = (product[5] >> 32) | (product[6] << 32); tmp[1] = (product[6] >> 32); tmp[2] = 0; tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); carry -= _vli_sub(result, result, tmp, ndigits); /* d2 */ tmp[0] = product[6]; tmp[1] = product[7]; tmp[2] = 0; tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); carry -= _vli_sub(result, result, tmp, ndigits); /* d3 */ tmp[0] = (product[6] >> 32) | (product[7] << 32); tmp[1] = (product[7] >> 32) | (product[4] << 32); tmp[2] = (product[4] >> 32) | (product[5] << 32); tmp[3] = (product[6] << 32); carry -= _vli_sub(result, result, tmp, ndigits); /* d4 */ tmp[0] = product[7]; tmp[1] = product[4] & 0xffffffff00000000ull; tmp[2] = product[5]; tmp[3] = product[6] & 0xffffffff00000000ull; carry -= _vli_sub(result, result, tmp, ndigits); if (carry < 0) { do { carry += vli_add(result, result, curve_prime, ndigits); } while (carry < 0); } else { while (carry || _vli_cmp(curve_prime, result, ndigits) != 1) carry -= _vli_sub(result, result, curve_prime, ndigits); } } /* * The NIST algorithms define S values, which are comprised of 32 bit C values * of the original product we are trying to reduce. Since we are working with * 64 bit 'digits', we need to convert these C values into 64 bit chunks. This * macro mainly makes code readability easier since we can directly pass the * two C indexes (h and l). Some of these C values are zero, which is also a * value C index. In this case -1 should be passed to indicate zero. */ #define ECC_SET_S(prod, h, l) ({ \ uint64_t r = 0; \ if (h == -1) { \ /* zero, don't do anything */ \ } else if (h & 1) \ r |= (prod[h / 2] & 0xffffffff00000000ull); \ else \ r |= (prod[h / 2] << 32); \ if (l == -1) { \ /* zero, don't do anything */ \ } else if (l & 1) \ r |= (prod[l / 2] >> 32); \ else \ r |= (prod[l / 2] & 0xffffffff); \ r; \ }) static void vli_mmod_fast_384(uint64_t *result, const uint64_t *product, const uint64_t *curve_prime, uint64_t *tmp) { int carry; const unsigned int ndigits = 6; /* t */ vli_set(result, product, ndigits); /* s1 */ tmp[0] = 0; tmp[1] = 0; tmp[2] = ECC_SET_S(product, 22, 21); tmp[3] = ECC_SET_S(product, -1, 23); tmp[4] = 0; tmp[5] = 0; carry = vli_lshift(tmp, tmp, 1, ndigits); carry += vli_add(result, result, tmp, ndigits); /* s2 */ tmp[0] = product[6]; tmp[1] = product[7]; tmp[2] = product[8]; tmp[3] = product[9]; tmp[4] = product[10]; tmp[5] = product[11]; carry += vli_add(result, result, tmp, ndigits); /* s3 */ tmp[0] = ECC_SET_S(product, 22, 21); tmp[1] = ECC_SET_S(product, 12, 23); tmp[2] = ECC_SET_S(product, 14, 13); tmp[3] = ECC_SET_S(product, 16, 15); tmp[4] = ECC_SET_S(product, 18, 17); tmp[5] = ECC_SET_S(product, 20, 19); carry += vli_add(result, result, tmp, ndigits); /* s4 */ tmp[0] = ECC_SET_S(product, 23, -1); tmp[1] = ECC_SET_S(product, 20, -1); tmp[2] = ECC_SET_S(product, 13, 12); tmp[3] = ECC_SET_S(product, 15, 14); tmp[4] = ECC_SET_S(product, 17, 16); tmp[5] = ECC_SET_S(product, 19, 18); carry += vli_add(result, result, tmp, ndigits); /* s5 */ tmp[0] = 0; tmp[1] = 0; tmp[2] = ECC_SET_S(product, 21, 20); tmp[3] = ECC_SET_S(product, 23, 22); tmp[4] = 0; tmp[5] = 0; carry += vli_add(result, result, tmp, ndigits); /* s6 */ tmp[0] = ECC_SET_S(product, -1, 20); tmp[1] = ECC_SET_S(product, 21, -1); tmp[2] = ECC_SET_S(product, 23, 22); tmp[3] = 0; tmp[4] = 0; tmp[5] = 0; carry += vli_add(result, result, tmp, ndigits); /* s7 */ tmp[0] = ECC_SET_S(product, 12, 23); tmp[1] = ECC_SET_S(product, 14, 13); tmp[2] = ECC_SET_S(product, 16, 15); tmp[3] = ECC_SET_S(product, 18, 17); tmp[4] = ECC_SET_S(product, 20, 19); tmp[5] = ECC_SET_S(product, 22, 21); carry -= _vli_sub(result, result, tmp, ndigits); /* s8 */ tmp[0] = ECC_SET_S(product, 20, -1); tmp[1] = ECC_SET_S(product, 22, 21); tmp[2] = ECC_SET_S(product, -1, 23); tmp[3] = 0; tmp[4] = 0; tmp[5] = 0; carry -= _vli_sub(result, result, tmp, ndigits); /* s9 */ tmp[0] = 0; tmp[1] = ECC_SET_S(product, 23, -1); tmp[2] = ECC_SET_S(product, -1, 23); tmp[3] = 0; tmp[4] = 0; tmp[5] = 0; carry -= _vli_sub(result, result, tmp, ndigits); if (carry < 0) { do { carry += vli_add(result, result, curve_prime, ndigits); } while (carry < 0); } else { while (carry || _vli_cmp(curve_prime, result, ndigits) != 1) carry -= _vli_sub(result, result, curve_prime, ndigits); } } /* Computes result = product % curve_prime * from http://www.nsa.gov/ia/_files/nist-routines.pdf */ static bool vli_mmod_fast(uint64_t *result, uint64_t *product, const uint64_t *curve_prime, unsigned int ndigits) { uint64_t tmp[2 * L_ECC_MAX_DIGITS]; switch (ndigits) { case 3: vli_mmod_fast_192(result, product, curve_prime, tmp); break; case 4: vli_mmod_fast_256(result, product, curve_prime, tmp); break; case 6: vli_mmod_fast_384(result, product, curve_prime, tmp); break; default: return false; } return true; } /* Computes result = (left * right) % curve_p. */ void _vli_mod_mult_fast(uint64_t *result, const uint64_t *left, const uint64_t *right, const uint64_t *curve_prime, unsigned int ndigits) { uint64_t product[2 * L_ECC_MAX_DIGITS]; vli_mult(product, left, right, ndigits); vli_mmod_fast(result, product, curve_prime, ndigits); } /* Computes result = left^2 % curve_p. */ void _vli_mod_square_fast(uint64_t *result, const uint64_t *left, const uint64_t *curve_prime, unsigned int ndigits) { uint64_t product[2 * L_ECC_MAX_DIGITS]; vli_square(product, left, ndigits); vli_mmod_fast(result, product, curve_prime, ndigits); } #define EVEN(vli) (!(vli[0] & 1)) /* Computes result = (1 / p_input) % mod. All VLIs are the same size. * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */ void _vli_mod_inv(uint64_t *result, const uint64_t *input, const uint64_t *mod, unsigned int ndigits) { uint64_t a[L_ECC_MAX_DIGITS], b[L_ECC_MAX_DIGITS]; uint64_t u[L_ECC_MAX_DIGITS], v[L_ECC_MAX_DIGITS]; uint64_t carry; int cmp_result; if (vli_is_zero(input, ndigits)) { vli_clear(result, ndigits); return; } vli_set(a, input, ndigits); vli_set(b, mod, ndigits); vli_clear(u, ndigits); u[0] = 1; vli_clear(v, ndigits); while ((cmp_result = _vli_cmp(a, b, ndigits)) != 0) { carry = 0; if (EVEN(a)) { _vli_rshift1(a, ndigits); if (!EVEN(u)) carry = vli_add(u, u, mod, ndigits); _vli_rshift1(u, ndigits); if (carry) u[ndigits - 1] |= 0x8000000000000000ull; } else if (EVEN(b)) { _vli_rshift1(b, ndigits); if (!EVEN(v)) carry = vli_add(v, v, mod, ndigits); _vli_rshift1(v, ndigits); if (carry) v[ndigits - 1] |= 0x8000000000000000ull; } else if (cmp_result > 0) { _vli_sub(a, a, b, ndigits); _vli_rshift1(a, ndigits); if (_vli_cmp(u, v, ndigits) < 0) vli_add(u, u, mod, ndigits); _vli_sub(u, u, v, ndigits); if (!EVEN(u)) carry = vli_add(u, u, mod, ndigits); _vli_rshift1(u, ndigits); if (carry) u[ndigits - 1] |= 0x8000000000000000ull; } else { _vli_sub(b, b, a, ndigits); _vli_rshift1(b, ndigits); if (_vli_cmp(v, u, ndigits) < 0) vli_add(v, v, mod, ndigits); _vli_sub(v, v, u, ndigits); if (!EVEN(v)) carry = vli_add(v, v, mod, ndigits); _vli_rshift1(v, ndigits); if (carry) v[ndigits - 1] |= 0x8000000000000000ull; } } vli_set(result, u, ndigits); } /* ------ Point operations ------ */ /* Point multiplication algorithm using Montgomery's ladder with co-Z * coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Double in place */ static void ecc_point_double_jacobian(uint64_t *x1, uint64_t *y1, uint64_t *z1, const uint64_t *curve_prime, unsigned int ndigits) { /* t1 = x, t2 = y, t3 = z */ uint64_t t4[L_ECC_MAX_DIGITS]; uint64_t t5[L_ECC_MAX_DIGITS]; if (vli_is_zero(z1, ndigits)) return; /* t4 = y1^2 */ _vli_mod_square_fast(t4, y1, curve_prime, ndigits); /* t5 = x1*y1^2 = A */ _vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); /* t4 = y1^4 */ _vli_mod_square_fast(t4, t4, curve_prime, ndigits); /* t2 = y1*z1 = z3 */ _vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); /* t3 = z1^2 */ _vli_mod_square_fast(z1, z1, curve_prime, ndigits); /* t1 = x1 + z1^2 */ _vli_mod_add(x1, x1, z1, curve_prime, ndigits); /* t3 = 2*z1^2 */ _vli_mod_add(z1, z1, z1, curve_prime, ndigits); /* t3 = x1 - z1^2 */ _vli_mod_sub(z1, x1, z1, curve_prime, ndigits); /* t1 = x1^2 - z1^4 */ _vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); /* t3 = 2*(x1^2 - z1^4) */ _vli_mod_add(z1, x1, x1, curve_prime, ndigits); /* t1 = 3*(x1^2 - z1^4) */ _vli_mod_add(x1, x1, z1, curve_prime, ndigits); if (vli_test_bit(x1, 0)) { uint64_t carry = vli_add(x1, x1, curve_prime, ndigits); _vli_rshift1(x1, ndigits); x1[ndigits - 1] |= carry << 63; } else { _vli_rshift1(x1, ndigits); } /* t1 = 3/2*(x1^2 - z1^4) = B */ /* t3 = B^2 */ _vli_mod_square_fast(z1, x1, curve_prime, ndigits); /* t3 = B^2 - A */ _vli_mod_sub(z1, z1, t5, curve_prime, ndigits); /* t3 = B^2 - 2A = x3 */ _vli_mod_sub(z1, z1, t5, curve_prime, ndigits); /* t5 = A - x3 */ _vli_mod_sub(t5, t5, z1, curve_prime, ndigits); /* t1 = B * (A - x3) */ _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); /* t4 = B * (A - x3) - y1^4 = y3 */ _vli_mod_sub(t4, x1, t4, curve_prime, ndigits); vli_set(x1, z1, ndigits); vli_set(z1, y1, ndigits); vli_set(y1, t4, ndigits); } /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(uint64_t *x1, uint64_t *y1, uint64_t *z, const uint64_t *curve_prime, unsigned int ndigits) { uint64_t t1[L_ECC_MAX_DIGITS]; _vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ _vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ _vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ _vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ } /* P = (x1, y1) => 2P, (x2, y2) => P' */ static void xycz_initial_double(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2, uint64_t *p_initial_z, const uint64_t *curve_prime, unsigned int ndigits) { uint64_t z[L_ECC_MAX_DIGITS]; vli_set(x2, x1, ndigits); vli_set(y2, y1, ndigits); vli_clear(z, ndigits); z[0] = 1; if (p_initial_z) vli_set(z, p_initial_z, ndigits); apply_z(x1, y1, z, curve_prime, ndigits); ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); apply_z(x2, y2, z, curve_prime, ndigits); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) * or P => P', Q => P + Q */ static void xycz_add(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2, const uint64_t *curve_prime, unsigned int ndigits) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint64_t t5[L_ECC_MAX_DIGITS]; /* t5 = x2 - x1 */ _vli_mod_sub(t5, x2, x1, curve_prime, ndigits); /* t5 = (x2 - x1)^2 = A */ _vli_mod_square_fast(t5, t5, curve_prime, ndigits); /* t1 = x1*A = B */ _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); /* t3 = x2*A = C */ _vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); /* t4 = y2 - y1 */ _vli_mod_sub(y2, y2, y1, curve_prime, ndigits); /* t5 = (y2 - y1)^2 = D */ _vli_mod_square_fast(t5, y2, curve_prime, ndigits); /* t5 = D - B */ _vli_mod_sub(t5, t5, x1, curve_prime, ndigits); /* t5 = D - B - C = x3 */ _vli_mod_sub(t5, t5, x2, curve_prime, ndigits); /* t3 = C - B */ _vli_mod_sub(x2, x2, x1, curve_prime, ndigits); /* t2 = y1*(C - B) */ _vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); /* t3 = B - x3 */ _vli_mod_sub(x2, x1, t5, curve_prime, ndigits); /* t4 = (y2 - y1)*(B - x3) */ _vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); /* t4 = y3 */ _vli_mod_sub(y2, y2, y1, curve_prime, ndigits); vli_set(x2, t5, ndigits); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) * or P => P - Q, Q => P + Q */ static void xycz_add_c(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2, const uint64_t *curve_prime, unsigned int ndigits) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint64_t t5[L_ECC_MAX_DIGITS]; uint64_t t6[L_ECC_MAX_DIGITS]; uint64_t t7[L_ECC_MAX_DIGITS]; /* t5 = x2 - x1 */ _vli_mod_sub(t5, x2, x1, curve_prime, ndigits); /* t5 = (x2 - x1)^2 = A */ _vli_mod_square_fast(t5, t5, curve_prime, ndigits); /* t1 = x1*A = B */ _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); /* t3 = x2*A = C */ _vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); /* t4 = y2 + y1 */ _vli_mod_add(t5, y2, y1, curve_prime, ndigits); /* t4 = y2 - y1 */ _vli_mod_sub(y2, y2, y1, curve_prime, ndigits); /* t6 = C - B */ _vli_mod_sub(t6, x2, x1, curve_prime, ndigits); /* t2 = y1 * (C - B) */ _vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); /* t6 = B + C */ _vli_mod_add(t6, x1, x2, curve_prime, ndigits); /* t3 = (y2 - y1)^2 */ _vli_mod_square_fast(x2, y2, curve_prime, ndigits); /* t3 = x3 */ _vli_mod_sub(x2, x2, t6, curve_prime, ndigits); /* t7 = B - x3 */ _vli_mod_sub(t7, x1, x2, curve_prime, ndigits); /* t4 = (y2 - y1)*(B - x3) */ _vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); /* t4 = y3 */ _vli_mod_sub(y2, y2, y1, curve_prime, ndigits); /* t7 = (y2 + y1)^2 = F */ _vli_mod_square_fast(t7, t5, curve_prime, ndigits); /* t7 = x3' */ _vli_mod_sub(t7, t7, t6, curve_prime, ndigits); /* t6 = x3' - B */ _vli_mod_sub(t6, t7, x1, curve_prime, ndigits); /* t6 = (y2 + y1)*(x3' - B) */ _vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); /* t2 = y3' */ _vli_mod_sub(y1, t6, y1, curve_prime, ndigits); vli_set(x1, t7, ndigits); } void _ecc_point_mult(struct l_ecc_point *result, const struct l_ecc_point *point, const uint64_t *scalar, uint64_t *initial_z, const uint64_t *curve_prime) { /* R0 and R1 */ const struct l_ecc_curve *curve = point->curve; uint64_t rx[2][L_ECC_MAX_DIGITS]; uint64_t ry[2][L_ECC_MAX_DIGITS]; uint64_t z[L_ECC_MAX_DIGITS]; uint64_t sk[2][L_ECC_MAX_DIGITS]; int i, nb; unsigned int ndigits = curve->ndigits; int num_bits; int carry; carry = vli_add(sk[0], scalar, curve->n, ndigits); vli_add(sk[1], sk[0], curve->n, ndigits); scalar = sk[!carry]; num_bits = sizeof(uint64_t) * ndigits * 8 + 1; vli_set(rx[1], point->x, ndigits); vli_set(ry[1], point->y, ndigits); xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, ndigits); for (i = num_bits - 2; i > 0; i--) { nb = !vli_test_bit(scalar, i); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, ndigits); xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); } nb = !vli_test_bit(scalar, 0); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, ndigits); /* Find final 1/Z value. */ /* X1 - X0 */ _vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); /* Yb * (X1 - X0) */ _vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); /* xP * Yb * (X1 - X0) */ _vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); /* 1 / (xP * Yb * (X1 - X0)) */ _vli_mod_inv(z, z, curve_prime, ndigits); /* yP / (xP * Yb * (X1 - X0)) */ _vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); /* Xb * yP / (xP * Yb * (X1 - X0)) */ _vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); /* End 1/Z calculation */ xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); apply_z(rx[0], ry[0], z, curve_prime, ndigits); vli_set(result->x, rx[0], ndigits); vli_set(result->y, ry[0], ndigits); } /* Returns true if p_point is the point at infinity, false otherwise. */ bool _ecc_point_is_zero(const struct l_ecc_point *point) { return (vli_is_zero(point->x, point->curve->ndigits) && vli_is_zero(point->y, point->curve->ndigits)); }