
1

The hardware modules and descriptions referred to in this document are *NOT SUPPORTED*
by Texas Instruments (www.ti.com / e2e.ti.com).

These materials are intended for do-it-yourself (DIY) users who want to use the PRU at their
own risk without TI support. "Community" support is offered at BeagleBoard.org/discuss.

Programmable Real-time Unit and
Industrial Communication Sub-System
(PRU-ICSS) Overview

Agenda
• Introduction

• PRU Sub-System Overview

• Getting Started Programming

• Other Resources

Introduction to the PRU SubSystem

• What is PRU SubSystem?
– Programmable Real-time Unit SubSystem
– Dual 32bit RISC processors
– Local instruction and data RAM; access to SoC resources.

• What devices include PRU SubSystem?
– Legacy PRUSS: OMAPL137/ AM17x, OMAPL138/ AM18x, C674x
– PRU-ICSS* (PRUSSv2): AM335x

• Why PRU SubSystem?
– Full programmability allows adding customer differentiation
– Efficient in performing embedded tasks that require manipulation of packed

memory mapped data structures
– Efficient in handling of system events that have tight real-time constraints.

* PRU-ICSS = Programmable Real-time Unit and Industrial Communication SubSystem.

4

PRU Subsystem Is / Is-Not
IS IS-Not
Dual 32-bit RISC processor specifically designed
for manipulation of packed memory mapped data
structures and implementing system features that
have tight real time constraints

In not a H/W accelerator to speed up algorithm
computations.

Simple RISC ISA
- Approximately 40 instructions

- Logical, arithmetic, and flow control ops all
complete in a single cycle

Is not a general purpose RISC processor
- No multiply hardware/instructions
- No cache
- No pipeline
- No C programming

Could be used to enhance the existing peripheral
feature set or implement new peripheral capability
with software bit bang

 Is not a stand alone configurable peripheral and
will need some hardware assist for configurable
peripheral implementation

Includes example code to demonstrate various
features. Examples can be used as building blocks.

No Operating System or high level application
software stack

5

PRU Value
• Extend connectivity and peripheral capability

– Implement Industrial Communications protocols (like EtherCAT®,PROFINET,
EtherNet/IPTM, PROFIBUS, POWERLINK, SERCOS III)

– Implement special peripherals and bus interfaces (like soft UARTs interfaces)
– Digital IOs with latency in ns
– Implement smart data movement schemes (especially useful for audio algorithms like

reverb, room correction, etc.)

• Reduce system power consumption
– Allows switching off both ARM and DSP clocks
– Implement smart power controller by evaluating events before waking up DSP and/or

ARM. Maximized power down time.

• Accelerate system performance
– Full programmability allows custom interface implementation
– Specialized custom data handling to offload CPU

Agenda
• Introduction

• PRU Sub-System Overview
– PRU Overview
– INTC
– PRU-ICSS Peripherals
– Instruction Set

• Getting Started Programming

• Other Resources

7

PRU-ICSS (PRUSSv2)
• Provides two independent programmable real-time (PRU) cores

– 32-Bit Load/Store RISC architecture
– 8K Byte instruction RAM (2K instructions) per core
– 8K Bytes data RAM per core
– 12K Bytes shared RAM
– Multiplier and optional accumulation (MAC)
– Shared scratch pad (SPAD)

• Operating freq: 200 MHz

• PRU operation is little endian
similar to ARM processor

• All memories within PRU-ICSS
support parity

• Includes Interrupt Controller
for system event handling

• Fast I/O interface
– 30 input pins and 32 output

pins per PRU core.
(Only 17 GPI and 16 GPO
pinned out on AM335x.)

• Integrated peripherals

Enhancements in PRU-ICSS compared to
Legacy PRUSS
• Memory

– Additional data memory (8K Bytes vs 512 Bytes)
– Additional instruction memory (8K Bytes vs 4K Bytes)
– 12 KB Shared RAM
– All memories within PRU-ICSS support parity

• PRU Resources
– Enhanced GPIO (EGPIO), adding serial, parallel, and MII capture capabilities
– Multiplier with optional accumulation (MAC)
– Scratch pad (SPAD) with broadside interface

• Internal peripheral modules
– UART
– eCAP
– MII_RT
– MDIO
– IEP

• Operating frequency
– Legacy PRUSS: ½ CPU frequency
– PRU-ICSS: 200 MHz

Local & Global Memory Map
• Local Memory Map

– Allows PRU to directly access
subsystem resources, e.g. DRAM,
INTC registers, etc.

– NOTE: Memory map slightly different
from PRU0 and PRU1 point-of-view.

• Global Memory Map
– Allows external masters to access PRU

subsystem resources, e.g. debug and
control registers.

– PRU cores can also use global memory
map, but more latency since access
routed externally.

Agenda
• Introduction

• PRU Sub-System Overview
– PRU Overview
– INTC
– PRU-ICSS Peripherals
– Instruction Set

• Getting Started Programming

• Other Resources

11

R0

R2

R29
R30
R31

R1

CONST
TABLE

Instruction
RAM

32 GPO

30 GPI

…

PRU

General Purpose Registers
 All instructions are performed on

registers and complete in a single cycle
 Register file appears as linear block for

all register to memory operations

Special Registers (R30 and R31)
 R30

 Write: 32 GPO
(AM335x: 16 GPO pinned out)

 R31
 Read: 30 GPI + 2 Host Int status
(AM335x: 17 GPI pinned out)
 Write: Generate INTC Event

Instruction RAM
 8KB in size; 2K Instructions
 Can be updated with PRU reset

Constant Table
 Ease SW development by

providing freq used constants
 Peripheral base addresses
 Few entries programmable

Execution Unit
 Logical, arithmetic, and flow

control instructions
 Scalar, no Pipeline, Little

Endian
 Register-to-register data flow
 Addressing modes: Ld

Immediate & Ld/St to Mem
 INTC

PRU Functional Block Diagram

EXECUTION
UNIT

PRU Constants Table
• Load and store instructions require that the destination/source base address

be loaded in a register.

• Constants table is a list of 32 commonly-used addresses that can be used in
memory load and store operations via special instructions.

• Most constant table entries are fixed, but some contain a programmable bit
field that is programmable through the PRU control registers.

• Using the constants table saves both the register space as well as the time
required to load pointers into registers.

PRU0/1 Constants Table (AM335x)

NOTES

1. Constants not in this table can be created ‘on the fly’ by loading two 16-bit values into a PRU register. These

constants are just ones that are expected to be commonly used, enough so to be hard-coded in the PRU
constants table.

2. Constants table entries 24 through 31 are not fully hard coded, they contain a programmable bit field that is

programmable through the PRU control registers. Programmable entries allow you to select different 256-
byte pages within an address range.

PRU Event/Status Register (R31)
• Writes: Generate output events to the INTC.

– Write the event number (0 through 15) to PRU_VEC[3:0] and simultaneously set
PRU_VEC_VALID to create a pulse to INTC.

– Outputs from both PRUs are ORed together to form single output.
– Output events 0 through 15 are connected to system events 16 through 31 on INTC.

• Reads: Return Host 1 & 0 interrupt status from INTC and general purpose input
pin status.

Bit Name Description
31:6 RSV Reserved
5 PRU_VEC_VALID Valid strobe for vector output
4 RSV Reserved
3:0 PRU_VEC[3:0] Vector output

Bit Name Description
31 PRU_INTR_IN[1] PRU Host 1 interrupt from INTC
30 PRU_INTR_IN[0] PRU Host 0 interrupt from INTC
29:0 PRU_R31_STATUS[29:0] Status inputs from PRUn_R31[29:0]

R31 During Writes

R31 During Reads

Dedicated GPIs and GPOs
• General purpose inputs (GPIs)

– Each PRU has 30 general purpose input pins: PRU0_R31[29:0] and PRU1_R31[29:0].
– Reading R31[29:0] in each PRU returns the status of PRUn_R31[29:0].
– On AM335x, only PRU0_R31[16:0] and PRU1_R31[16:0] are pinned out.

• General purpose outputs (GPOs)
– Each PRU has 32 general purpose output pins: PRU0_R30[31:0] and PRU1_R30[31:0].
– The value written to R30[31:0] is driven on PRUn_R30[31:0].
– On AM335x, only PRU0_R30[15:0] and PRU1_R30[15:0] are pinned out.

• Notes
– Unlike the device GPIOs, PRU GPIs and GPOs may be assigned to different pins.
– You can use the “.” operator to read or write a single bit in R30 and R31, e.g. R30.t0.
– PRU GPOs and GPIs are enabled through the system pin mux registers.

16

Enhanced GPIO Interface
• Legacy PRUSS only supported direct connect GPIO interface.

• PRU-ICSS (PRUSSv2) supports enhanced GPIO interface.
– GPI modes:

• Direct connect (17 GPIs per core)
• 16-bit parallel capture (1 parallel capture GPI per core)
• 28-bit shift (1 GPI serializer per core)

– GPO modes:
• Direct connect (16 GPOs per core)
• Shift out (1 GPO serializer per core)

– GPIO modes are programmable through PRU-ICSS CFG.
– Only one mode can be active at a time.

17

PRU-ICSS Enhanced GPIO Signals

Function Alias Internal Signal Name

Direct Mode

Data input PRU<n>_DATAIN pru<n>_r31 [16:0]

Parallel Capture Mode

Data input PRU<n>_DATAIN pru<n>_r31 [15:0]

Clock PRU<n>_CLOCK pru<n>_r31 [16]

Shift Mode

Data input PRU<n>_DATAIN pru<n>_r31 [0]

Shift counter PRU<n>_CNT_16 pru<n>_r31 [28]

Start bit detection PRU<n>_GPI_SB pru<n>_r31 [29]

Function Alias Internal Signal Name

Direct Mode

Data output PRU<n>_DATAOUT pru<n>_r31 [15:0]

Shift Mode

Data output PRU<n>_DATAOUT pru<n>_r30 [0]

Clock PRU<n>_CLOCK pru<n>_r30 [1]

Load gpo_sh0
PRU<n>_LOAD_GPO

_SH0 pru<n>_r30 [29]

Load gpo_sh1
PRU<n>_LOAD_GPO

_SH1 pru<n>_r30 [30]

Enable shift
PRU<n>_ENABLE_S

HIFT pru<n>_r30 [31]

GPI Signals GPO Signals

18

Direct Connect Modes
GPI

• PRU<n> R31 [16:0] feed directly into the PRU

GPO

• PRU<n> R30 [15:0] feed directly out of the PRU

PRU<n>_R31

PR1_PRU<n>_PRU_R31_<16:0>
0
1
…
15
16

17

PRU<n>DATAIN

PRU<n>_R30

PR1_PRU<n>_PRU_R31_<15:0> 0
1
…
15

16

PRU<n>DATAOUT

19

Shift Modes (GPI)
• PRU<n> R31[0] is sampled and shifted into a 28-bit shift register.

– Shift Counter (Cnt_16) feature uses pru<n>_r31_status [28]
– Start Bit detection (SB) feature uses pru<n>_r31_status [29]

• Shift rate controlled by effective divisor of two cascaded dividers applied to the
200MHz clock.

– Each cascaded dividers is configurable through the PRU-ICSS CFG to a value of {1,
1.5, …, 16}.

Bit 0 Bit 27

28-bit shift register
29 (GPI_SB)
28 (Cnt_16)

PR1_PRU<n>_PRU_R31_<0>
0

PRU<n>_R31

…

PRU<n>DATAIN

20

Shift Modes (GP0)
• PRU<n> R30[0] is shifted out on every rising edge of the internal PRU<n>_CLOCK

(pru<n>r30 [1]).

• Shift rate is controlled by the effective divisor of two cascaded dividers applied to
the 200MHz clock. See Shift Mode (GPI).

PRU<n>DATAOUT

PRU<n>_R30

PRU<n>CLOCK
Clock gen

0
1
…
15
…

29 (gp_sh0_load)
30 (gp_sh1_load)
31 (enable_shift)

16

16

16

16

GP_SH0

GP_SH1

16
PR1_PRU<n>_PRU_R30_<0>

PR1_PRU<n>_PRU_R30_<1>

counter

21

Parallel Capture Mode (GPI)

• PRU<n>_R31 [15:0] is captured by posedge or negedge of
PRU<n>_CLOCK (pru<n>_r31_status [16]).

PRU<n>_R31

0
1
…
14
15

PR1_PRU<n>_PRU_R31_<15:0>
PR1_PRU<n>_PRU_R31_<16>

PRU<n>DATAIN

PRU<n>CLOCK

16

16

200 MHz
Sync flop

200 MHz
Sync flop

200 MHz
Sync flop

22

Multiplier with optional Accumulation

• Multiply support is enabled through MAC.

• The MAC is directly connected with the PRU internal registers R25 –
R29.

• Broadside load/store PRU interface and XFR instructions are used to:
– Control the mode of the MAC
– Import the multiplication results into the PRU

Auto-sampled

or XOUT

23

MAC Block Diagram

XOUT

MAC
XFR device ID for

MAC = 0

R26

R27

R28

R29

XIN
Bit
[0] loads current state of MAC_mode

[1] loads the current state of ACC_carry
XIN

Lower 32 bit product

XIN
Upper 32 bit product

R25

R26

R27

R28

R29

R25
mode /status

R26
Lower product

R27
Upper product

R25
MAC mode /status

Bit
[0] Loads MAC_mode, if set to “1” the
MAC will perform one multiply and
accumulate function.

[1] write “1” clears ACC_carry

R29
Operand

R28
Operand

32 operands:

sampled every clock in
multiply mode or sampled
every XOUT in multiply
and accumulate mode

Function Function
PRU

Auto-sampled

or XOUT

24

Scratch Pad
• 3 banks of 30, 32-bit registers shared by the PRU cores.

• Broadside interface allows PRU cores to load/ store up to 30, 32-bits of data in
single instruction. Minimum size is 1 byte. Maximum size is 120 bytes.

• Direct connect allows for direct transfer between PRU cores, bypassing SPAD.

• Optional XIN/XOUT remap functionality supported for PRU to Bank<n>
transactions. This enables to store/load R<n> to R<m>.

 PRU0
R0
R1
R2
…
R28
R29
R30
R31

PRU1
R0
R1
R2
…
R28
R29
R30
R31

 Bank0
R0
R1
R2
…
R28
R29

 Bank1
R0
R1
R2
…
R28
R29

 Bank2
R0
R1
R2
…
R28
R29

br
oa

ds
id

e
in

te
rfa

ce

br
oa

ds
id

e
in

te
rfa

ce

Agenda
• Introduction

• PRU Sub-System Overview

– PRU Overview
– INTC
– PRU-ICSS Peripherals
– Instruction Set

• Getting Started Programming

• Other Resources

Interrupt Controller (INTC) Overview

• Supports 64 system events
– 32 system events external to the PRU subsystem
– 32 system events generated directly by the PRU cores

• Supports up to 10 interrupt channels
– Allows for interrupt nesting.

• Generation of 10 host interrupts
– Host Interrupt 0 mapped to R31.b30 in both PRUs
– Host Interrupt 1 mapped to R31.b31 in both PRUs
– Host Interrupt 2 to 9 routed to ARM and DSP INTCs.

• System events can be individually enabled, disabled, and manually triggered

• Each host event can be enabled and disabled

• Hardware prioritization of system events and channels

Interrupt Controller Block Diagram

Channel-0

Channel-1

Channel-2

Channel-3

Channel-4

Channel-5

Channel-6

Channel-7

Channel-8

Channel-9

Peripheral Event 0

Host-0

Host-1

Host-2

Host-3

Host-4

Host-5

Host-6

Host-7

Host-8

Host-9

Peripheral Event 31

System Events
 0 to 31

from
 PRU0/1

Sys Event 0

Sys Event 2

Sys Event 30

Sys Event 31

Sys Event 58

Sys Event 32
PRU_ICSS_EVTOUT0

to
PRU_ICSS_EVTOUT7

PRU0/1
R31.b30

PRU0/1
R31.b31

Channel Mapping of System Events Host Mapping of Channels

Sys Event 63

Interrupt Controller Mapping

• System events must be mapped to channels
– Multiple system events can be mapped to the same channel.
– Not possible to map system events to more than one channel.
– System events mapped to same channel  lower-numbered events have higher

priority

• Channels must be mapped to host interrupts
– Multiple channels can be mapped to the same host interrupt.
– Not possible to map channels to more than one host interrupt.
– Recommended to map channel “x” to host interrupt “x”, where “x” is from 0 to 9.
– Channels mapped to the same host interrupt  lower-numbered channels have

higher priority

System Event to Channel Mapping

SI0_MAP SI1_MAP SI2_MAP SI3_MAP

System
Event 3

CHANMAP0

System
Event 2

System
Event 1

System
Event 0

CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9

CH5 [05h] CH5 [05h] CH8 [08h] CH2 [02h]
7 0 15 8 23 16 31 24

Channel to Host Interrupt Mapping

CH0_MAP CH1_MAP CH2_MAP CH3_MAP
HOSTMAP0

CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9

HOST0 [00h] HOST1 [01h] HOST3 [03h] HOST3 [03h]

* Recommended to map channel “x” to host interrupt “x”.

7 0 15 8 23 16 31 24

HOST0 HOST1 HOST2 HOST3 HOST4 HOST5 HOST6 HOST7 HOST8 HOST9

R31.b30 R31.b31
PRU_ICSS_
EVTOUT0

PRU_ICSS_
EVTOUT1 PRUSS_

EVTOUT2

PRUSS_
EVTOUT3 PRUSS_

EVTOUT4

PRUSS_
EVTOUT5 PRUSS_

EVTOUT6

PRUSS_
EVTOUT7

Agenda
• Introduction

• PRU Sub-System Overview
– PRU Overview
– INTC
– PRU-ICSS Peripherals
– Instruction Set

• Getting Started Programming

• Other Resources

Integrated Peripherals
• PRU-ICSS integrates some peripherals to reduce latency of the PRU accessing

these peripherals.

• PRU-ICSS peripherals can be used by the PRU or by the ARM as additional
hardware peripherals on the device.

– ARM has full access of PRU-ICSS peripheral registers.
– Interrupt mapping through PRU INTC required.

• Integrated peripherals:
– PRU UART

• Same as AM1808 UART
• Supports up to 12M baud

– PRU eCAP
• Same as AM335x eCAP module

– PRU MDIO, MII_RT, IEP
• EtherCAT-specific modules

Agenda
• Introduction

• PRU Sub-System Overview
– PRU Overview
– INTC
– PRU-ICSS Peripherals
– Instruction Set

• Getting Started Programming

• Other Resources

PRU Instruction Overview

• Four instruction classes
– Arithmetic
– Logical
– Flow Control
– Register Load/Store

• Instruction Syntax
– Mnemonic, followed by comma separated parameter list
– Parameters can be a register, label, immediate value, or constant table entry
– Example

• SUB r3, r3, 10
• Subtracts immediate value 10 (decimal) from the value in r3 and then places the result in r3

• Nearly all instructions (with exception of accessing memory external to PRU) are single-
cycle execute

– 5 ns when running at 200 MHz

PRU Register Accesses

• PRU is suited to handling packets and structures, parsing them into fields and
other smaller data chunks

• Valid registers formats allow individual selection of bits, bytes, and half-words
from within individual registers

• The parts of the register can be accessed using the modifier suffixes shown

Suffix Range of n Meaning

 .wn 0 to 2
16 bit field with a byte offset of n within the parent
field

 .bn 0 to 3
8 bit field with a byte offset of n within the parent
field

 .tn 0 to 31 1 bit field with a bit offset of n within the parent field

Register Examples

• r0.b0

 31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

• r0.b2

• r0.w0

 31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

• r0.w1

Register Examples, cont’d

• r0.t2

 31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

• r0.w2.b1 = r0.b3

• r0.w1.b1.t3 = r0.b2.t3 = r0.t19
31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

• r0.w2.t12 = r0.t28

PRU Instruction Set

Agenda
• Introduction

• PRU Sub-System Overview

• Getting Started Programming
– PRU Assembler (PASM)
– Linux PRU Application Loader

• Other Resources

PASM Overview

• PASM is a command-line assembler for the PRU cores
– Converts PRU assembly source files to loadable binary data
– Output format can be raw binary, C array (default), or hex

• The C array can be loaded by host processor (ARM or DSP) to kick off PRU
– Other debug formats also can be output

• Command line syntax:
pasm_2 –V3 [-bcmldxz] SourceFile [-Dname=value] [-CArrayname]

• The PASM tool generates a single monolithic binary
– No linking, no sections, no memory maps, etc.
– Code image begins at start of IRAM (offset 0x0000)

Valid Assembly File Inputs

• Four basic assembler statements
– Hash commands
– Dot commands (directives)
– Labels
– Instructions

• True instructions (defined previously)
• Pseudo-instructions

• Assembly comments allowed and ignored
– Use the double slash single-line format of C/C++
– Always appear as last field on a line
– Example:

//-------------------------
// This is a comment
//-------------------------
ldi r0, 100 // This is a comment

Assembler Hash statements

• Similar to C pre-processor commands

• #include”filename”
– Specified filename is immediately opened, parsed, and processed
– Allows splitting large PRU assembly code into separate files

• #define
– Specify a simple text substitution
– Can also be used to define empty substitution for use with #ifdef, #ifndef, etc.

• #undef – Used to undefine a substitution previously defined with #define

• Others (#ifdef, #ifndef, #else, #endif, #error) as used in C preprocessor

Assembler Dot Commands

• All dot commands start with a
period (the dot)

• Rules for use
– Must be only assembly

statement on line
– Can be followed by comments
– Not required to start in column

0

Command Description
.origin Set start of next assembly statement

.entrypoint Only used for debugger, specifies starting address

.setcallreg Specified 16-bit register field for storing return
pointer

.macro, .mparam, .endm Define assembler macros

.struct, .ends, .u32, .u16, .u8 Define structure types for easier register allocation

.assign Map defined structure into PRU register file

.enter Create and enter new variable scope

.leave Leave a specific variable scope

.using Use a previously created and left scope

Macro Example
• PASM macros using dot commands expand are like C preprocessor macros

using #define

• They save typing and can make code cleaner

• Example macro:
//
// mov32 : Move a 32bit value to a register
//
// Usage:
// mov32 dst, src
//
// Sets dst = src. Src must be a 32 bit immediate value.
//
.macro MOV32
.mparam dst, src
 LDI dst.w0, src & 0xFFFF
 LDI dst.w2, src >> 16
.endm

• Macro invoked as:
MOV32 r0, 0x12345678

* Note: The latest assembler supports 32-bit
immediate values natively, making this mov32
MACRO undesirable for general use.

Struct Example

• Like in C, defined structures can be useful for defining offsets and mapping
data into registers/memory

• Declared similar to using typedef in C
– PASM automatically processes each declared structure template and creates an

internal structure type.
– The named structure type is not yet associated with any registers or storage.

• Now in PASM assembly:
.struct PktDesc
 .u32 pNext
 .u32 pBuffer
 .u16 Offset
 .u16 BufLength
 .u16 Flags
 .u16 PktLength
.ends

• Example from C:
typedef struct _PktDesc_
{
 struct _PktDesc *pNext;
 char *pBuffer;
 unsigned short Offset;
 unsigned short BufLength;
 unsigned short Flags;
 unsigned short PktLength;
} PKTDESC;

Agenda
• Introduction

• PRU Sub-System Overview

• Getting Started Programming
– PRU Assembler (PASM)
– Linux PRU Application Loader

• Other Resources

PRU Linux Loader
• Host processor of SoC must load code to a PRU and initiate its execution

• ARM processor can load code to PRU instruction memory and interact with
PRU from user space using the application loader

• Application loader is available in open-source

• Application PRU Loader
– API’s allow ARM to interact with PRU in user space
– Supports BSD licensing
– Can be used for protocol emulation and user space applications

Application Loader S/W Architecture

48

Application

Protocol Stack

Linux 3.x (Cortex-A8)

UIO user space PRUSS driver
PRU binary loader and control, L3 RAM and PRU event out mapping

UIO kernel driver
for

PRU SubSystem

3P stack

TI

Customer

TI/3P/Customer

PRU-ICSS Cortex-A8

PRU firmware

Application Loader Examples

• AM335x PRU package includes several basic PRU application example code. These examples use
the Linux application loader.

– Additional PRU examples can be found in the AM1808 SDK.
– The AM18x PRUSS to AM335x PRU-ICSS Software Migration Guide provides reference of how these examples

can be ported to AM335x.

• PRU example code demonstrates:
– Memory transfers
– Accessing constant tables *
– Interrupts
– Toggling GPIOs *
– eDMA configuration *

• AM1808 SDK can be downloaded at:
 http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html

 * Only included in AM1808 examples.

PRU examples

AM1808 SDK

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html

Steps to use develop code

• To Use,
– Build UIO kernel driver as module
– Build User space API’s, link to application code
– Compile application code using API
– Compile PRU binaries using PASM

– On file system, install UIO kernel driver, application executables, PRU

binaries

Agenda
• Introduction

• PRU Sub-System Overview

• Getting Started Programming

• Other Resources

PRU tools/software/documentation

Legacy PRUSS
• Overview - http://tiexpressdsp.com/index.php/Programmable_Realtime_Unit_Subsystem

• Programming Guide –

 http://tiexpressdsp.com/index.php/Programmable_Realtime_Unit_Software_Development

• Software Development Package including assembler –

 http://focus.ti.com/docs/toolsw/folders/print/sprc940.html

• AM1808 PRU Linux Loader -

 http://processors.wiki.ti.com/index.php/PRU_Linux_Loader

• AM1808 SDK with PRU examples -

 http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html

• AM1808 PSP -

 http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x

• Soft-UART code and documentation –

 http://processors.wiki.ti.com/index.php/Soft-

UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide

52

http://tiexpressdsp.com/index.php/Programmable_Realtime_Unit_Subsystem
http://tiexpressdsp.com/index.php/Programmable_Realtime_Unit_Software_Development
http://focus.ti.com/docs/toolsw/folders/print/sprc940.html
http://processors.wiki.ti.com/index.php/PRU_Linux_Loader
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html
http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x
http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x
http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide
http://processors.wiki.ti.com/index.php/Soft-UART_Implementation_on_OMAPL_PRU_-_Software_Users_Guide

PRU tools/software/documentation
PRU-ICSS, or PRUSSv2 (AM335x)

• AM335x PRU package

 http://github.com/beagleboard/am335x_pru_package

53

http://github.com/beagleboard/am335x_pru_package

	Slide Number 1
	Agenda
	Introduction to the PRU SubSystem
	PRU Subsystem Is / Is-Not
	PRU Value
	Agenda
	PRU-ICSS (PRUSSv2)
	Enhancements in PRU-ICSS compared to Legacy PRUSS
	Local & Global Memory Map
	Agenda
	PRU Functional Block Diagram
	PRU Constants Table
	PRU0/1 Constants Table (AM335x)
	PRU Event/Status Register (R31)
	Dedicated GPIs and GPOs
	Enhanced GPIO Interface
	PRU-ICSS Enhanced GPIO Signals
	Direct Connect Modes
	Shift Modes (GPI)
	Shift Modes (GP0)
	Parallel Capture Mode (GPI)
	Multiplier with optional Accumulation
	MAC Block Diagram
	Scratch Pad
	Agenda
	Interrupt Controller (INTC) Overview
	Interrupt Controller Block Diagram
	Interrupt Controller Mapping
	System Event to Channel Mapping
	Channel to Host Interrupt Mapping
	Agenda
	Integrated Peripherals
	Agenda
	PRU Instruction Overview
	PRU Register Accesses
	Register Examples
	Register Examples, cont’d
	PRU Instruction Set
	Agenda
	PASM Overview
	Valid Assembly File Inputs
	Assembler Hash statements
	Assembler Dot Commands
	Macro Example
	Struct Example
	Agenda
	PRU Linux Loader
	Application Loader S/W Architecture
	Application Loader Examples
	Steps to use develop code
	Agenda
	PRU tools/software/documentation
	PRU tools/software/documentation

