
PRUSS Software Mitigation Guide for AM335x 1

PRUSS Software Mitigation Guide for AM335x

The design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference design. Only "community"
support is allowed via resources at BeagleBoard.org/discuss [1].

Introduction
This article serves as a Software Migration Guide to assist in porting legacy software developed for the
Programmable Real-Time Unit Subsystem (PRUSS) on AM18x to AM335x platforms. This guide will detail the
PRU subsystem hardware differences and provide examples of software modifications required to ported PRU
firmware and ARM code to AM335x.
The subsystem available on AM335x is the next-generation PRUSS (PRUSSv2). This PRUSS version preserves the
same basic features and overall structure as the legacy PRUSS available on AM18x, allowing the PRU code
developed on AM18x to be ported to AM335x.
Refer to the PRU wiki [2] for details about the PRUSS on AM18x and the AM335x Technical Reference Manual
PRU-ICSS chapter addendum for details about the PRUSS on AM335x.

AM18x and AM335x Hardware Differences
This section provides an overview of the hardware differences between AM18x and AM335x. Both a high-level
overview of the SoC-level hardware differences and a detailed overview of the PRU subsystems hardware
differences are included.

SoC-level Hardware Differences
AM18x and AM335x devices support different peripherals and features. Table 1 compares the peripherals and
features offered on AM18x and AM335x.
The SoC memory map, peripheral register map, pinmuxing, ARM interrupt controller events, and eDMA mapping
also differ between the devices. Note other inherit differences may exist within the peripherals and features listed
below. For additional details, refer to the AM18x to AM335x hardware migration guide [3] wiki and device-specific
data sheets and user guides available at the device product pages:
• AM18x [4]

• AM335x [5]

Device Family AM18x AM335x

Device Family AM1808/6/2 - ARM 9 AM3357/6/2 - CortexA8
AM3359/8/4 - CortexA8 with SGX 530

Package Options

Packages 361-ball PBGA (ZCE), .65-mm Ball Pitch
361-ball PBGA (ZWT), .80-mm Ball
Pitch

284-pin nFBGA (ZCE), .65-mm Ball Pitch with VCA
324-Pin nFBGA (ZCZ), .80-mm Ball Pitch Full
Array

Co-processors and Subsystems

http://BeagleBoard.org/discuss
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Category:PRU
http://processors.wiki.ti.com/index.php/Programmable_Realtime_Unit_Subsystem
http://processors.wiki.ti.com/index.php/AM18x_To_AM335x_Hardware_Migration_Guide
http://focus.ti.com/docs/prod/folders/print/am1808.html
http://focus.ti.com/docs/prod/folders/print/am3359.html

PRUSS Software Mitigation Guide for AM335x 2

ARM Processor ARM 9 up to 450 MHz;
16KB Instruction and Data Caches

Cortex-A8 up to 720MHz;
32K-Byte Instruction and Data Caches;

256K-Byte L2 Cache w/ECC

Supported CVdd: 1.0/1.1/1.2/1.3 V

Neon Co-processor not present Y

SGX530 3D Graphics Engine not present Y

eDMA Y Y

PRUSS Y Y

Memory Interfaces:

Memory Subsystem mDDR/DDR2 Controller;
EMIFA

EMIF;
GPMC;

ELM

Security

Crypto hardware accelerators not present Y

Video Interfaces

LCD Controller Y Y

VPIF Y not present

Peripherals

USB USB 1.1, USB 2.0 USB 2.0 [x2]

eMAC 10/100 Mbps 10/100/1000 Mbps

CAN not present 2

McASP 1 2

McBSP 2 not present

UART 3 (none with IrDA) 6 (all with IrDA)

McSPI 2 2

I2C 2 3

GPIO 9 banks 4 banks

eCAP 3 3

eHRPWM 2 3

eQPE not present 3

ADC/TS not present 8ch 12bit

HPI Y not present

uPP Y not present

SATA Controller Y not present

Removable Media

MMC/SD/SDIO 2 3

Power, Reset, and Clock
Management

RTC Y Y

Test Interfaces

JTAG Y Y

PRUSS Software Mitigation Guide for AM335x 3

ETM & ETB Y Y

IEEE 1500 support not present Y

Misc

GP Timer 3 64b or 6 x32b Timers 7

Watchdog Timer 1 1

PRUSS Hardware Differences between AM18x and AM335x
The AM335x PRUSSv2 is based on the AM18x PRUSS. The basic subsystem hardware features are retained on
AM335x, such as two PRU cores, instruction RAM, data RAM, interrupt controller, constant table, global and local
accessibility.
Updates to the PRUSSv2 on AM335x include:

• Increased program memory (iRAM) from 4KB to 8KB
• Increased data memory (DRAM) from 512 bytes to 8KB
• Added 12KB shared RAM
• Expanded memory mapping
• Updated constant table entries
• Updated interrupt table events

New features added to the PRUSSv2 on AM335x are described in the AM335x Technical Reference Manual
PRU-ICSS chapter addendum. Note this migration guide does not discuss these new features since there is no
associated impact when porting legacy code.
Below shows a comparison block diagram of the subsystems:

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Legacy_PRUSS.jpg

PRUSS Software Mitigation Guide for AM335x 4

Figure 1. AM18x PRUSS block diagram

Figure 2. AM335x PRUSS block diagram

PRUSS Memory Map Comparison
The local and global memory maps are different on AM335x to accommodate a larger data RAM and instruction
RAM, as well as new features.

Local Memory Map Differences

Table 2 shows the differences between the local memory map in AM18x and AM335x.
Table 2. Local Memory Map Comparison

Start Address AM18x AM335x

PRU0 PRU1 PRU0 PRU1

0x0000_0000 Data RAM 0 Data RAM 1 Data 8KB RAM 0 Data 8KB RAM 1

0x0000_0200 Reserved Reserved

0x0000_2000 Data RAM 1 Data RAM 0 Data 8KB RAM 1 Data 8KB RAM 0

0x0000_2200 Reserved Reserved

0x0000_4000 INTC Registers INTC Registers

0x0000_7000 PRU0 Registers PRU0 Registers

0x0000_7800 PRU1 Registers PRU1 Registers

0x0000_8000 Reserved Reserved

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PRUSSv2.jpg

PRUSS Software Mitigation Guide for AM335x 5

0x0001_0000 Reserved Reserved Shared Data 12KB RAM2 Shared Data 12KB RAM2

0x0002_0000 INTC INTC

0x0002_2000 PRU0 Control Registers PRU0 Control Registers

0x0002_2400 Reserved Reserved

0x0002_4000 PRU1 Control Registers PRU1 Control Registers

0x0002_4400 Reserved Reserved

0x0002_6000 New Features New Features

0x0008_0000

Global Memory Map Differences

The global view of the PRUSS internal memories and control ports are documented in Table 3 and 4. This global
memory map is a system-level mapping that allows other SoC resources to access the PRUSS memories.
The PRU0 and PRU1 cores can use either the local or global addresses to access their internal memories, but using
the local addresses will provide access time several cycles faster than using the global addresses. This is because
when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and
back in through the PRUSS slave port.
AM18x and AM335x have different global memory maps. Table 3 compares the global start address for the PRU
subsystem on AM18x and AM335x. The base addresses (listed as an offset of the global PRUSS start address) for
each memory block in the PRUSS global memory map are compared in Table 4.

Table 3. Start Address Comparison

AM18x AM335x

Start Address 0x01C3_0000 0x4A30_0000

Table 4. Global Base Address Offset Comparison

Base Address Offset AM18x AM335x

0x0000_0000 Data RAM 0 Data 8KB RAM 0

0x0000_0200 Reserved

0x0000_2000 Data RAM 1 Data 8KB RAM 1

0x0000_2200 Reserved

0x0000_4000 INTC Registers

0x0000_7000 PRU0 Registers

0x0000_7800 PRU1 Registers

0x0000_8000 PRU0 Instruction RAM

0x0000_9000 Reserved

0x0000_C000 PRU1 Instruction RAM

0x0000_D000 Reserved

PRUSS Software Mitigation Guide for AM335x 6

0x0001_0000 Data 12KB RAM 2

0x0002_0000 INTC

0x0002_2000 PRU0 Control

0x0002_2400 PRU0 Debug

0x0002_4000 PRU1 Control

0x0002_4400 PRU1 Debug

0x0002_6000 New Features

0x0003_4000 PRU0 8KB IRAM

0x0003_8000 PRU1 8KB IRAM

0x0004_0000 Reserved

* The Base Address Offset values in Table 4 are offsets from the Start Address shown in Table 3.

PRU<n> Register Content and Offsets

The PRU<n> Registers (Control and Debug) and offsets of each control and debug register within this area of
memory are identical on both devices.

INTC Register Content and Offsets

The PRU INTC registers and offsets of each INTC register within this area of memory are identical on both devices.

Constants Table Differences
The PRUSS constant table entries are partially backwards compatible. However, as shown in Table 5, some entries
have been replaced by new or more pertinent peripherals supported on AM335x.

Table 5. Constant Table Comparison

AM18x AM335x

Entry
#

Region Pointed To Value [31:0] Region Pointed To Value [31:0]

0 PRU0/1 Local INTC 0x0000_4000 PRU0/1 Local INTC 0x0002_0000

1 Timer64P0 0x01C2_0000 DMTIMER2 0x4804_0000

2 I2C0 0x01C2_2000 I2C1 0x4802_A000

3 PRU0/1 Local Data 0x0000_0000 eCAP (local) 0x0003_0000

4 PRU1/0 Local Data 0x0000_2000 PRUSS CFG(local) 0x0002_6000

5 MMC/SD 0x01C4_0000 MMCHS 0 0x4806_0000

6 SPI0 0x01C4_1000 MCSPI 0 0x4803_0000

7 UART 0 0x01C4_2000 UART0 (local) 0x0002_8000

8 McASP0 DMA 0x01D0_2000 McASP0 DMA 0x4600_0000

9 Reserved 0x01D0_6000 GEMAC 0x4A10_0000

10 Reserved 0x01D0_A000 Reserved 0x4831_8000

11 UART1 0x01D0_C000 UART1 0x4802_2000

12 UART2 0x01D0_D000 UART2 0x4802_4000

13 USB0 0x01E0_0000 Reserved 0x4831_0000

PRUSS Software Mitigation Guide for AM335x 7

14 USB1 0x01E2_5000 DCAN0 0x481C_C000

15 UHPI Config 0x01E1_0000 DCAN1 0x481D_0000

16 Reserved 0x01E1_2000 MCSPI 1 0x481A_0000

17 I2C1 0x01E2_8000 I2C2 0x4819_C000

18 EPWM0 0x01F0_0000 eHRPWM1/

eCAP1/ eQEP1

0x4830_0000

19 EPWM1 0x01F0_2000 eHRPWM2/

eCAP2/ePWM2

0x4830_2000

20 Reserved 0x01F0_4000 eHRPWM3/

eCAP3/ePWM3

0x4830_4000

21 ECAP0 0x01F0_6000 MDIO (local) 0x0003_2400

22 ECAP1 0x01F0_7000 Mailbox 0 0x480C_8000

23 ECAP2 0x01F0_8000 Spinlock 0x480C_A000

24 PRU0/1 Local Data 0x0000_0n00, n=c24_blk_index[3:0] PRU0/1 Local Data 0x0000_0n00, n=c24_blk_index[3:0]

25 McASP0 Control 0x01D0_0n00, n=c25_blk_index[3:0] PRU1/0 Local Data 0x0000_2n00, n=c25_blk_index[3:0]

26 Reserved 0x01D0_4000 IEP (local) 0x0002_En00, n=c26_blk_index[3:0]

27 Reserved 0x01D0_8000 MII_RT (local) 0x0003_2n00, n=c27_blk_index[3:0]

28 DSP Megamodule
RAM/ROM

0x11nn_nn00,
nnnn=c28_pointer[15:0]

Shared PRU RAM
(local)

0x00nn_nn00,
nnnn=c28_pointer[15:0]

29 EMIFA SDRAM 0x40nn_nn00,
nnnn=c29_pointer[15:0]

TPCC 0x49nn_nn00,
nnnn=c29_pointer[15:0]

30 Shared RAM 0x80nn_nn00,
nnnn=c30_pointer[15:0]

L3 OCMC0 0x40nn_nn00,
nnnn=c30_pointer[15:0]

31 mDDR/DDR2 Data 0xC0nn_nn00,
nnnn=c31_pointer[15:0]

EMIF0 DDR Base 0x80nn_nn00,
nnnn=c31_pointer[15:0]

PRU Module Interface Added Features
The functionality and structure of R30 and R31 is preserved on AM335x. AM335x supports several new GPI / GPO
modes using R30 and R31. These modes are configured through the AM335x PRU-ICSS CFG register space. The
direct connect GPI and GPO (default) mode on AM335x is equivalent to that on AM18x.
Note the R30 and R31 registers should be initialized before releasing the PRU from HALT. Also, to avoid driving
uninitialized values on GP pins configured as OUTPUTs, the register write of this initialization must complete soon
after reset, but before setting the SoC level Pin Mux to OUTPUT values from PRU.

Instruction Set and Format Compatibility
The instruction set and format on AM335x is backwards compatible with AM18x.
Note the SCAN instruction is not supported on AM335x.

Interrupt Controller Differences
The basic structure of the interrupt controller is the same in both devices. However, the events assigned to the
PRUSS system event are different. The PRUSS-generated interrupts are also assigned to different event numbers in
the ARM interrupt controller.

PRUSS Software Mitigation Guide for AM335x 8

The INTC mapping of system events to channels to hosts is still the same. Both devices support the same number of
total system events (64), channels (16), and hosts (10). On both AM18x and AM335x, Host0 and Host1 are
connected to the PRU cores and Host2-9 are exported for signaling the ARM and eDMA.
Table 6 shows the differences between the system event numbers designated for external events generated by
peripherals and events generated by writing to R31. Note on AM335x some system events are allocated for events
from new modules in the PRUSS. Therefore, the number of available events generated by writing to R31 on
AM335x is less than on AM18x.

Table 6. Event Mapping Structure

AM18x Event Numbers AM335x Event Numbers

Externally generated events 0 – 31 32 – 63

R31-generated events 32 - 63 16 – 31

PRUSS module generated events N/A 0 - 15

Table 7.1 and Table 7.2 compare the system events in both devices. The events of peripherals that do not exist on
AM335x are grayed out. The events of peripherals supported by AM335x but not include in the PRUSS INTC are
listed as “not included.” Refer to the PRUSS wiki [2] and AM335x TRM PRU-ICSS chapter addendum for a
complete list of each device's system events.

Table 7.1 INTC Event Comparison (Mode 0 on AM18x)

AM18x AM335x

Function Event Mode Event Mode

Emulation Suspend Signal (Software Use Only) 0 0 58 0

ECAP0 Interrupt 1 0 42 0

ECAP1 Interrupt 2 0 35 0

Timer64P0 Event Out 12 3 0 not included

ECAP2 Interrupt 4 0 36 0

McASP0 TX DMA Request 5 0 not included

McASP0 RX DMA Request 6 0 not included

McBSP0 TX DMA Request 7 0

McBSP0 RX DMA Request 8 0

McBSP1 TX DMA Request 9 0

McBSP1 RX DMA Request 10 0

SPI0 Interrupt 0 11 0 44 0

SPI1 Interrupt 0 12 0 not included

UART0 Interrupt 13 0 51 0

UART1 Interrupt 14 0 32 0

I2C0 Interrupt 15 0 41 0

I2C1 Interrupt 16 0 not included

UART2 Interrupt 17 0 52 0

MMCSD0 Interrupt 0 18 0 not included

MMCSD0 Interrupt 1 19 0 not included

USB0 (USB2.0 HS OTG) Subsystem Interrupt Request (aggregated from subsystem’s INTD) 20 0 not included

http://processors.wiki.ti.com/index.php/Programmable_Realtime_Unit_Subsystem

PRUSS Software Mitigation Guide for AM335x 9

USB1 (USB1.1 FS OHCI) Subsystem IRQ Interrupt 21 0 not included

Timer64P0 Event Out 34 22 0 not included

ECAP0 input (output from mux) 23 0 not included

EPWM0 Interrupt 24 0 43 0

EPWM1 Interrupt 25 0 46 0

SATA Interrupt 26 0

EDMA3_0_CC0_INT2 (region 2) *** 27 0 63 0

EDMA3_0_CC0_INT3 (region 3) *** 28 0 63 0

UHPI CPU_INT 29 0

EPWM0TZ Interrupt or EPWM1TZ Interrupt 30 0 56 0

McASP0 TX Interrupt 31 1 55 0

McASP0 RX Interrupt 54 0

Table 7.2 INTC Event Comparison (Mode 1 on AM18x)

AM18x AM335x

Function Event Mode Event Mode

Emulation Suspend Signal (Software Use Only) 0 1 58 0

Timer64P2_T12CMPEVT0 1 1 not included

Timer64P2_T12CMPEVT1 2 1 not included

Timer64P2_T12CMPEVT2 3 1 not included

Timer64P2_T12CMPEVT3 4 1 not included

Timer64P2_T12CMPEVT4 5 1 not included

Timer64P2_T12CMPEVT5 6 1 not included

Timer64P2_T12CMPEVT6 7 1 not included

Timer64P2_T12CMPEVT7 8 1 not included

Timer64P3_T12CMPEVT0 9 1 not included

Timer64P3_T12CMPEVT1 10 1 not included

Timer64P3_T12CMPEVT2 11 1 not included

Timer64P3_T12CMPEVT3 12 1 not included

Timer64P3_T12CMPEVT4 13 1 not included

Timer64P3_T12CMPEVT5 14 1 not included

Timer64P3_T12CMPEVT6 15 1 not included

Timer64P3_T12CMPEVT7 16 1 not included

Timer64P0_T12CMPEVT0 or Timer64P0_T12CMPEVT1 or Timer64P0_T12CMPEVT2 or
Timer64P0_T12CMPEVT3 or Timer64P0_T12CMPEVT4 or Timer64P0_T12CMPEVT5 or
Timer64P0_T12CMPEVT6 or Timer64P0_T12CMPEVT7

17 1 not included

Timer64P2 Event Out 12 18 1 not included

Timer64P3 Event Out 12 19 1 not included

Timer64P1 Event Out 12 20 1 not included

UART1 Interrupt 21 1 32 0

PRUSS Software Mitigation Guide for AM335x 10

UART2 Interrupt 22 1 52 0

SPI0 Interrupt 0 23 1 44 0

EPWM0 Interrupt 24 1 43 0

EPWM1 Interrupt 25 1 46 0

SPI1 Interrupt 0 26 1 not included

GPIO Bank 0 Interrupt 27 1 57 0

GPIO Bank 1 Interrupt 28 1 not included

McBSP0 TX DMA Request 29 1

McBSP0 RX DMA Request 30 1

McASP0 TX Interrupt 31 1 55 0

McASP0 RX Interrupt 54 0

*** The eDMA shadow regions accessible by the PRUSS has changed from region 2 & 3 on AM18x to
region 1 on AM335x.

The AINTC event numbers mapped to the PRUSS source interrupts have also been updated. Table 8 shows these
changes.

Table 8. AINTC Mapping of Source Interrupt to Event Number Comparison

Source AM18x Event
Number

AM335x Event
Number

PRUSS1_EVTOUT0 3 20

PRUSS1_EVTOUT1 4 21

PRUSS1_EVTOUT2 5 22

PRUSS1_EVTOUT3 6 23

PRUSS1_EVTOUT4 7 24

PRUSS1_EVTOUT5 8 25

PRUSS1_EVTOUT6 9 26

PRUSS1_EVTOUT7 10 27

On AM335x the pr1_host[7] is mapped to EDMA event 0 and pr1_host[6] is mapped to EDMA event 1.

Example Software Modifications
The software changes required to port legacy code from AM18x to AM335x are based on the hardware differences
between the two devices. This section details the key differences in software and describes how legacy code can be
modified for AM335x. Note additional modifications may be required relating to other SoC differences external to
the PRUSS. Some of these modifications are discussed in the modifying software for SoC related differences
section.
A checklist of changes required for both legacy PRU firmware and ARM code is provided below.

PRU Firmware Checklist

PRUSS Software Mitigation Guide for AM335x 11

1 PRU constant table values

2 PRU addresses within local memory map

3 PRU addresses within global memory map

4 PRUSS interrupt system event numbers

5 SoC related changes (ie. peripheral addressing or registers, pinmux configuration, etc.)

ARM Code Checklist

1 PRU addresses within global memory map

2 PRUSS interrupt system event numbers

3 SoC related changes (ie. peripheral addressing or registers, pinmux configuration, AINTC, etc.)

Samples of code are shown throughout this section to demonstrate the changes described. Many of these code
snippets are part of the PRU example code for the ARM. This source code can be obtained from the AM1808 SDK
[6].

Updating PRU Constant Table References in Firmware
Differences in the PRU constant table will require changes to PRU firmware code. The PRU constant table entries
are partially backwards compatible, as some peripherals and features maintain the same entry numbers. However,
other peripherals and features have been removed, added, or remapped to different entry numbers in the AM335x
table. Refer to Table 5 in the Constant Table section for a comparison between the constant tables on both devices.

Remapped Constant Table Entries
Some of the peripherals and features in the AM18x constant table are still present in the AM335x table but are
mapped to a different entry number. Any reference of these peripherals by an LBCO or SBCO instruction in the
firmware needs to be updated.
Below is an example of how to update the PRU_memAccessPRUDataRam example code for this change. The PRU
Data RAM constant table entry changed from C3 to C24 between AM18x and AM335x, respectably. Note the
constant table entries C24 – C31 are partially programmable. If the changes impact entries C24 – C31, confirm that
the correct memory location is accessed. The Constant Table Block Index register, Constant Table Programmable
Pointer registers (CTPPR_0, CTPPR_1), and LBCO and SBCO offsets may also need to be updated to point to the
intended memory location.

AM18x: PRU_memAccessPRUDataRam AM335x: PRU_memAccessPRUDataRam

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html

PRUSS Software Mitigation Guide for AM335x 12

#define CONST_PRUSSINTC C0
#define CONST_PRUDRAM C3
#define CONST_L3RAM C30
#define CONST_DDR C31
// Address for the Constant table Programmable Pointer Register
0(CTPPR_0)
#define CTPPR_0 0x7028
// Address for the Constant table Programmable Pointer Register
1(CTPPR_1)
#define CTPPR_1 0x702C
//Load 4 bytes from memory location c3(PRU0/1 Local Data)+4 into r4
using constant table

LBCO r4, CONST_PRUDRAM, 4, 4

// Add r3 and r4

ADD r3, r3, r4

//Store result in into memory location c3(PRU0/1 Local Data)+8 using
constant table

SBCO r3, CONST_PRUDRAM, 8, 4

#define CONST_PRUSSINTC C0
#define CONST_PRUDRAM C24
#define CONST_L3RAM C30
#define CONST_DDR C31
// Address for the Constant table Programmable Pointer Register
0(CTPPR_0)
#define CTPPR_0 0x00022028
// Address for the Constant table Programmable Pointer Register
1(CTPPR_1)
#define CTPPR_1 0x0002202C
// Address for the Constant table Block Index Register 0(CTBIR_0)
#define CTBIR_0 0x00022020
// Address for the Constant table Block Index Register 1(CTBIR_1)
#define CTBIR_1 0x00022024

// Configure the programmable pointer register for PRU0 by setting
// c24_pointer[15:0] field to 0x00. This will make C24 point to
// 0x00000000 (PRU DRAM).

MOV r0, 0x00000000

MOV r1, CTBIR_1

ST32 r0, r1

//Load 4 bytes from memory location c3(PRU0/1 Local Data)+4 into r4
using constant table

LBCO r4, CONST_PRUDRAM, 4, 4

// Add r3 and r4

ADD r3, r3, r4

//Store result in into memory location c3(PRU0/1 Local Data)+8 using
constant table

SBCO r3, CONST_PRUDRAM, 8, 4

Removed Constant Table Entries
Some entries from the AM18x constant table have been removed and replaced by more pertinent peripherals
supported on AM335x. If a previously used entry no longer exists in the constant table, the PRU firmware will need
to be updated to replace the corresponding byte burst with constant table offset instruction (SBCO or LBCO) to a
standard byte burst instruction (SBBO or LBBO). This update requires three steps:

1. Prior to accessing this memory region, the base address needs to be first loaded into a PRU register.
2. The standard byte burst instruction (ie. SBBO or LBBO) will replace the existing byte burst instruction with

constant table offset (ie. SBCO or LBCO).
3. Replace the constant register with the PRU register from step 1.

Below shows an example of how to update AM18x code that accesses USB0 memory. Note USB is not included in
the AM335x constant table.

AM18x: Removed constant table entry AM335x: Removed constant table
entry

PRUSS Software Mitigation Guide for AM335x 13

#define CONST_USB0 C13
// Load value into register

LDI r0.w0, 0x0001

// Read value from USB0

LBCO r1, CONST_USB0, 0, 4

// Write value to USB0

SBCO r0, CONST_USB0, 0, 4

// Address for USB0
#define USB0 0x47400000
// Load value into register

LDI r0.w0, 0x0001

MOV r10, USB0

// Read value from USB

LBBO r1, r10, 0, 4

// Write value to USB

SBBO r0, r10, 0, 4

Updating Local Memory Map References in Firmware
Differences in the local PRUSS memory map require modifications to the PRU firmware. The local PRUSS memory
map for AM335x contains the same modules, or blocks of memory, as AM18x. However, the module base addresses
for data RAM, INTC, and PRU0/1 registers are different between devices, as shown in Table 2 of the Local Memory
Map section. Note that within each module, the defined registers and offsets are the same.
The legacy PRU firmware will access the registers in local memory map by either loading the address (or defined
variable name set to the address) into a register or by using the constant table entries for the PRU Data RAM and
INTC registers. No change related to the local memory map of the INTC registers is required if the constant table is
used. However, any references to the PRU Data RAM constant table entry need to be updated (refer to the
Remapped Constant Table Entries section for any required constant table changes). If the constant table is not used,
the base address or specific memory address may need to be updated, depending on how the legacy firmware is
coded.
Common firmware code updates related to the local memory map module addresses include:

• Data RAM1/0
* If byte burst instructions (LBBO, SBBO) are used, no changes are required for Data RAM0/1.

• Interrupt Controller
• PRU Control Register

* The primary registers that the PRU firmware will access are related to the programmable constant
table entries (ie. PRU Constant Table Block Index Register, PRU Constant Table Programmable Pointer
Register 0, PRU Constant Table Programmable Pointer Register 1).

In the example code below, the base address of the PRU INTC is updated. The firmware divides the address into a
base address + offset.

AM18x: Updating INTC base address AM335x: Updating INTC base address

#define GER_OFFSET 0x10
#define INTC_REGS_BASE 0x00004000

// Global enable of all host interrupts

LDI regVal.w0, 0x0001

SBBO regVal,
INTC_REGS_BASE,

GER_OFFSET, 2

#define GER_OFFSET 0x10
#define INTC_REGS_BASE 0x00020000

// Global enable of all host interrupts

LDI regVal.w0, 0x0001

SBBO regVal,
INTC_REGS_BASE,

GER_OFFSET, 2

The example below shows modifying the CTPPR_1 of the PRU Control Register. In this case, the firmware stores
the entire address to the CTPPR_1 constant, rather than dividing it into base address + offset.

AM18x: Updating PRU Control Register address Am335x: Updating PRU Control Register address

PRUSS Software Mitigation Guide for AM335x 14

// Address for the Constant table
// Programmable Pointer Register 1(CTPPR_1)
#define CTPPR_1 0x702C

// To access the DDR memory, the
// programmable pointer register is
// configured by setting C31[15:0] field. Set R0
// to zero and store that value into in CTPR_1
// to configure c31_pointer[15:0]

MOV r0, 0x00000000

MOV r1, CTPPR_1

SBBO r0, r1, 0, 4

// Address for the Constant table
// Programmable Pointer Register 1(CTPPR_1)
#define CTPPR_1 0x0002402C

// To access the DDR memory, the
// programmable pointer register is
// configured by setting C31[15:0] field. Set R0
// to zero and store that value into in CTPR_1
// to configure c31_pointer[15:0]

MOV r0, 0x00000000

MOV r1, CTPPR_1

SBBO r0, r1, 0, 4

Updating Global Memory Map References
The changes to the global PRUSS memory map require any ARM code interacting with the PRU and any PRU
assembly code that accesses the global (rather than local) memory map to be updated.
There are two changes relating to the global PRUSS memory map between devices. First, the start address for the
PRUSS memory block differs between the devices’ global memory maps, as shown in Table 2. Second, within the
PRUSS memory block, the base addresses of each module (Data RAM, INTC, PRU0/1 registers, etc.) differ, as
shown in Table 3. The registers and offsets within each module remain the same.
Examples for modifying both PRU firmware and ARM code are provided in the following sections.

Enable AM335x PRUSS to access global memory addresses
The AM335x PRUSS requires a configuration step to access global memory addresses that was not required by the
legacy PRUSS on AM18x.
By default, the AM335x OCP master port is in standby and needs to be enabled in the PRUSS CFG register space,
SYSCFG[STANDBY_INIT]. This can be done either by the PRU firmware or by the ARM before loading and
enabling the PRU.

AM335x: PRU firmware enabling global memory access AM335x: ARM code enabling global memory access

#define CONST_PRUCFG C4

// Enable OCP master port:
// clear SYSCFG[STANDBY_INIT] to enable OCP master
port
LBCO r0, CONST_PRUCFG, 4, 4
CLR r0, r0, 4
SBCO r0, CONST_PRUCFG, 4, 4

#define PRUSS0_CFG 5
static void *cfgMem;
static unsigned int *cfgMem_int;

// within main(), before prussdrv_exec_program

prussdrv_map_peripheral_io (PRUSS0_CFG,
&cfgMem);
cfgMem_int = (unsigned int*) cfgMem;

cfgMem_int[1] &= 0xFFFFFFEF;

PRUSS Software Mitigation Guide for AM335x 15

PRU firmware modifications
Most PRU firmware code should use the local memory map to reduce latencies. However, the PRU also has access
to the global memory map. If the firmware code does access the global memory map, these addresses are required to
be updated.
Below is a simple example of modifying the PRU firmware with the updated PRU global addresses.

AM18x: Firmware accessing global memory map AM335x: Firmware accessing global memory map

#define PRU0_BASE_REG 0x01C37000
#define CTPPR_1_OFFSET 0x2C

MOV r0, 0x00000000
MOV r1, PRU0_CTR_REG_BASE
SBBO r0, r1, CTPPR_1_OFFSET, 4

#define PRU0_BASE_REG 0x4A300000
#define CTPPR_1_OFFSET 0x2C

MOV r0, 0x00000000
MOV r1, PRU0_CTR_REG_BASE
SBBO r0, r1, CTPPR_1_OFFSET, 4

ARM code modifications
ARM code interacting with the PRU uses the PRUSS global memory map and will require updates to the PRU
defined addresses.
The example code below shows updates to a header file used both by kernel and application code.

AM18x: ARM code accessing global memory map AM335x: ARM code accessing global memory map

// PRU Memory Macros
#define PRU0_DATA_RAM_START (0x01C30000)
#define PRU0_PROG_RAM_START (0x01C38000)
#define PRU1_DATA_RAM_START (0x01C32000)
#define PRU1_PROG_RAM_START (0x01C3C000)
#define PRU_DATA_RAM_SIZE (0x200)
#define PRU_PROG_RAM_SIZE (0x1000)
#define PRU_PRU0_BASE_ADDRESS 0
#define PRU_INTC_BASE_ADDRESS

(PRU_PRU0_BASE_ADDRESS +
0x4000)

#define PRU_INTC_REVID

(PRU_INTC_BASE_ADDRESS + 0)

#define PRU_INTC_CONTROL

(PRU_INTC_BASE_ADDRESS + 0x4)

#define PRU_INTC_GLBLEN

// PRU Memory Macros
#define PRU0_DATA_RAM_START (0x4A300000)
#define PRU0_PROG_RAM_START (0x4A334000)
#define PRU1_DATA_RAM_START (0x4A302000)
#define PRU1_PROG_RAM_START (0x4A338000)
#define PRU_DATA_RAM_SIZE (0x1F40)
#define PRU_PROG_RAM_SIZE (0x1F40)
#define PRU_PRU0_BASE_ADDRESS 0
#define PRU_INTC_BASE_ADDRESS

(PRU_PRU0_BASE_ADDRESS +
0x20000)

#define PRU_INTC_REVID

(PRU_INTC_BASE_ADDRESS + 0)

#define PRU_INTC_CONTROL

(PRU_INTC_BASE_ADDRESS + 0x4)

#define PRU_INTC_GLBLEN

(PRU_INTC_BASE_ADDRESS + 0x10)

(PRU_INTC_BASE_ADDRESS + 0x10)

For application code, if the PRUSS application loader API call prussdrv_map_prumem() is used to map the PRU
data RAM to a pointer, then no changes are required for this section of code.
Application code manually mapping PRUSS addresses to a pointer will need to update the global PRU address. The
example below shows updating the address for a register in the PRU debug registers.

AM18x: PRU_gpioToggle.c AM335x: PRU_gpioToggle.c

/* map the memory */
mem_pru0reg = mmap(0, 0x00000FFF, PROT_WRITE | PROT_READ,
MAP_SHARED, mem_fd, 0x01C37000);
mem_pruReg30 = mem_pru0reg + 0x00000478;

/* map the memory */
mem_pru0reg = mmap(0, 0x00000FFF, PROT_WRITE | PROT_READ,
MAP_SHARED, mem_fd, 0x04A22000);
mem_pruReg30 = mem_pru0reg + 0x00000478;

PRUSS Software Mitigation Guide for AM335x 16

Updating PRU system events and PRUSS INTC mapping
The AM18x and AM335x INTC have different system events. The system events will need to be updated both in the
PRU firmware code and in the interrupt controller mapping in the ARM code (ie. using the prussdrv_pruintc_init
API call from the PRU application loader, refer to section 4.6). Note the INTC mapping will not change, only the
system event numbers.
The ARM interrupt map event numbers corresponding to PRUSS interrupts have also changed. In the ARM code,
the user needs to confirm that IRQs are updated for the new PRUSS event numbers.

External events generated by peripherals

Updating event numbers

In both the PRU firmware and PRU INTC mapping in ARM code, the event numbers for peripheral-generated events
should be updated according to Table 7.
If an interrupt used on AM18x is no longer supported on AM335x, one option is to poll or periodically read the
peripheral’s status register, if it exists. Refer to the AM335x TRM for peripheral details.
The AM18x INTC event table maps both McASP tx and rx interrupts to one system event. However, AM335x splits
McASP interrupts into separate tx and rx system events. To minimize changes to the code structure, any reference to
the McASP system event could be split into two duplicate instructions—one processes the tx event and the other
processes the rx event.
Note the PRU INTC has two modes or PRUSSEVTSEL options. A mode change between the AM18x and AM335x
code may require an additional modification—- either removing code that sets the mode or if the new mode is not
the default mode on AM335x, setting the mode through the PRUSS CFG register space on AM335x.

External and internal event numbering swapped

On AM18x external events generated by peripherals are mapped to system events 0-31, while AM335x maps these
events to 32-63.
Some of the INTC functions are split into two registers, one for events 0-31 and another for events 32-63. This
change in system event numbers means this registers must be switched in the PRU/ARM code. The effected registers
are listed below:

SRSR1 (0x200) -> SRSR2 (0x204)

SECR1 (0x280) -> SECR2 (0x284)

ESR1 (0x300) -> ESR2 (0x304)

ECR1 (0x380) -> ECR2 (0x384)

SIPR1 (0xD00) -> SIPR2 (0xD04)

SITR1 (0xD80) -> SITR2 (0xD84)

AM18x: Processing External Interrupt AM335x: Processing External Interrupt

PRUSS Software Mitigation Guide for AM335x 17

#define hostEventStatus r31
#define HOST_0_BIT 30
#define MCASP_TXRX_EVENT 31
#define SICR_OFFSET 0x24
#define SRSR1_OFFSET 0x200
#define SRSR2_OFFSET 0x204

WBS hostEventStatus, HOST_0_BIT

// Read the PRUINTC register to know if the
// event is from McASP. If yes, then branch

MOV r2, SRSR1_OFFSET

LBCO r1, CONST_PRUSSINTC, r2, 4

QBBS MCASP_EVENT, r1, MCASP_TXRX_EVENT

MCASP_EVENT:

#define hostEventStatus r31
#define HOST_0_BIT 30
#define MCASP_TX_EVENT 33
#define MCASP_RX_EVENT 34
#define SICR_OFFSET 0x24
#define SRSR1_OFFSET 0x200
#define SRSR2_OFFSET 0x204

WBS hostEventStatus, HOST_0_BIT

// Read the PRUINTC register to know if the
// event is from McASP. If yes, then branch

MOV r2, SRSR2_OFFSET

LBCO r1, CONST_PRUSSINTC, r2,
4

SUB r10, MCASP_TX_EVENT, #32

QBBS MCASP_EVENT, r1, r10

SUB r10, MCASP_RX_EVENT, #32

QBBS MCASP_EVENT, r1, r10

MCASP_EVENT:

Events generated by writing to PRU R31

Updating event numbers

In both the PRU firmware and PRU INTC mapping in ARM code, the event numbers for peripheral-generated events
should be updated according to Table 7.
Note the event numbers of the R31-generated events are different between devices. AM335x also has fewer of these
events than AM18x (16 vs. 32).

Internal and external event numbering swapped

On AM18x external events generated by peripherals are mapped to system events 0-31, while AM335x maps these
events to 32-63.
The simplest modification for this difference is to update the internal system event number by subtracting 32 from
the original event number (ie. 32 -> 0, 33 -> 1, ect.).
Some of the INTC functions are split into two registers, one for events 0-31 and another for events 32-63. This
change in system event numbers means this registers must be switched in the PRU/ARM code. If direct swap of
interrupt numbers done (ie. 32 -> 0, 33 -> 1, ect.), then the only change is to swap which register is being read. The
effected registers are listed below:

SRSR2 (0x204) -> SRSR1 (0x200)

SECR2 (0x284) -> SECR1 (0x280)

ESR2 (0x304) -> ESR1 (0x300)

ECR2 (0x384) -> ECR1 (0x380)

SIPR2 (0xD04) -> SIPR1 (0xD00)

SITR2 (0xD84) -> SITR1 (0xD80)

AM18x: Processing R31-generated Interrupt AM335x: Processing R31-generated Interrupt

PRUSS Software Mitigation Guide for AM335x 18

#define hostEventStatus r31
#define HOST_0_BIT 30
#define ARM_TO_PRU0_EVENT 34
#define SICR_OFFSET 0x24
#define SRSR1_OFFSET 0x200
#define SRSR2_OFFSET 0x204

WBS hostEventStatus, HOST_0_BIT

// Read the PRUINTC register to know if the
// event is from the ARM. If yes, then clear

MOV r2, SRSR2_OFFSET

LBCO r1, CONST_PRUSSINTC, r2, 4

QBBS CLEAR, r1, 3

CLEAR:

MOV r1, ARM_TO_PRU0_EVENT

SBCO r1, CONST_PRUSSINTC, SICR_OFFSET, 4

#define hostEventStatus r31
#define HOST_0_BIT 30
#define ARM_TO_PRU0_EVENT 18
#define SICR_OFFSET 0x24
#define SRSR1_OFFSET 0x200
#define SRSR2_OFFSET 0x204

WBS hostEventStatus, HOST_0_BIT

// Read the PRUINTC register to know if the
// event is from the ARM. If yes, then clear

MOV r2, SRSR1_OFFSET

LBCO r1, CONST_PRUSSINTC, r2, 4

QBBS CLEAR, r1, 3

CLEAR:

MOV r1, ARM_TO_PRU0_EVENT

SBCO r1, CONST_PRUSSINTC, SICR_OFFSET, 4

Modifying software for SoC related differences
AM18x and AM335x devices have additional differences that also require changes in both PRU firmware and ARM
code. Below is a list of some key differences that require code updates. However, this is not an exhaustive list, and
the AM18x to AM335x software migration guide [3] should be referenced for more details.
Key differences between AM18x and AM335x devices require PRU legacy code updates include:

1. Global device memory map
a. Start addresses of peripherals and features
b. Base addresses of modules
c. Register addresses and offsets

2. Peripherals
a. Refer to Table 1 in section 2 for peripherals supported on each device
b. Peripherals may have new memory or register maps. The functionality of registers may also
change.

* Note in PRU firmware, register map changes may affect offsets in LBBO, SBBO, LBCO,
SBCO when accessing peripheral registers.

3. Pinmuxing

http://processors.wiki.ti.com/index.php/AM18x_To_AM335x_Hardware_Migration_Guide

PRUSS Software Mitigation Guide for AM335x 19

Frequently Asked Questions
1. Why does my AM335x PRU firmware hangs when reading or writing to an address external to the PRU

Subsystem?
The OCP master port is in standby and needs to be enabled in the PRUSS CFG register space,
SYSCFG[STANDBY_INIT].

References
[1] http:/ / BeagleBoard. org/ discuss
[2] http:/ / processors. wiki. ti. com/ index. php/ Programmable_Realtime_Unit_Subsystem
[3] http:/ / processors. wiki. ti. com/ index. php/ AM18x_To_AM335x_Hardware_Migration_Guide
[4] http:/ / focus. ti. com/ docs/ prod/ folders/ print/ am1808. html
[5] http:/ / focus. ti. com/ docs/ prod/ folders/ print/ am3359. html
[6] http:/ / software-dl. ti. com/ dsps/ dsps_public_sw/ sdo_sb/ targetcontent/ sdk/ AM1x/ latest/ index_FDS. html

http://BeagleBoard.org/discuss
http://processors.wiki.ti.com/index.php/Programmable_Realtime_Unit_Subsystem
http://processors.wiki.ti.com/index.php/AM18x_To_AM335x_Hardware_Migration_Guide
http://focus.ti.com/docs/prod/folders/print/am1808.html
http://focus.ti.com/docs/prod/folders/print/am3359.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/sdk/AM1x/latest/index_FDS.html

Article Sources and Contributors 20

Article Sources and Contributors
PRUSS Software Mitigation Guide for AM335x Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=134217 Contributors: M-watkins

Image Sources, Licenses and Contributors
Image:Legacy_PRUSS.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Legacy_PRUSS.jpg License: unknown Contributors: M-watkins
Image:PRUSSv2.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PRUSSv2.jpg License: unknown Contributors: M-watkins

	PRUSS Software Mitigation Guide for AM335x
	SoC-level Hardware Differences
	PRUSS Hardware Differences between AM18x and AM335x
	PRUSS Memory Map Comparison
	Local Memory Map Differences
	Global Memory Map Differences
	PRU<n> Register Content and Offsets
	INTC Register Content and Offsets

	Constants Table Differences
	PRU Module Interface Added Features
	Instruction Set and Format Compatibility
	Interrupt Controller Differences

	Updating PRU Constant Table References in Firmware
	Remapped Constant Table Entries
	Removed Constant Table Entries

	Updating Local Memory Map References in Firmware
	Updating Global Memory Map References
	Enable AM335x PRUSS to access global memory addresses
	PRU firmware modifications
	ARM code modifications

	Updating PRU system events and PRUSS INTC mapping
	External events generated by peripherals
	Updating event numbers
	External and internal event numbering swapped

	Events generated by writing to PRU R31
	Updating event numbers
	Internal and external event numbering swapped

	Modifying software for SoC related differences

